

Source: Google 2022

CN A302250 Uptown Intersection Improvements Scoping and Alternatives Analysis Report

Prepared for

City of Albuquerque

Prepared by

Parametrix 9600 San Mateo Boulevard NE Albuquerque, NM 87113 T. 505.821.4700 F. 1.855.542.6353 www.parametrix.com

CITATION

Parametrix. 2022. CN A302250 Uptown Intersection Improvements Scoping and Alternatives Analysis Report. Prepared by Parametrix, Albuquerque, New Mexico. April 2022.

TABLE OF CONTENTS

1.	PROJECT INTRODUCTION AND SETTING	1-1
2.	EXISTING CONDITIONS	2-1
	2.1 Existing Roadway Conditions	2-1
	2.1.1 Existing Roadway at Louisiana	2-1
	2.1.2 Existing Roadway at Indian School	2-2
	2.2 Traffic Conditions	2-2
	2.2.1 Turning Movement Counts	2-2
	2.2.2 Growth Rates and Future Traffic Volumes	2-3
	2.2.3 Existing and Future Turning Movements	2-5
	2.2.4 Intersection Capacity, Level of Service, and Queuing	2-8
	2.3 Traffic Safety and Crashes	2-11
	2.3.1 Louisiana and Indian School	2-14
	2.3.2 Indian School at Q Street	2-15
	2.3.3 Indian School at Uptown Loop	2-16
	2.4 Pedestrian Use and Observations	2-16
	2.4.1 Pedestrians on Indian School and Louisiana and Indian School and Uptown Loop	2-17
	2.4.2 Pedestrians on Indian School and Q Street	2-17
	2.5 Intelligent Transportation Systems	2-18
	2.6 Drainage	2-18
	2.6.1 Drainage at Louisiana and Indian School	2-18
	2.6.2 Drainage on Indian School between Louisiana and Uptown Loop	2-18
	2.7 Utilities	2-18
	2.8 Geotechnical Conditions	2-19
	2.9 Environmental Considerations	2-19
	2.9.1 Land Use and Demographics	
	2.9.2 Cultural Resources	
	2.9.3 Natural Resources	
	2.9.4 Hazardous Materials	2-20
	2.9.5 Air Quality	2-20
3.	ALTERNATIVES DEVELOPMENT AND EVALUATION	3-1
	3.1 Purpose and Need	3-1
	3.2 Project Area Planning and Land Use	3-1
	3.3 Alternatives Development	
	3.3.1 Modifications at Louisiana and Indian School	
	3.3.2 Providing a Mid-Block Crossing at Indian School and Q Street	

TABLE OF CONTENTS (CONTINUED)

	3.4 Alternatives Evaluated	
	3.4.1 No Build	
	3.4.2 Louisiana Island Removals	3-5
	3.4.3 One-Lane Roundabout at Indian School and Q Street	3-6
	3.4.4 Traffic Signal at Indian School and Q Street	3-7
	3.4.5 Pedestrian Hybrid Beacon (HAWK signal) at Indian School and Q Street	3-8
	3.4.6 Pedestrian Flashing Beacon at Indian School and Q Street	3-10
	3.5 Traffic Operations Analysis	
	3.5.1 No Build	
	3.5.2 Louisiana Island Removals	
	3.5.3 One-Lane Roundabout at Indian School and Q Street	3-14
	3.5.4 Traffic Signal at Indian School and Q Street	
	3.5.5 Pedestrian Hybrid Beacon (HAWK Signal) at Indian School and Q Street	3-16
	3.5.6 Pedestrian Flashing Beacon at Indian School and Q Street	3-17
	3.6 Alternatives Evaluation and Comparison	
	3.7 Alternatives Discussion and Recommendations	
	3.7.1 One-Lane Roundabout	
	3.7.2 Traffic Signal	
	3.7.3 Pedestrian Hybrid Beacon (HAWK signal)	
	3.7.4 Pedestrian Flashing Beacon	
4.	RECOMMENDATIONS AND NEXT STEPS	4-1
	4.1 Recommendations	4-1
	4.1.1 Louisiana Island Removals	
	4.1.2 Improvements at Indian School and Q Street	
	4.2 Design Considerations	
	4.2.1 ITS	
	4.2.2 Right-of-Way	
	4.2.3 Drainage	
	4.2.4 Utilities	
	4.2.5 Geotechnical Considerations	
	4.2.6 Environmental Considerations	
	4.2.7 Required Certifications	
	4.3 Preliminary Cost Estimate	
	4.4 Next Steps	
	4.4 INEXL SLEPS	4-4
F	REFERENCES	F 4
э.	NEFENCES	

TABLE OF CONTENTS (CONTINUED)

LIST OF FIGURES

Figure 1-1. Project Location1-1
Figure 2-1. Existing Roadway at Louisiana2-1
Figure 2-2. Existing Roadway at Indian School and Q Street2-2
Figure 2-3. Traffic Data Collection Locations2-3
Figure 2-4. Traffic Growth Rates2-3
Figure 2-5. 2021 Weekday AM and PM Peak Hour Turning Movements2-6
Figure 2-6. 2040 Weekday AM and PM Peak-Hour Turning Movements2-7
Figure 2-7. LOS Criteria for Signalized Intersections2-8
Figure 2-8. LOS Criteria for Unsignalized Intersections2-8
Figure 2-9. 2021 Existing Traffic Conditions2-9
Figure 2-10. Crash Rates
Figure 2-11. Crash Summary2-12
Figure 2-12. Crash Map2-14
Figure 2-13. Observed Pedestrians on Indian School between Louisiana and Uptown Loop2-17
Figure 2-14. Study Area Demographics2-19
Figure 3-1. Two-Lane Roundabout at Indian School and Q Street
Figure 3-2. Louisiana Island Removals3-6
Figure 3-3. One-Lane Roundabout at Indian School and Q Street
Figure 3-4. Traffic Signal at Indian School and Q Street3-7
Figure 3-5. Pedestrian Hybrid Beacon Guide3-8
Figure 3-6. Pedestrian Hybrid Beacon at Indian School and Q Street
Figure 3-7. 2040 AM Traffic Results
Figure 3-8. 2040 PM Traffic Results
Figure 3-9. Alternatives Comparison

APPENDICES

- A Supporting Traffic Information
- B Preliminary Geotechnical Report
- C Preliminary Cost Estimate
- D Bicycle and Trail Crossings Guide Memo

ACRONYMS AND ABBREVIATIONS

ADA	Americans with Disabilities Act
ART	Albuquerque Rapid Transit
СО	carbon monoxide
COA	City of Albuquerque
FHWA	Federal Highway Administration
НСМ	Highway Capacity Manual
HCM6	Highway Capacity Manual, 6th Edition
HFIN	High Fatal and Injury Network
ITS	Intelligent Transportation Systems
LOS	level of service
mph	miles per hour
MRCOG	Mid-Region Council of Governments
MUTCD	Manual on Uniform Traffic Control Devices
NAAQS	National Ambient Air Quality Standard
NEPA	National Environmental Policy Act
ROW	right-of-way
SUE	subsurface utility engineering

1. PROJECT INTRODUCTION AND SETTING

This report focuses on the Uptown area on Indian School Road between Americas Parkway and Uptown Loop Road as shown in Figure 1-1. The area is identified as one of two Urban Center's in the *City of Albuquerque and Bernalillo County Comprehensive Plan* (City of Albuquerque and Bernalillo County 2017) and land use in the area is identified as mixed use and high intensity. The study area is home to the ABQ Uptown shopping area, Target, Park Square, City Place, and several restaurants and large commercial buildings.

Non and the second second

Figure 1-1. Project Location

Source: Google 2022

The purpose of this Scoping and Alternatives Analysis Report is to evaluate alternatives to improve pedestrian access and safety along Indian School. This report builds upon the *Uptown Pedestrian Study* that was conducted in 2014 (Parametrix 2014). That study evaluated pedestrian and roadway conditions in the Uptown area and provided recommended improvements where previous City of Albuquerque Councilor Diana Gibson, District 7 had received citizen concerns about pedestrian safety including 1) pedestrian connections across Louisiana at Indian School; 2) the mid-block area on Indian School between Target and ABQ Uptown.

2. EXISTING CONDITIONS

2.1 Existing Roadway Conditions

2.1.1 Existing Roadway at Louisiana

Louisiana Boulevard is designated as a Community Principal Arterial by in the *Metropolitan Transportation Plan's Long Range System Guide* (Mid-Region Council of Governments [MRCOG] 2020b). It is also identified as a Major Transit Corridor in the *Albuquerque and Bernalillo County Comprehensive Plan* (City of Albuquerque and Bernalillo County 2017). Louisiana is a major arterial in the Albuquerque Uptown Urban Center that connects to I-40 about 0.25 miles from the study area. It carries an average of about 37,000 vehicles per day. The posted speed limit on Louisiana is 35 miles per hour (mph).

In the study area, Louisiana has four-through lanes in each direction with additional left and right turn lanes as shown in Figure 2-1. The intersection of Louisiana and Indian School has a four-way traffic signal with crosswalks on all four legs. The area includes sidewalks and landscaping. Driving lane widths vary from 10.5 to 11.5 feet and sidewalk widths at the intersection with Indian School are approximately 10 feet. There are no dedicated bike lanes on Louisiana, though a buffered bike lane is identified as a proposed future addition in the *Metropolitan Transportation Plan's Long Range System Guide* (MRCOG 2020b).

Figure 2-1. Existing Roadway at Louisiana

Source: Google 2022

CN A302250 Uptown Intersection Improvements Scoping and Alternatives Analysis Report City of Albuquerque

2.1.2 Existing Roadway at Indian School

Indian School is designated as a Minor Arterial (MRCOG 2020b) that provides east-west access through the Uptown area, which includes shopping and commercial areas including ABQ Uptown and Target located east of Louisiana. It carries an average of about 9,900 vehicles per day west of Louisiana and 16,000 vehicles per day east of Louisiana. The posted speed limit is 35 mph. In the study area, Indian School has two through lanes in each direction and occasional right and left turn lanes as shown in Figure 2-2. Driving lanes range from 10.5 to 11.5 feet wide.

Figure 2-2. Existing Roadway at Indian School and Q Street

Source: Google 2022

Multimodal amenities on Indian School in the study area include a bicycle lane and, sidewalks on both sides of the roadway, crosswalks at major intersections (Americas Parkway, Louisiana, and Uptown Loop), landscaping, and lighting. Indian School east of Louisiana has two bus stops for Albuquerque Rapid Transit (ART) route 766. One bus stop is located on the south side of Indian School in front of Target and the other bus stop is located on the north side of Indian School, east of Q Street in front of The North Face store at ABQ Uptown.

2.2 Traffic Conditions

This section provides an existing conditions analysis of traffic capacity and operations of Indian School, bounded by the intersections of Louisiana and Uptown Loop for 2021 conditions.

2.2.1 Turning Movement Counts

Figure 2-1 shows the data collection locations at the intersections of Americas Parkway, Louisiana Boulevard, and Uptown Loop. Traffic data in the study area were collected via video cameras to determine vehicle turning movement counts and to analyze pedestrian activity as summarized below:

- Data were collected on Indian School at Louisiana and Uptown Loop on September 23, 24, and 25, 2021.
- Data were collected at Indian School and Americas Parkway on December 9. 2021.

Figure 2-3. Traffic Data Collection Locations

Louisiana Boulevard was used for the base peak hours for the study. The AM peak hour occurred at 7:30 AM and the PM peak hour occurred at 4:00 PM.

2.2.2 Growth Rates and Future Traffic Volumes

MRCOG provides a travel demand model with 2016 and 2040 peak hour traffic loads. Growth rates for the study area were calculated using the MRCOG model and can be found in Figure 2-4. The calculated growth rates were rounded to the nearest 0.25 percent. Note, the minimum growth rate per the City of Albuquerque's *Development Process Manual* is 0.50 percent (COA 2020).

				MRCOG 2016 Model "Peak Hour Load"	MRCOG 2040 Model "Peak Hour Load"	Yearly Growth Rate	Growth Rate for Analysis
Indian School west of	Eastbound	AM	PH	320	358	0.47%	0.50%
Americas Parkway		PM	РН	620	785	0.99%	1.00%
	Westbound	AM	PH	494	575	0.63%	0.75%
		PM	PH	329	429	1.11%	1.25%
Indian School east of Americas Parkway	Eastbound	AM	PH	202	247	0.84%	1.00%
		PM	PH	368	471	1.03%	1.00%
	Westbound	AM	PH	250	291	0.63%	0.75%
		PM	PH	229	304	1.19%	1.25%

Figure 2-4. Traffic Growth Rates

CN A302250 Uptown Intersection Improvements Scoping and Alternatives Analysis Report City of Albuquerque

				MRCOG 2016 Model "Peak Hour Load"	MRCOG 2040 Model "Peak Hour Load"	Yearly Growth Rate	Growth Rate for Analysis
Indian School west of	Eastbound	AM	PH	202	247	0.84%	0.75%
Indiana Street		PM	РН	368	471	1.03%	1.00%
	Westbound	AM	РН	250	291	0.63%	0.75%
		PM	PH	229	304	1.19%	1.25%
Indian School east of	Eastbound	AM	РН	242	291	0.77%	0.75%
ndiana Street		PM	PH	516	646	0.94%	1.00%
	Westbound	AM	PH	395	459	0.63%	0.75%
		PM	PH	296	385	1.10%	1.00%
Indian School west of	Eastbound	AM	PH	242	291	0.77%	0.75%
Louisiana		PM	РН	516	646	0.94%	1.00%
	Westbound	AM	PH	395	459	0.63%	0.75%
		PM	РН	296	385	1.10%	1.00%
Indian School east of	Eastbound	AM	PH	463	518	0.47%	0.50%
Louisiana		PM	PH	661	759	0.58%	0.50%
	Westbound	AM	PH	627	751	0.75%	0.75%
		PM	PH	502	681	1.28%	1.25%
Indian School west of	Eastbound	AM	PH	463	518	0.47%	0.50%
Q Street		PM	PH	661	759	0.58%	0.50%
	Westbound	AM	PH	627	751	0.75%	0.75%
		PM	РН	502	681	1.28%	1.25%
Indian School east of	Eastbound	AM	PH	307	342	0.45%	0.50%
Q Street		PM	PH	609	708	0.63%	0.75%
	Westbound	AM	PH	581	696	0.76%	0.75%
		PM	PH	407	559	1.33%	1.25%
Indian School west of	Eastbound	AM	PH	307	342	0.45%	0.50%
Uptown Loop		PM	РН	609	708	0.63%	0.75%
	Westbound	AM	PH	581	696	0.76%	0.75%
		PM	PH	407	559	1.33%	1.25%
Indian School east	Eastbound	AM	PH	787	836	0.25%	0.50%
Uptown Loop		PM	PH	1362	1432	0.21%	0.50%
	Westbound	AM	РН	1345	1440	0.28%	0.50%
		PM	РН	1075	1133	0.22%	0.50%
Americas Parkway	Northbound	AM	РН	244	284	0.63%	0.75%
south of Indian School		PM	PH	101	126	0.93%	1.00%
JUNUU	Southbound	AM	PH	118	111	-0.25%	0.50%
		PM	РН	253	315	0.92%	1.00%
	Northbound	AM	PH	2	2	0.00%	0.50%
		PM	PH	4	5	0.93%	1.00%

				MRCOG 2016 Model "Peak Hour Load"	MRCOG 2040 Model "Peak Hour Load"	Yearly Growth Rate	Growth Rate for Analysis
Americas Parkway	Southbound	AM	PH	2	3	1.70%	1.75%
north of Indian School		PM	PH	4	4	0.00%	0.50%
Louisiana south of	Northbound	AM	PH	1061	1198	0.51%	0.50%
ndian School		PM	PH	1338	1556	0.63%	0.75%
	Southbound	AM	PH	1395	1564	0.48%	0.50%
		PM	PH	1316	1354	0.12%	0.50%
Louisiana north of	Northbound	AM	PH	785	873	0.44%	0.50%
Indian School		PM	PH	1130	1343	0.72%	0.75%
	Southbound	AM	PH	1107	1173	0.24%	0.50%
		PM	PH	1046	958	-0.37%	0.50%
Q Street south of	Northbound	AM	PH	-	-	0.50%	0.50% *
Indian School		PM	PH	-	-	0.50%	0.50% *
	Southbound	AM	PH	-	-	0.50%	0.50% *
		PM	PH	-	-	0.50%	0.50% *
Q Street north of	Northbound	AM	PH	-	-	0.50%	0.50% *
Indian School		PM	PH	-	-	0.50%	0.50% *
	Southbound	AM	PH	-	-	0.50%	0.50% *
		PM	PH	-	-	0.50%	0.50% *
Uptown Loop south	Northbound	AM	PH	660	745	0.51%	0.50%
of Indian School		PM	PH	854	871	0.08%	0.50%
	Southbound	AM	PH	859	900	0.19%	0.50%
		PM	PH	860	842	-0.09%	0.50%
Uptown Loop north	Northbound	AM	PH	281	349	0.91%	1.00%
of Indian School		PM	PH	253	316	0.93%	1.00%
	Southbound	AM	PH	196	254	1.09%	1.00%
		PM	PH	342	438	1.04%	1.00%

2.2.3 **Existing and Future Turning Movements**

Based on turning movement counts and the anticipated growth rates, weekday peak hourly turning movement volumes for 2021 and 2040 are provided in Figure 2-5 and Figure 2-6. Raw data collection sheets for these turning movement volumes are included in Appendix A.

Figure 2-5. 2021 Weekday AM and PM Peak Hour Turning Movements

2021 TRAFFIC VOLUMES

Figure 2-6. 2040 Weekday AM and PM Peak-Hour Turning Movements

2040 TRAFFIC VOLUMES

2.2.4 Intersection Capacity, Level of Service, and Queuing

Intersection capacity and level of service (LOS) analyses were performed according to the methods and procedures provided in the Highway Capacity Manual, 6th Edition (HCM6). VISSIM software was used for the analysis of the existing conditions. Per the Highway Capacity Manual (HCM), LOS is presented as a letter grade (A through F) based on the calculated average delay for an intersection or movement. Delay is calculated as a function of several variables, including signal phasing operations, cycle length, traffic volumes, and opposing traffic volumes, but is a measurement of the average wait time a driver can expect when moving through an intersection. Factors such as total cycle time (for all movements), queueing restrictions, and vehicle volumes can affect measurements of delay, especially for lower volume movements and side streets. Generally, these factors are only realized when delays reach or exceed LOS E thresholds. In such cases, a narrative is offered in subsequent sections specific to the individual movement in question. Figure 2-7, reproduced from the HCM, shows delay thresholds and the associated LOS assigned to delay ranges for signalized intersections. Generally, a LOS of an A to E is considered an acceptable level. For this study, failing movements are defined as those exhibiting a LOS F for an analysis period, which is consistent with the City of Albuquerque's Development Process Manual Table 7.2.28, which lists acceptable LOS for Major Transit Corridors at LOS E (applies to Louisiana) and Minor Arterials at LOS D to E in areas designated as Urban Centers (COA 2020)

Level of Service	Average Control Delay (seconds/vehicle)	General Description (Signalized Intersections)
А	≤10	Free flow
В	>10 - 20	Stable flow (slight delays)
С	>20 – 35	Stable flow (acceptable delays)
D	>35 – 55	Approaching unstable flow (tolerable delay, occasional cycle failures)
E	>55 – 80	Unstable flow (intolerable delay)
F	>80	Forced flow (jammed)

Figure 2-7. LOS Criteria for Signalized Intersections

The two-way stop-controlled intersection is defined in terms of the average vehicle delay of an individual movement. Figure 2-8 shows the LOS criteria for unsignalized intersections.

Figure 2-8.	LOS Criteria f	for Unsignalized	Intersections
I ISMIC L OI		on onsignantea	

Level of Service	Average Control Delay (seconds/vehicle)
А	≤10
В	>10 - 15
С	>15 – 25
D	>25 – 35
E	>35 – 50
F	>50

Traffic volumes for 2021 and 2040 were analyzed using VISSIM, a microsimulation software that models traffic operations and analyzes existing and alternative scenarios. The simulation provides a queue length, vehicle delay, and LOS for each intersection and turning movement.

Existing traffic operations have a stable flow. The intersections operate at an acceptable LOS in the AM and PM peak hours. However, the eastbound left-turn movement from Louisiana to Indian School in the AM and the northbound, southbound, and eastbound left-turn movements from Louisiana to Indian School in the PM exhibit a LOS E. Figure 2-9 provides the results gathered from the VISSIM analysis for 2021 existing traffic conditions.

	Existing	g AM	
Movement	Queue Length	Vehicle Delay	LOS
NBL	26.6	51.5	D
NBT	34.4	27.8	С
NBR	1.5	7.9	А
SBL	12.1	53.1	D
SBT	28.2	27.3	С
SBR	0.0	7.5	А
EBL	2.5	60.1	E
EBT	8.1	20.3	С
EBR	0.1	11.3	В
WBL	29.1	47.2	D
WBT	27.9	25.7	С
WBR	27.9	25.2	С
	II	ntersection	С
	NBL NBT NBR SBL SBT SBR EBL EBT EBR WBL WBT	Queue Length NBL 26.6 NBT 34.4 NBR 1.5 SBL 12.1 SBT 28.2 SBR 0.0 EBL 2.5 EBT 8.1 EBR 0.1 WBL 29.1 WBR 27.9	Movement Length Delay NBL 26.6 51.5 NBT 34.4 27.8 NBR 1.5 7.9 SBL 12.1 53.1 SBT 28.2 27.3 SBR 0.0 7.5 EBL 2.5 60.1 EBT 8.1 20.3 EBR 0.1 11.3 WBL 29.1 47.2 WBT 27.9 25.7

Existing PM				
Movement	Queue Length	Vehicle Delay	LOS	
NBL	20.9	61.9	E	
NBT	52.5	25.6	С	
NBR	4.4	10.8	В	
SBL	53.7	59.8	E	
SBT	26.5	18.3	В	
SBR	0.0	5.5	А	
EBL	18.6	57.6	E	
EBT	40.0	41.1	D	
EBR	4.6	23.7	С	
WBL	46.3	49.0	D	
WBT	66.0	33.8	С	
WBR	66.0	35.8	D	
		ntersection	С	

Figure 2-9 Continued

		Existing	g AM	
	Movement	Queue Length	Vehicle Delay	Level of Service
	NBL	0.1	11.4	В
	NBT	0.1	3.4	А
	NBR	0.4	10.3	В
	SBL	0.4	10.6	В
.eet	SBT	0.4	0.0	А
Q Street	SBR	0.4	10.2	В
0	EBL	0.1	2.2	А
	EBT	9.6	0.4	А
	EBR	9.6	0.3	А
	WBL	0.0	1.1	А
	WBT	0.0	0.2	А
	WBR	0.0	0.1	А
		lı	ntersection	А

	Existing PM				
Movement	Queue Length	Vehicle Delay	Level of Service		
NBL	1.9	13.5	В		
NBT	0.7	5.8	А		
NBR	2.9	11.5	В		
SBL	3.4	14.8	В		
SBT	3.7	15.4	С		
SBR	4.4	12.0	В		
EBL	0.7	2.8	А		
EBT	12.9	0.3	А		
EBR	12.9	0.3	А		
WBL	0.2	3.2	А		
WBT	0.0	0.6	А		
WBR	0.0	0.5	А		
	l	ntersection	А		

		Existin	g AM	
	Movement	Queue Length	Vehicle Delay	Level of Service
	NBL	1.8	43.4	D
	NBT	6.0	47.9	D
	NBR	7.7	14.0	В
ad	SBL	3.3	52.6	D
p Ro	SBT	1.6	47.5	D
Loo	SBR	0.7	7.7	А
Uptown Loop Road	EBL	0.6	4.9	А
Upt	EBT	3.2	5.5	А
	EBR	0.2	2.8	А
	WBL	0.7	3.2	А
	WBT	7.2	5.0	А
	WBR	6.2	3.4	А
		I	ntersection	Α

Existing PM				
Movement	Queue Length	Vehicle Delay	Level of Service	
NBL	19.0	39.9	D	
NBT	33.2	35.8	D	
NBR	35.5	51.8	D	
SBL	20.2	44.3	D	
SBT	5.5	49.7	D	
SBR	1.3	8.2	А	
EBL	3.3	9.5	А	
EBT	12.8	9.9	А	
EBR	0.7	2.7	А	
WBL	2.6	8.0	А	
WBT	21.0	12.2	В	
WBR	20.3	7.3	А	
		ntersection	В	

The following existing conditions observations are made from Figure 2-9:

2.2.4.1 Indian School at Louisiana

- The overall intersection is observed to operate at an acceptable LOS C in the 2021 AM and PM peak hours.
 - The eastbound left turn is observed to operate at a LOS E in the AM peak hour.
 - The northbound, southbound, and eastbound left turns are observed to operate at a LOS E in the PM peak hour.

2.2.4.2 Indian School at Q Street

• The intersection is observed to operate at an acceptable LOS A in the 2021 AM and PM peak hours.

2.2.4.3 Indian School at Uptown Loop

• The intersection is observed to operate at an acceptable LOS A in the 2021 AM peak hour and a LOS B in the PM peak hour.

2.3 Traffic Safety and Crashes

A key component of the traffic analysis was safety for pedestrians crossing both Indian School and Louisiana. Pedestrian safety challenges at the intersection of Louisiana and Indian School include channelized right-turn pockets on the northwest, southwest, and southeast corners that can create sight distance issues for drivers and these turn pockets allow drivers to turn at higher speeds than a turn lane that requires drivers to make a 90 degree turn.

Traffic safety and crashes were evaluated on the most recent five years of data, from 2015 to 2019. Crashes were classified by several parameters including crashes by type, crashes by lighting conditions, crashes by severity, and crashes by top contributing factors. This section discusses the observations made from the analyses. Figure 2-10 shows the crash rates for the two intersections. Figure 2-11 and Figure 2-12 provide a summary of the crashes.

In addition to the information provided in this section, The City of Albuquerque's Vision Zero effort is working toward zero traffic fatalities and serious injuries by 2040 by prioritizing safety improvements at recurring crash locations. This is a data-driven effort informed by the High Fatal and Injury Network (HFIN), which analyzed five years of crash data (2014-2018) to identify the most dangerous corridors and intersections in Albuquerque. All four legs of the intersection at Louisiana and Indian School, and the intersection at Indian School and Uptown Loop are on the HFIN.

Intersection	Total Crashes	Crash Rate
Indian School and Louisiana	162	2.07
Indian School and Uptown Loop	37	1.08

Figure 2-10. Crash Rates

Figure 2-11. Crash Summary

	Crash Summary	Indian School & Americas Parkway	Indian School & Louisiana	Indian School & between Americas Parkway & Louisiana	Indian School & Q St	Indian School & Uptown Loop
	Total Crashes:	17	162	7	12	37
	2015	4	42	3	4	7
ar	2016	1	34	0	2	3
By Year	2017	4	37	1	2	10
æ	2018	5	19	3	4	9
ĺ	2019	3	30	0	0	8
	Fixed Object	0	5	0	0	3
	Invalid Code/Left Blank	2	45	1	2	6
ĺ	Other (Non-Collision)	1	0	0	0	0
ĺ	Other (Object)	0	2	0	0	0
Ì	Other Vehicle - All Other	4	12	1	6	4
	Other Vehicle - All Others/Entering At Angle	0	1	0	0	2
	Other Vehicle - Both Going Straight/Entering At Angle	2	21	1	0	5
	Other Vehicle - Both Turning/Entering At Angle	0	3	0	0	1
By Type	Other Vehicle - From Opposite Direction	4	29	2	1	6
Вут	Other Vehicle - From Same Direction/All Others	4	37	0	1	9
	Overturn/Rollover	0	2	0	0	0
	Parked Vehicle	0	1	0	2	0
	Pedalcyclist	0	1	0	0	0
	Pedestrian	0	2	2	0	1
	Vehicle On Other Roadway	0	1	0	0	0
	% Other Vehicle - From Same Direction/All Others	24%	23%	0%	8%	24%
	% Other Vehicle - From Opposite Direction	24%	18%	29%	8%	16%
	% Other Vehicle - Both Going Straight/Entering At Angle	12%	13%	14%	0%	14%
	Day	17	113	5	9	26
د م	Dawn/Dusk	0	3	0	0	1
By Lighting Conditions	Dark	0	34	2	2	9
y Lıg ondi	Invalid Code/Not Specified	0	12	0	1	1
ΒÜ	% Day	100%	70%	71%	75%	70%
Ì	% Dark	0%	21%	29%	17%	24%

	Crash Summary	Indian School & Americas Parkway	Indian School & Louisiana	Indian School & between Americas Parkway & Louisiana	Indian School & Q St	Indian School & Uptown Loop
	PDO	14	137	4	11	25
~	Injury	3	24	3	1	12
verit	Fatality	0	1	0	0	0
By Severity	% PDO	82%	85%	57%	92%	68%
8	% Injury	18%	15%	43%	8%	32%
	% Fatality	0%	1%	0%	0%	0%
	Alcohol/Drug Involved	0	6	2	0	2
	Avoid No Contact	0	2	0	0	2
	Disregarded Traffic Signal	3	6	0	0	2
	Driver Inattention	6	42	2	2	11
	Excessive Speed	1	10	0	0	0
	Failed to Yield Right of Way	2	22	1	6	6
	Following Too Closely	0	20	0	0	4
S	Improper Backing	1	6	0	0	2
By Contributing Factors	Improper Lane Change	1	6	1	1	0
ng E	Improper Overtaking	0	2	0	0	0
buti	Made Improper Turn	1	6	0	0	3
ontri	Mechanical Defect	0	2	0	0	2
Ŭ ≿	None/Missing Data	2	22	1	3	3
-	Other - No Driver Error	0	4	0	0	0
	Other Improper Driving	0	3	0	0	0
	Pedestrian Error	0	1	0	0	0
	Speed Too Fast for Conditions	0	2	0	0	0
	% Driver Inattention	35%	26%	29%	17%	30%
	% Failed to Yield Right of Way	12%	14%	14%	50%	16%
	% Following Too Closely	0%	12%	0%	0%	11%
	% Disregarded Traffic Signal	0%	12%	0%	0%	11%

Figure 2-12. Crash Map

2.3.1 Louisiana and Indian School

The following observations are made from Figure 2-10 through Figure 2-12:

- At the intersection of Indian School and Louisiana, 162 crashes were reported over the five years of crash data (2015 to 2019). This coincides with the greater number of vehicles that travel through the intersection.
- Of the 162 reported crashes, one resulted in a fatality (1 percent) while 24 crashes (15 percent) involved injuries. Of the 24 crashes with injuries, 2 were injury crashes involving pedestrians and 1 involved a bicyclist.
- The top 3 types of crashes were observed to be:
 - Other vehicle from same direction/all others
 - Other vehicle from opposite direction
 - Other vehicle both going straight/entering at angle
- Crashes during daylight hours resulted in 70 percent of the crashes.
- Crashes during dark-lighted conditions resulted in 21 percent of crashes.

- The top 3 contributing factors were observed to be:
 - Driver inattention
 - Failed to yield right of way
 - Following too closely
- The total intersection crash rate at the intersection of Louisiana and Indian School is reported as 2.07 crashes per million entering vehicles. This is higher than the Albuquerque average intersection crash rate of 1.18 crashes per million entering vehicles. Comparable intersections in Albuquerque including Menaul Boulevard at San Pedro Drive; Candeleria Road at Juan Tabo Boulevard; and Comanche Road at Wyoming Boulevard report crash rates of 1.52, 1.62, and 1.60, respectively. These intersections exhibit similar traffic volumes to Louisiana at Indian School and have a lower crash rate.
- The MRCOG Roadway Safety and Crash Report (2015 through 2019) reports a severe crash rate of 0.31 crashes per million entering vehicles at Indian School Road and Louisiana Boulevard. This is below the Albuquerque area mean of 0.369.

2.3.2 Indian School at Q Street

The following observations are made from Figure 2-10 through Figure 2-12:

- At the intersection of Indian School and Q Street, 12 crashes were reported over the five years of crash data (2015 to 2019).
- Of the 12 reported crashes, no fatalities occurred although one crash (8 percent) involved injuries. None of the crashes involved pedestrians.
- The top 2 types of crashes were observed to be:
 - Other vehicle all other
 - Parked vehicle
- Crashes during daylight hours resulted in 75 percent of the crashes.
- Crashes during dark-lighted conditions resulted in 17 percent of crashes.
- The top 2 contributing factors were observed to be:
 - Failed to yield right of way
 - Driver inattention
- The MRCOG Roadway Safety and Crash Report (2015 through 2019) does not report a severe crash rate for Indian School Road at Q Street. However, the HFIN reports a score that symbolizes the levels of fatal and injury crashers per mile. According to the MRCOG Roadway Safety and Crash Report, "The HFIN score is derived from summing the number of fatal and injury crashes on every link and then dividing that number by the length of the link in miles. The number of fatal crashes on each link is multiplied by 2 to give them greater significance than injury crashes." The roadway segment between Louisiana Boulevard and Uptown Loop Road is given a score of 395.97. This rate is above twice the regional mean and its high value points to a

challenging area; however, caution should be used when rates are extrapolated from short segments.

2.3.3 Indian School at Uptown Loop

The following observations are made from Figure 2-10 through Figure 2-12:

- At the intersection of Indian School and Uptown Loop, 37 crashes were reported over the five years of crash data (2015 to 2019).
- Of the 37 reported crashes, no fatalities occurred although 12 crashes (32 percent) involved injuries. One of the crashes resulting in injury was a pedestrian crash.
- The top 3 types of crashes were observed to be:
 - Other vehicle from same direction/all others
 - Other vehicle from opposite direction
 - Other vehicle both going straight/entering at angle
- Crashes during daylight hours resulted in 70 percent of the crashes.
- Crashes during dark-lighted conditions resulted in 24 percent of crashes.
- The top 3 contributing factors were observed to be:
 - Driver inattention
 - Failed to yield right of way
 - Following too closely or disregarded the traffic signal
- The MRCOG Roadway Safety and Crash Report (2015 through 2019) reports a severe crash rate of 0.35 crashes per million entering vehicles at Indian School Road and Uptown Loop. This is below the Albuquerque area mean of 0.369.
 - The total intersection crash rate is reported as 1.08 crashes per million entering vehicles. This is below the Albuquerque average intersection crash rate of 1.18 crashes per million entering vehicles. Comparing Lomas Boulevard and San Pedro Boulevard with our study intersection, the crash rate is below the crash rate of 1.96 crashes per million entering vehicle. Comanche Road at San Pedro Drive; Kathryn Avenue at San Mateo Boulevard; and Indian School Road at San Pedro Drive report crash rates of 1.21, 0.87, and 0.59, respectively. These intersections exhibit similar traffic volumes to the intersection of Indian School and Uptown Loop. The crash rate at Indian School and Uptown Loop is comparable to other similar intersections in Albuquerque.

2.4 Pedestrian Use and Observations

This section provides an overview of the observed pedestrian activity on Indian School, bounded by the intersections of Louisiana and Uptown Loop for 2021 traffic conditions. Observations were collected at the two signalized intersections at Indian School and Louisiana and Indian School and Uptown Loop using the turning movement counts. In between the two intersections, pedestrian observations were collected by viewing recorded video camera footage.

2.4.1 Pedestrians on Indian School and Louisiana and Indian School and Uptown Loop

Pedestrian activity at the two existing signalized intersections was collected along with the turning movement count data. The following observations are made for the two intersections:

- At the intersection of Indian School and Louisiana, a total of 16 and 47 pedestrians were observed during the AM and PM peak hours, respectively.
- At the intersection of Indian School and Uptown Loop, a total of 3 and 18 pedestrians were observed during the AM and PM peak hours, respectively.
- Over the five-year time period that crashes were studied (2015 to 2019), there were 2 pedestrian/vehicle crashes and 1 bicycle/vehicle crash at Louisiana and Indian School that resulted in injury. At Indian school and Uptown Loop there was 1 crash with a pedestrian/vehicle that resulted in an injury.

2.4.2 Pedestrians on Indian School and Q Street

Video camera observations captured pedestrian traffic on Indian School between Louisiana and Uptown Loop. Video data were observed on Friday, September 24, 2021, from 4:00 PM to 8:00 PM, and Saturday, September 25, 2021, from 11:00 AM to 2:00 PM. Figure 2-13 summarizes the observed pedestrian activity.

Figure 2-13. Observed Pedestrians on Indian School between Louisiana and Uptown Loop

Friday (4:00 PM to 8:00 PM)
Saturday (11:00 AM to 2:00 PM)
XX XX = Friday Saturday

The following observations are made from Figure 2-13.

- Between Louisiana and Q Street, 57 and 42 pedestrians are crossing mid-block on Friday evening and Saturday, respectively.
- At Q Street, 102 and 70 pedestrians are crossing at the unmarked intersection on Friday and Saturday, respectively.
- Between Q Street and Uptown Loop, 3 and 7 pedestrians are crossing mid-block.

2.5 Intelligent Transportation Systems

Intelligent Transportation Systems (ITS) have the potential to improve safety and mobility efficiently. The existing ITS facilities include copper networks serving the greater Uptown area. Copper networks do not meet the current City standards and offer limited monitoring and operational capabilities.

The City of Albuquerque is currently constructing project A300759: ITS – Albuquerque Traffic Management Louisiana Improvements. This project will include replacing copper networks on Louisiana from Central Avenue to Menaul Avenue that do not meet current City standards with a fiber network. Other improvements include connecting ITS infrastructure and installing closed-circuit television cameras. These improvements are expected to be constructed in 2022.

2.6 Drainage

2.6.1 Drainage at Louisiana and Indian School

Louisiana north and south of Indian School slopes towards the Indian School/Louisiana intersection. Both Louisiana and Indian School are crowned at the median so runoff drains to the sides of these streets. At the intersection, drop inlets are located at all four intersection corners to intercept roadway runoff. The drop inlets drain to a large storm drain located under Indian School that conveys the runoff to the west.

2.6.2 Drainage on Indian School between Louisiana and Uptown Loop

Runoff on Indian School between Uptown Loop and Louisiana flows from east to west toward the curb drop inlets near the intersection at Louisiana and Indian School where they are conveyed to a large storm drain under Indian School. Runoff east of Uptown Loop drains to curb inlets located just east of Uptown Loop.

2.7 Utilities

Quality level B, C, and D subsurface utility engineering (SUE) was performed as part of this project. Quality Level D SUE entails records research, quality level C involves surveying above ground utility features, and quality level B involves field designation activities to determine the horizontal position of utilities. This study area is located in a highly developed urban setting, so there are many existing utilities, most of which reside within the roadway. Utilities in the study area include sanitary sewer, drinking water lines, gas lines, electric lines, fiber optic, and storm drains. Most of the utilities are located underground but have above ground features that could be impacted by proposed improvements.

Above ground utilities and utility features that may be impacted include:

- Strom drain manholes and drop inlets
- Sewer manholes
- Water valves
- Above ground light poles
- Overhead electric lines and poles
- Traffic equipment

2.8 Geotechnical Conditions

Appendix B contains the A Draft Preliminary Geotechnical Report that provides preliminary geotechnical information for the conceptual and preliminary design. This section summarizes key findings from that report.

Geotechnical conditions in the project study area appear suitable for the type of improvements that are being evaluated. Subsurface soils consist mostly of sand with varying amounts of clay, silt, and gravel with interbedded clay and silt layers to the full depth of exploration, which was about 26.5 feet below grade. Loose soils, shallow low bearing capability soils, and caving soil conditions will require attention as part of design and construction. Existing pavement in the study area consists of approximately 6 to 9 inches of asphalt concrete overlying 0 to 8 inches of base course.

2.9 Environmental Considerations

2.9.1 Land Use and Demographics

The area is identified as one of two Urban Centers in the *City of Albuquerque and Bernalillo County Comprehensive Plan* (City of Albuquerque and Bernalillo County 2017) and the area is home to the ABQ Uptown shopping area, Target, Park Square, City Place, and restaurants and large commercial buildings. Land use in the entire study area is identified as a mixed use, high-intensity zone, which allows largescale destination retail and high-intensity commercial, residential, light industrial, and institutional uses as well as high-density residential uses (COA 2021a).

The study area is a retail and commercial area. There are no residences in the immediate study area, but residences are located just outside of the study area adjacent Americas Parkway and Uptown Loop. Demographic information within a one-mile radius of the study area is provided in Figure 2-14.

Demographic Indicator	Study Area	New Mexico
Minority Population	55%	63%
Low-Income Population	35%	41%
Linguistically Isolated Population	6%	5%
Population with Less than a High School Education	4%	14%
Population under 5 years of age	2%	6%
Population over 64 years of age	21%	17%

Figure 2-14. Study Area Demographics

Source: EPA 2022

2.9.2 Cultural Resources

Data were reviewed from the New Mexico Cultural Resources Information System on February 21, 2022. No archaeological sites or historic buildings were identified in the study area. Cultural resource surveys were conducted at the Target location in 2000 and near the intersection of Louisiana and Indian School in 2004. Archeological or historic resources are not anticipated within the study area.

2.9.3 Natural Resources

The study area is highly urbanized and is limited to areas that have been disturbed by the surrounding development. There are no waterbodies, streams, or critical or sensitive habitats for threatened and endangered species in the area. Vegetation is limited to landscaped areas and there is no native vegetation.

2.9.4 Hazardous Materials

On February 21, 2022, Parametrix conducted a review of the New Mexico Environment Department's OpenEnviroMap (<u>https://gis.web.env.nm.gov/oem/?map=egis</u>) to determine if hazardous materials were present within the study area. No properties containing hazardous materials were identified.

2.9.5 Air Quality

While the City has previously exceeded the National Ambient Air Quality Standard (NAAQS) for carbon monoxide (CO) and was a limited maintenance area for CO, it has not exceeded state or federal air quality standards since 1991. Additionally, since June 13, 2015, the Albuquerque metropolitan planning area has been in full attainment of the NAAQS. Pedestrian improvements in the study area are programmed in the 2023 Transportation Improvement Program, which has been approved by the MRCOG as conforming to all applicable NAAQS and state air quality requirements. As such, air quality is not anticipated to be a factor for any of the proposed alternatives or once the project is constructed.

3. ALTERNATIVES DEVELOPMENT AND EVALUATION

3.1 Purpose and Need

The purpose of the project is to improve pedestrian access and safety in the Uptown area at the intersection of Louisiana and Indian School and along Indian School between Louisiana and Uptown Loop. The project is needed to:

- Improve pedestrian safety and access Two pedestrian crashes and a bicycle crash have • occurred at the intersection of Louisiana and Indian School over a 5-year period from 2015 to 2019. The total intersection crash rate at the intersection of Louisiana and Indian School is reported as 2.05 crashes per million entering vehicles. This is higher than the Albuquerque average intersection crash rate of 1.18 crashes per million entering vehicles. The roadway segment between Louisiana and Uptown Loop exhibits two times the mean for the number of fatal and injury vehicle crashes over the roadways' segment length, which points to a challenging area for crashes. As a result, all four legs of the intersection at Louisiana and Indian School and the intersection of Indian School and Uptown Loop are on the HFIN. The area between Louisiana and Indian School has a high volume of pedestrian traffic that chooses to cross Indian School mid-block between Target and the restaurants and shops at ABQ Uptown, rather than walk several hundred feet out of their way to use pedestrian crossing signals located at Louisiana or Uptown Loop. In addition, there is a mid-block ART bus stop and bus shelter for route 766 located on the south side of Indian School in front of the Target and another bus stop located on the north side of Indian School at ABQ Uptown.
- Upgrade existing pedestrian facilities to meet current Americans with Disabilities Act (ADA) design requirements for curb ramps and other features.
- Updating the ITS system on Indian School to replace outdated copper networks that do not meet current City standards with a fiber network, installing closed-circuit television cameras to monitor signal operations, and connect ITS infrastructure on Louisiana and Indian School.

3.2 Project Area Planning and Land Use

Pedestrian safety, pedestrian-oriented development, and encouraging multimodal access have been well established goals for the Uptown area in multiple regional and local planning documents for over a decade. The area is identified as one of two mixed use, high-intensity Urban Center's in the City of Albuquerque as part of the *Comprehensive Plan* (City of Albuquerque and Bernalillo County 2017). The land use designation allows large-scale destination retail and high-intensity commercial, residential, light industrial, and institutional uses as well as high-density residential uses (COA 2021a). As described in the *Comprehensive Plan*, Urban Centers are distinct, walkable districts that have a mix of employment, service, and residential uses at a density and intensity lower than Downtown, but higher than other areas.

Pedestrian and transit-oriented development and amenities are high priorities in Uptown with a focus on encouraging walking, biking, and transit use through the development of streets using Complete Streets techniques. The intent of Complete Streets is to make medium and high traffic areas more inclusive of all forms of urban transportation, reduce congestion, and make streets safer. Complete Streets put safety over speed; balance the needs of different modes; and support local land uses, economies, cultures, and natural environments. This approach incorporates best practice design standards that have been successfully employed in other cities around the country, including but not limited to traffic calming techniques, wider sidewalks, protected mid-block crossings, bulb-outs or sidewalk extensions, street trees, on-street parking, lighting improvements. The City's Complete Streets Ordinance, updated in 2019, requires that the City consider Complete Streets techniques for most road projects and implementation is a key element of the *Albuquerque's Vision Zero Action Plan* (COA 2021b and 2022a). Vision Zero is the City's commitment to work toward the goal of zero traffic deaths by 2040 and to create safer streets for all, regardless of our age or ability, whether we are walking, riding a bicycle, using a mobility device, driving, or taking transit.

Improving walkability and pedestrian safety in the Uptown area is consistent with the following local and regional planning documents:

- Albuquerque's Vision Zero Action Plan (COA 2021b)
- City of Albuquerque Bicycle and Trail Crossings Guide (COA 2022b)
- City of Albuquerque's Development Process Manual (COA 2020)
- City of Albuquerque's Integrated Development Ordinance (COA 2021a).
- City of Albuquerque and Bernalillo County Comprehensive Plan (March 2017).
- Connections 2040, Metropolitan Transportation Plan (MRCOG 2020a).
- Long Range Transportation System Guide (MRCOG 2020).

Goals specific to pedestrian and vehicle mobility in the Uptown area were identified in the City of Albuquerque's *Uptown Sector Development Plan* that was adopted on January 15, 2009, amended through December 2013, and repealed in 2017 (COA 2013). This plan was repealed in 2017, but the concepts and goals were incorporated in the 2017 *City of Albuquerque and Bernalillo County Comprehensive Plan* and the City of Albuquerque's *Integrated Development Ordinance*.

Specific goals from the Sector Plan that still apply include:

- Facilitating pedestrian safety by allowing more mid-block signalized crossings of major streets and providing, wherever possible, areas of "safe haven" for pedestrians to use while crossing the streets in the Uptown area.
- Encouraging pedestrians to walk between sites in the Uptown area by requiring new construction and/or redevelopment to provide 10-foot-wide walkways with enhanced landscaping and trees and providing signalized street crossings with raised or colored walkways and alternative ways for pedestrians to cross the wide boulevards in the Uptown area.

These planning documents and goals were considered when developing and evaluating alternatives in this report. In addition, *City of Albuquerque Bicycle and Trail Crossings Guide* (COA 2022b) was used as a guide to help identify and evaluate possible alternatives in the study area. The City's commitment to this guidance is provided in Appendix D, Bicycle and Trail Crossings Guide Memo. The *City of Albuquerque Bicycle and Trail Crossings Guide Memo.* The *City of Albuquerque Bicycle and Trail Crossings Guide* provides a three-step decision-making tool to help 1) determine if a site is a desired location for a crossing; 2) determine if a crossing is technical feasible at a selected location;

and 3) determine appropriate treatments and designs. Based on the site selection process in the *City of Albuquerque Bicycle and Trail Crossings Guide,* the intersection of Indian School and Q Street qualifies as a high-priority location for a crossing based on land use, crash and safety factors, proximity to other crossing locations and transit, and the presence of pedestrian generators. Furthermore, a pedestrian crossing was determined to be feasible based on proximity to cross-streets and sight distance.

3.3 Alternatives Development

Alternatives were developed by considering options from the 2014 *Uptown Pedestrian Study* (Parametrix 2014), roadway treatments identified for pedestrian crossings from the City's *Development Process Manual*, guidance provided in the *City of Albuquerque Bicycle and Trail Crossings Guide* (COA 2022b) and suggestions from the public to consider a roundabout at the intersection of Indian School and Q Street. Proposed pedestrian improvements focus on the following two areas:

- Modifications at the Louisiana/Indian School intersection
- Providing a mid-block crossing at Indian School and Q Street

In addition to proposed pedestrian improvements, this project proposes to update the ITS system on Indian School to replace outdated copper networks that do not meet current City standards with a fiber network, install closed-circuit television cameras to monitor signal operations, and connect ITS infrastructure on Louisiana and Indian School.

3.3.1 Modifications at Louisiana and Indian School

The intersection of Louisiana and Indian School has "pork chop" islands - channelized right turn lanes that allow traffic to make higher-speed right turns - at all but the northeast corner. Right turns at pork chop islands are considered to be not as "friendly" to pedestrians as right turns made from lanes where traffic must first approach the cross street and stop perpendicularly. Also, corners with pork chop islands do not provide as much area for pedestrians at corners without them. Recommended improvements from the *Uptown Pedestrian Study* included removing the pork chop islands and exclusive right-turn lanes from the northwest, southwest, and southeast corners of the intersection and replacing them with a larger sidewalk and curb ramps that meet ADA requirements. These proposed recommendations were used to the develop the Louisiana Islands Removals Alternative that is described evaluated in this report.

3.3.2 Providing a Mid-Block Crossing at Indian School and Q Street

Suggestions have been made to consider a roundabout at this location, other possible solutions that would improve pedestrian safety and access include:

- Signalizing the intersection at Indian School and Q street
- Providing a mid-block pedestrian crossing using a pedestrian hybrid beacon (also known as a HAWK signal)
- Providing a mid-block crossing using a pedestrian flashing beacon

The recommendation from the *Uptown Pedestrian Study* was to provide pedestrian refuge by constructing raised medians at the intersection of Indian School and Q Street. Raised medians at this

location would eliminate left-turns and through movements across Indian School for drivers coming out of the Target parking garage and ABQ Uptown. These proposed improvements were not supported by community stakeholders, so this concept was not considered. All concepts evaluated in this report would maintain current vehicle access into and out of the Target parking garage and ABQ Uptown, including left, right, and through movements.

The following concepts were considered at Indian School and Q Street:

- Roundabout at Indian School and Q Street
 - Includes a one-lane and two-lane concept
- Traffic Signal at Indian School and Q Street
- Pedestrian Hybrid Beacon (HAWK signal) at Indian School and Q Street
- Pedestrian Flashing Beacon at Indian School and Q Street

Conceptual designs were developed for the proposed concepts. The concept of a two-lane roundabout was initially considered since a two-lane roundabout would better accommodate the existing four-lane roadway configuration on Indian School. However, as shown in Figure 3-1, a two-lane roundabout in this area would have substantial effects to existing properties at ABQ Uptown and Target.

Red lines indicate the existing roadway right-of-way.
A total of about 0.25 acres of property would be needed from the ABQ Uptown development and Target property to build a two-lane roundabout. Impacts would include removing several parking spaces at ABQ Uptown; the ABQ Uptown sign bridge would need to be removed, rebuilt, or relocated; and the roundabout would extend well into the Target parking garage. Because there are other options available that could meet the project need with fewer impacts, this concept was dropped and not evaluated further.

ABQ Uptown entry, parking, and sidewalks would be impacted by a two-lane roundabout (photo Google 2022)

3.4 Alternatives Evaluated

The following text provides a description of the alternatives analyzed and evaluated. The build alternatives evaluated include:

- Louisiana Island Removals
- One-Lane Roundabout at Indian School and Q Street
- Traffic Signal at Indian School and Q Street
- Pedestrian Hybrid Beacon (HAWK) at Indian School and Q Street
- Pedestrian Flashing Beacon at Indian School and Q Street

In addition to the build alternatives listed above a No Build Alternative was considered for purposes of comparing traffic effects of the build alternatives to the existing condition.

3.4.1 No Build

The No Build Alternative would maintain existing conditions as they are today and no improvements would be made. This alternative would not meet the project need to improving pedestrian access and safety in the Uptown area.

3.4.2 Louisiana Island Removals

This alternative would remove the "pork chop" islands, or the exclusive right turn lanes that allow vehicles to make higher-speed right turns at the northwest, southwest, and southeast corners of the intersection of Louisiana and Indian School as shown in Figure 3-2. Right-turning traffic would share the outside lane with through traffic. With this alternative, exclusive right-turn lanes would be removed and replaced with expanded sidewalks to provide additional space for pedestrians. Curb ramps would be constructed to meet current ADA requirements and would be built directional to the crossing.

CN A302250 Uptown Intersection Improvements Scoping and Alternatives Analysis Report City of Albuquerque

Figure 3-2. Louisiana Island Removals

3.4.3 One-Lane Roundabout at Indian School and Q Street

This alternative would construct a one-lane roundabout at Indian School and Q Street as shown in Figure 3-3. The roundabout would include crosswalks at all four intersections of Indian School and Q Street and would also include the island removals and sidewalk improvements at Louisiana. Indian School currently has two lanes in each direction with turning lanes. This alternative would require narrowing Indian School to one lane in each direction near the intersection with Q Street so traffic could proceed through the one-lane roundabout.

Figure 3-3. One-Lane Roundabout at Indian School and Q Street

Red lines indicate the existing roadway right-of-way.

3.4.4 Traffic Signal at Indian School and Q Street

This alternative would add a traffic signal with pedestrian crossings at all four intersections of Indian School and Q Street as shown in Figure 3-4. This alternative would also include the island removals and sidewalk improvements at Louisiana.

Figure 3-4. Traffic Signal at Indian School and Q Street

Red lines indicate the existing roadway right-of-way.

3.4.5 Pedestrian Hybrid Beacon (HAWK signal) at Indian School and Q Street

This alternative would add a pedestrian hybrid beacon (also called a HAWK signal) providing a mid-block crossing of Indian School near Q Street. This alternative would also include the island removals and sidewalk improvements at Louisiana.

A pedestrian hybrid beacon is a traffic control device that activates when a pedestrian pushes the pedestrian push button. The call activates the beacon which then initiates a yellow to red lighting sequence. The flashing beacon acts as a signal with red lights, requiring vehicles to come to a complete stop. This provides the right-of-

Pedestrian Hybrid Beacon (HAWK signal)

way to pedestrians, providing them with a protected mid-block roadway crossing. A major advantage of the pedestrian hybrid beacons is they can be coordinated with other traffic signals, such as the existing signals located at Indian School and Louisiana and Uptown Loop. This can decrease vehicle delay and queueing. Figure 3-5 was created by the Massachusetts Department of Transportation and provides an overview of the operations of a pedestrian hybrid beacon.

Figure 3-5. Pedestrian Hybrid Beacon Guide

Figure created by the Massachusetts Department of Transportation

Figure 3-6 shows the conceptual layout for the pedestrian hybrid beacon, which would be located across Indian School just west of the intersection with Q Street. With this alternative, median treatments such as the sloping concrete shown in the adjacent photo could be constructed to encourage pedestrians to cross at the pedestrian hybrid beacon and discourage pedestrians from crossing Indian School mid-block just east of Q Street and the Target entrance or further west toward Louisiana.

Median Treatment to Discourage Pedestrian Use

Figure 3-6. Pedestrian Hybrid Beacon at Indian School and Q Street

Red lines indicate the existing roadway right-of-way.

CN A302250 Uptown Intersection Improvements Scoping and Alternatives Analysis Report City of Albuquerque

3.4.6 Pedestrian Flashing Beacon at Indian School and Q Street

This layout of this alternative would be similar to the pedestrian hybrid beacon shown in Figure 3-6, only it would construct a pedestrian flashing beacon at Indian School, just west of the intersection with Q Street. A pedestrian flashing beacon is a smaller, yellow flashing signal that indicates that drivers should yield to pedestrians in the crosswalk. This alternative would also include the island removals and sidewalk improvements at Louisiana.

Similar to the pedestrian hybrid beacon, median treatments could be constructed to encourage pedestrians to cross at the pedestrian hybrid beacon and discourage pedestrians from crossing Indian School midblock just east of Q Street and the Target entrance or further west toward Louisiana.

Pedestrian Flashing Beacon

3.5 Traffic Operations Analysis

A detailed traffic operations analysis using VISSIM was conducted to understand and compare potential traffic impacts of the proposed alternatives in the 2040 design year. Note that for the traffic analysis for all alternatives other than the No Build, it was assumed that the right-turn lanes on the northwest, southwest, and southeast corners of Louisiana and Indian School would be removed for any of the alternatives evaluated at the intersection of Indian School and Q street. Figure 3-7 and Figure 3-8 provide a detailed summary of the VISSIM analysis for the 2040 AM and PM peak hours.

Figure 3-7. 2040 AM Traffic Results

	No Build					
	Movement	Queue	Vehicle	Level of		
	wovernent	Length	Delay	Service		
-	NBL	28.2	52.1	D		
arc	NBT	35.7	27.9	С		
e X:	NBR	1.5	7.8	А		
n	SBL	13.8	52.8	D		
Bo	SBT	30.3	27.5	С		
Ja	SBR	0.1	8.6	А		
iar	EBL	2.8	64.7	E		
Louisiana Boulevard	EBT	9.9	23.0	С		
ΓŌ	EBR	0.2	11.7	В		
	WBL	32.6	46.7	D		
	WBT	35.0	27.6	С		
	WBR	35.0	28.5	С		
			Intersection	С		

Louisiana Island Removals					
Movement	Queue	Vehicle	Level of		
wovement	Length	Delay	Service		
NBL	28.4	53.8	D		
NBT	66.7	28.7	С		
NBR	66.7	33.3	С		
SBL	13.8	52.6	D		
SBT	32.9	27.7	С		
SBR	32.9	32.7	С		
EBL	2.9	65.8	E		
EBT	12.2	21.9	С		
EBR	12.2	20.6	С		
WBL	31.9	45.9	D		
WBT	35.3	27.8	С		
WBR	35.3	29.0	С		
		Intersection	С		

One-Lane Roundabout					
Movement	Queue	Vehicle	Level of		
wovernent	Length	Delay	Service		
NBL	28.4	52.4	D		
NBT	59.3	28.6	С		
NBR	59.3	32.5	С		
SBL	11.9	51.5	D		
SBT	33.3	28.1	С		
SBR	33.3	33.0	С		
EBL	2.7	62.3	E		
EBT	14.5	22.9	С		
EBR	14.5	22.0	С		
WBL	0.0	52.3	D		
WBT	0.0	17.5	В		
WBR	0.0	17.9	В		
		Intersection	С		

Traffic Signal						
Movement	Queue	Vehicle	Level of			
wovernent	Length	Delay	Service			
NBL	28.3	52.1	D			
NBT	59.5	28.7	С			
NBR	59.5	32.7	С			
SBL	13.7	52.4	D			
SBT	32.5	27.7	С			
SBR	32.5	32.9	С			
EBL	3.1	69.0	E			
EBT	12.5	22.1	С			
EBR	12.5	22.0	С			
WBL	32.8	47.2	D			
WBT	29.8	23.3	С			
WBR	29.8	24.9	С			
	Intersection					

Pedestrian Hybrid Beacon						
Vovement	Queue	Vehicle	Level of			
viovement	Length	Delay	Service			
NBL	28.4	53.8	D			
NBT	67.6	28.8	С			
NBR	67.6	35.2	D			
SBL	13.6	52.2	D			
SBT	32.5	27.6	С			
SBR	32.5	33.4	С			
EBL	2.9	65.8	E			
EBT	13.2	23.5	С			
EBR	13.2	25.0	С			
WBL	31.9	46.4	D			
WBT	34.3	26.9	С			
WBR	34.3	27.5	С			
		Intersection	С			

	Movement	Queue	Vehicle	Level of
	wovernent	Length	Delay	Service
	NBL	0.2	11.9	В
	NBT	0.1	4.3	А
	NBR	0.4	10.5	В
	SBL	0.5	11.2	В
Street	SBT	0.5	0.0	А
tre	SBR	0.6	10.7	В
QS	EBL	0.1	1.9	А
0	EBT	10.0	0.4	А
	EBR	10.0	0.3	А
	WBL	0.0	1.1	А
	WBT	0.0	0.3	А
	WBR	0.0	0.2	А
			ntersection	Α

Movement	Queue	Vehicle	Level of
Wovement	Length	Delay	Service
NBL	0.0	9.4	А
NBT	0.0	1.7	А
NBR	0.5	10.6	В
SBL	0.4	9.3	А
SBT	0.0	0.0	А
SBR	0.4	10.0	А
EBL	0.0	1.8	А
EBT	0.6	0.3	А
EBR	0.6	0.2	А
WBL	0.0	0.9	А
WBT	0.0	0.3	А
WBR	0.0	0.2	А
	Α		

Movement	Queue	Vehicle	Level of
wovement	Length	Delay	Service
NBL	0.0	1.6	А
NBT	0.0	1.9	А
NBR	0.0	2.6	А
SBL	0.0	1.5	А
SBT	0.0	0.0	А
SBR	0.0	1.5	А
EBL	6.2	6.8	А
EBT	6.2	6.3	А
EBR	6.2	7.1	А
WBL	96.8	22.8	С
WBT	96.8	21.3	С
WBR	96.8	17.0	С
		Intersection	С

Movement	Queue	Vehicle	Level of
wovernent	Length	Delay	Service
NBL	1.4	25.3	С
NBT	1.4	11.1	В
NBR	1.4	21.9	С
SBL	1.1	22.8	С
SBT	1.1	0.0	А
SBR	1.1	23.8	С
EBL	0.5	9.0	А
EBT	5.1	5.3	А
EBR	5.1	6.5	А
WBL	0.4	7.6	А
WBT	12.5	7.0	А
WBR	12.5	5.3	А
		Intersection	А

Movement	Queue	Vehicle	Level of
wovement	Length	Delay	Service
NBL	0.3	9.8	А
NBT	0.3	5.7	А
NBR	0.4	9.7	А
SBL	0.5	11.2	В
SBT	0.0	0.0	А
SBR	0.4	11.3	В
EBL	0.0	2.6	А
EBT	1.0	1.3	А
EBR	1.7	0.8	А
WBL	0.1	2.7	А
WBT	3.1	2.0	А
WBR	3.1	2.0	А
	Α		

	Mayamant	Queue	Vehicle	Level of
	Movement	Length	Delay	Service
	NBL	1.8	41.8	D
σ	NBT	6.5	49.4	D
Uptown Loop Road	NBR	8.4	13.2	В
Ř	SBL	3.6	46.8	D
do	SBT	1.6	47.2	D
ГО	SBR	0.8	7.8	A
Ś	EBL	0.7	5.6	А
Š	EBT	4.3	6.3	A
þt	EBR	0.2	3.3	А
	WBL	0.9	3.5	Α
	WBT	10.6	6.1	А
	WBR	9.9	4.2	А
			Intersection	Α

	Queue	Vehicle	Level of
Movement	Length	Delay	Service
NBL	1.9	42.1	D
NBT	6.5	49.4	D
NBR	8.6	13.0	В
SBL	3.6	46.5	D
SBT	1.5	45.6	D
SBR	0.8	8.2	А
EBL	0.5	4.4	А
EBT	2.4	4.0	А
EBR	0.2	2.3	А
WBL	1.0	3.9	А
WBT	11.6	6.8	А
WBR	10.6	4.2	А
		Intersection	Α

	Queue	Vehicle	Level of
Movement	Length	Delay	Service
NBL	1.8	45.0	D
NBT	6.5	49.5	D
NBR	8.1	13.1	В
SBL	3.8	46.9	D
SBT	1.7	45.9	D
SBR	0.8	8.6	А
EBL	1.1	8.3	А
EBT	3.5	5.4	А
EBR	0.1	2.3	А
WBL	1.0	4.0	А
WBT	54.3	21.4	С
WBR	54.3	6.8	А
		Intersection	Α

Mayamant	Queue	Vehicle	Level of
Movement	Length	Delay	Service
NBL	1.9	42.1	D
NBT	6.4	49.4	D
NBR	8.7	13.0	В
SBL	3.6	46.5	D
SBT	1.5	45.6	D
SBR	0.9	8.2	А
EBL	0.6	4.8	А
EBT	2.7	4.4	А
EBR	0.1	2.2	А
WBL	1.0	3.8	А
WBT	11.4	6.6	А
WBR	10.7	4.4	А
		Intersection	Α

Movement	Queue	Vehicle	Level of
wovernent	Length	Delay	Service
NBL	1.9	42.1	D
NBT	6.5	49.4	D
NBR	8.4	13.2	В
SBL	3.6	46.5	D
SBT	1.5	45.6	D
SBR	0.9	8.3	А
EBL	0.5	4.0	А
EBT	2.6	4.4	А
EBR	0.2	2.3	А
WBL	1.0	3.7	А
WBT	11.3	6.5	А
WBR	10.4	4.3	А
	Α		

Pedestrian Flashing Beacon				
	Queue	Vehicle	Level of	
Movement	Length	Delay	Service	
NBL	28.4	53.7	D	
NBT	67.6	28.8	С	
NBR	67.6	35.2	D	
SBL	13.6	52.2	D	
SBT	32.5	27.6	С	
SBR	32.5	33.4	С	
EBL	3.0	68.4	E	
EBT	13.0	23.8	С	
EBR	13.0	24.8	С	
WBL	32.0	46.0	D	
WBT	35.3	27.4	С	
WBR	35.3	28.6	С	
Intersection C				

Movement	Queue Length	Vehicle Delay	Level of Service
NBL	0.4	12.2	В
NBT	0.4	6.8	А
NBR	0.4	9.6	А
SBL	0.5	10.8	В
SBT	0.5	0.0	А
SBR	0.4	10.9	В
EBL	0.1	1.9	А
EBT	0.0	0.3	А
EBR	0.0	0.3	А
WBL	0.0	1.4	А
WBT	0.0	0.3	А
WBR	0.0	0.2	А
	А		

Movement	Queue	Vehicle	Level of
Movement	Length	Delay	Service
NBL	1.9	42.1	D
NBT	6.4	49.4	D
NBR	7.6	13.2	В
SBL	3.6	46.5	D
SBT	1.5	45.6	D
SBR	0.9	8.3	А
EBL	0.5	4.0	А
EBT	2.5	4.3	А
EBR	0.2	2.3	А
WBL	1.0	3.7	А
WBT	11.4	6.6	А
WBR	10.5	4.3	А
	Intersection	А	

CN A302250 Uptown Intersection Improvements Scoping and Alternatives Analysis Report City of Albuquerque

Figure 3-8. 2040 PM Traffic Results

		No	Build	
	Movement	Queue	Vehicle	Level of
	wovernent	Length	Delay	Service
-	NBL	23.6	60.4	E
arc	NBT	69.6	28.9	С
Louisiana Boulevard	NBR	7.3	13.8	В
n	SBL	66.2	63.4	E
Bo	SBT	33.0	20.8	С
Ja	SBR	0.0	6.1	А
iai	EBL	21.3	56.1	E
uis	EBT	50.4	40.2	D
ΓŌ	EBR	9.5	29.6	С
	WBL	69.2	55.6	E
	WBT	88.2	31.4	С
	WBR	88.2	35.3	D
			Intersection	С

Gueue Queue Length 23.7	and Remo Vehicle Delay	Level of		
Length				
	Delay	Constant		
23.7		Service		
20.7	60.8	E		
100.8	30.5	С		
100.8	35.8	D		
66.3	63.5	E		
34.6	21.3	С		
34.6	22.1	C		
21.1	55.7	E		
63.6	40.5	D		
63.6	40.8	D		
65.8	53.9	D		
84.0	31.0	С		
84.0	34.4	С		
Intersection C				
	100.8 66.3 34.6 21.1 63.6 63.6 65.8 84.0 84.0	100.8 35.8 66.3 63.5 34.6 21.3 34.6 22.1 21.1 55.7 63.6 40.5 63.6 40.8 65.8 53.9 84.0 31.0 84.0 34.4		

One-Lane Roundabout				
Movement	Queue	Vehicle	Level of	
wovernent	Length	Delay	Service	
NBL	23.5	62.4	E	
NBT	244.6	37.1	D	
NBR	244.6	148.2	F	
SBL	68.2	83.4	F	
SBT	35.6	22.2	С	
SBR	35.6	24.7	С	
EBL	24.8	105.8	F	
EBT	199.7	118.8	F	
EBR	199.7	58.4	E	
WBL	3.7	55.7	E	
WBT	3.7	34.1	С	
WBR	3.7	35.8	D	
		Intersection	D	

Traffic Signal					
Movement	Queue	Vehicle	Level of		
wovernent	Length	Delay	Service		
NBL	23.7	60.8	E		
NBT	101.6	30.9	С		
NBR	101.6	35.5	D		
SBL	75.6	70.4	E		
SBT	35.0	21.7	С		
SBR	35.0	20.4	С		
EBL	21.6	56.0	E		
EBT	62.0	40.1	D		
EBR	62.0	40.4	D		
WBL	79.1	63.4	E		
WBT	92.3	33.6	С		
WBR	92.3	38.0	D		
Intersection D					

Pedestrian Hybrid Beacon				
Movement	Queue	Vehicle	Level of	
wovernent	Length	Delay	Service	
NBL	23.8	61.1	E	
NBT	100.3	30.7	С	
NBR	100.3	35.0	С	
SBL	82.0	76.0	E	
SBT	34.8	21.4	С	
SBR	34.8	22.0	С	
EBL	22.1	57.7	E	
EBT	63.2	40.6	D	
EBR	63.2	40.7	D	
WBL	83.7	65.7	E	
WBT	95.2	33.4	С	
WBR	95.2	37.8	D	
Intersection D				

	Movement	Queue	Vehicle	Level of
	Wovernent	Length	Delay	Service
	NBL	2.6	15.9	С
	NBT	1.1	8.3	А
	NBR	3.6	11.9	В
	SBL	4.1	16.3	С
Street	SBT	4.6	17.4	С
tre	SBR	5.5	13.7	В
QS	EBL	2.5	5.4	А
0	EBT	16.2	0.4	А
	EBR	16.2	0.3	А
	WBL	0.4	4.0	А
	WBT	0.1	1.3	А
	WBR	0.1	0.8	А
			ntersection	А

Movement	Queue	Vehicle	Level of
wovement	Length	Delay	Service
NBL	0.3	9.6	А
NBT	0.3	3.2	А
NBR	3.3	12.0	В
SBL	4.4	14.0	В
SBT	0.4	9.5	А
SBR	5.4	13.2	В
EBL	1.1	4.1	А
EBT	1.1	0.4	А
EBR	1.1	0.3	А
WBL	0.1	2.8	А
WBT	0.1	1.0	А
WBR	0.1	0.6	А
		ntersection	А

Movement	Queue	Vehicle	Level of	
wovement	Length	Delay	Service	
NBL	1.6	12.5	В	
NBT	1.6	7.5	А	
NBR	1.6	12.1	В	
SBL	0.3	3.2	А	
SBT	0.3	1.6	А	
SBR	0.3	2.7	А	
EBL	232.9	38.4	E	
EBT	232.9	37.5	E	
EBR	232.9	37.8	E	
WBL	360.1	52.7	F	
WBT	360.1	53.0	F	
WBR	360.1	51.4	F	
	Intersection			

Movement	Queue	Vehicle	Level of
wovement	Length	Delay	Service
NBL	11.1	23.9	С
NBT	11.1	23.7	С
NBR	11.1	23.3	С
SBL	8.2	22.0	С
SBT	8.2	27.9	С
SBR	8.2	23.2	С
EBL	9.5	22.3	С
EBT	32.0	13.8	В
EBR	32.0	14.6	В
WBL	1.6	24.8	С
WBT	58.2	19.5	В
WBR	58.2	20.3	С
		Intersection	В

Mayamant	Queue	Vehicle	Level of
Movement	Length	Delay	Service
NBL	3.7	15.9	В
NBT	3.2	11.5	В
NBR	3.5	11.2	В
SBL	4.2	15.4	В
SBT	4.1	20.1	С
SBR	3.1	13.7	В
EBL	9.7	31.0	С
EBT	29.5	13.5	В
EBR	39.7	10.2	В
WBL	1.9	21.9	С
WBT	47.6	16.5	В
WBR	47.6	15.8	В
		Intersection	В

	Mayamant	Queue	Vehicle	Level of
	Movement	Length	Delay	Service
	NBL	25.7	41.1	D
σ	NBT	37.2	37.1	D
0a(NBR	39.3	52.6	D
R	SBL	21.6	39.2	D
do	SBT	6.8	47.7	D
Uptown Loop Road	SBR	2.1	8.7	А
Ş	EBL	5.1	12.5	В
Š	EBT	18.1	12.2	В
þt	EBR	1.0	3.3	А
	WBL	3.5	9.3	А
	WBT	29.7	13.5	В
	WBR	29.3	10.0	В
			Intersection	В

Queue Vehicle Level of Movement Length Delay Service 25.6 36.6 NBL 41.0 D D NBT 37.2 NBR 38.8 52.3 D 21.6 SBL 39.3 D SBT 6.7 47.5 D SBR 2.4 8.7 Α EBL 5.0 13.1 В EBT 18.8 12.7 В EBR 1.2 4.0 Α WBL 3.4 9.2 А WBT 30.8 В 13.9 WBR 30.3 9.8 Α Intersection В

Mayamant	Queue	Vehicle	Level of
Movement	Length	Delay	Service
NBL	158.9	245.4	F
NBT	69.8	57.0	E
NBR	72.1	70.5	E
SBL	21.4	39.0	D
SBT	6.9	50.4	D
SBR	11.2	30.3	С
EBL	16.8	42.0	D
EBT	13.5	9.6	А
EBR	0.8	3.2	А
WBL	582.7	165.2	F
WBT	582.7	335.0	F
WBR	2.0	185.5	F
		Intersection	F

Mayamant	Queue	Vehicle	Level of	
Movement	Length	Delay	Service	
NBL	26.1	42.5	D	
NBT	37.6	37.0	D	
NBR	39.3	52.3	D	
SBL	21.5	39.1	D	
SBT	6.7	47.1	D	
SBR	2.8	9.7	A	
EBL	4.8	12.8	В	
EBT	19.9	13.4	В	
EBR	1.2	4.1	А	
WBL	3.4	9.2	A	
WBT	31.6	14.7	В	
WBR	31.1	9.9	A	
Intersection B				

Movement	Queue	Vehicle	Level of
wovernent	Length	Delay	Service
NBL	26.1	42.5	D
NBT	37.6	37.0	D
NBR	39.3	52.3	D
SBL	21.5	39.1	D
SBT	6.7	47.1	D
SBR	2.8	9.7	А
EBL	4.8	12.8	В
EBT	19.9	13.4	В
EBR	1.2	4.1	А
WBL	3.4	9.2	А
WBT	31.6	14.7	В
WBR	31.1	9.9	А
	В		

*LOS E assumed at 55.0 seconds of delay

Pedestrian Flashing Beacon				
Movement	Queue	Vehicle	Level of	
wovement	Length	Delay	Service	
NBL	23.4	60.5	E	
NBT	100.6	30.8	С	
NBR	100.6	35.0	С	
SBL	72.2	67.8	E	
SBT	35.0	21.6	С	
SBR	35.0	22.4	С	
EBL	22.3	57.9	E	
EBT	62.6	40.2	D	
EBR	62.6	40.1	D	
WBL	66.7	55.0	E*	
WBT	81.6	29.8	С	
WBR	81.6	34.0	С	

Movement	Queue Length	Vehicle Delay	Level of Service
NBL	3.2	12.4	В
NBT	3.0	13.5	В
NBR	3.3	11.2	В
SBL	4.3	17.3	С
SBT	4.2	20.8	С
SBR	3.1	13.5	В
EBL	2.3	4.6	A
EBT	0.1	0.5	A
EBR	0.0	0.3	А
WBL	0.0	3.9	A
WBT	0.9	1.4	А
WBR	0.9	1.1	А
			А

Movement	Queue	Vehicle	Level of
wovement	Length	Delay	Service
NBL	25.6	41.1	D
NBT	36.6	37.3	D
NBR	38.8	52.6	D
SBL	21.7	39.5	D
SBT	6.7	47.5	D
SBR	2.4	8.8	A
EBL	5.0	13.2	В
EBT	19.1	13.1	В
EBR	1.2	4.1	A
WBL	3.4	9.1	А
WBT	30.1	13.5	В
WBR	29.7	9.9	А
			В

3.5.1 No Build

The following observations are made for the 2040 No Build from Figure 3-7 and Figure 3-8:

3.5.1.1 Indian School at Louisiana

- Similar to 2021 existing conditions, the intersection is observed to operate at an acceptable LOS C with minimal increases to the queue lengths and vehicle delays in the AM and PM peak hours.
 - Similar to 2021 existing conditions, the eastbound left turn is observed to operate at a LOS E in the AM peak hour.
 - Similar to 2021 existing conditions, the northbound, southbound, and eastbound left turns are observed to operate at a LOS E in the PM peak hour. LOS for westbound lefts change from LOS D to LOS E in 2040 with minimal additional delay expected in the PM peak hour and are still expected to operate with acceptable LOS.

3.5.1.2 Indian School at Q Street

• The intersection is observed to operate at an acceptable LOS A with minimal increases to the queue lengths and vehicle delays compared to 2021 existing conditions in the AM and PM peak hours.

3.5.1.3 Indian School at Uptown Loop

• The intersection is observed to operate at an acceptable LOS A and LOS B with minimal increases to the queue lengths and vehicle delays compared to 2021 existing conditions in the AM and PM peak hours, respectively.

3.5.2 Louisiana Island Removals

The following observations are made for the 2040 Louisiana Island Removals from Figure 3-7 and Figure 3-8:

3.5.2.1 Indian School at Louisiana

- The intersection is observed to operate at an acceptable LOS C during the AM and PM peak hours.
 - Similar to the 2040 No Build, the eastbound left turn is observed to operate at a LOS E in the AM peak hour with similar queue lengths and vehicle delays.
 - Similar to the 2040 No Build, the northbound, southbound, and eastbound left turns are observed to operate at a LOS E in the PM peak hour with similar queue lengths and vehicle delays.

Removing the dedicated right turn pockets at the northwest, southwest, and southeast corners of Indian School and Louisiana would increase vehicle delay and queue lengths and decrease LOS for vehicles making a right turn in both the AM and PM peak hours at all three corners. Even though the vehicle delay and queuing would increase, changes to delay and queuing for other movements would experience minimal changes and LOS for right turning vehicles would remain acceptable at LOS C or D. LOS for the intersection would remain unchanged at LOS C. Delay would increase because drivers wanting to turn right would no longer have a free movement and would need to stop, make sure the intersection is clear, and turn. If the car in front of them is travelling straight through the intersection, the vehicle would need to wait until the signal turned green to make their turn. For most of these turns the increase in vehicle delay during the peak hours would range from about 9 to 25 seconds depending on the time of day and the location.

3.5.2.2 Indian School at Q Street

• The intersection is observed to operate at an acceptable LOS A with minimal changes to the queue length and vehicle delays in the AM and PM peak hours.

3.5.2.3 Indian School at Uptown Loop

• The intersection is observed to operate at an acceptable LOS A and LOS B with minimal changes to the queue length and vehicle delays in the AM and PM peak hours, respectively.

3.5.3 One-Lane Roundabout at Indian School and Q Street

The following observations are made for the one-lane roundabout in 2040 from Figure 3-7 and Figure 3-8:

3.5.3.1 Indian School at Louisiana

- The intersection is observed to operate at an acceptable LOS C in the AM peak hour and LOS D in the PM peak hour. The full intersection LOS in the AM peak hour is similar to operations with No Build, but the LOS during the PM peak hour degrades to LOS D when compared to the 2040 No Build or Louisiana Island Removals. LOS D is considered acceptable; however, there are several specific turning movements during the PM peak that are expected to degrade to unacceptable (LOS F) levels as discussed below:
 - The eastbound right turn is observed to operate at a LOS E in the PM peak hour, with additional delay and queuing when compared to the 2040 No Build at LOS C and the Louisiana Island Removals at LOS D. Four movements, northbound right, southbound and eastbound lefts, and eastbound through movements are observed to be operating at an unacceptable LOS F during the PM peak with considerable vehicle delay.
 - These movements experience queuing from the Q Street intersection that affects operations at Louisiana.
 - Similar to the 2040 No Build and Louisiana Island Removals, the eastbound left turn is observed to operate at a LOS E in the AM peak hour with similar queue lengths and vehicle delays.
 - Similar to the 2040 No Build and Louisiana Island Removals, the northbound and westbound left turns are observed to operate at a LOS E in the PM peak hour, with similar vehicle delays.

3.5.3.2 Indian School at Q Street

- The intersection is observed to operate at an acceptable LOS C and LOS E in the AM and PM peak hours, respectively. However, delay and queuing would substantially increase, particularly for all eastbound and westbound movements during the PM peak hour. The delay and the resulting LOS are expected to occur along Indian School's approaches up until the queues reach the adjacent intersections at Louisiana and Uptown Loop. Hence, the delay at Q Street is projected to be under-reported and the model reported LOS is better than would be expected.
 - All westbound movements are observed to operate at an unacceptable LOS F in the PM peak hour, delay and vehicle queues for these movements are expected to increase substantially when compared to the alternatives for 2040 No Build and Louisiana Island Removals The westbound movement at Q street would be heavily impacted by a roundabout at this location.
 - All eastbound movements are observed to degrade to LOS E in the PM peak hour compared to LOS A for the 2040 No Build and Louisiana Island Removals.

3.5.3.3 Indian School at Uptown Loop

- The intersection is observed to operate at an acceptable LOS A in the AM peak hour and an unacceptable LOS F in the PM peak hour.
 - The northbound left and all westbound movements are observed to operate at an unacceptable LOS F in the PM peak hour. These turning movements would experience considerable delay in the PM peak hour that could last for a few minutes.
 - These movements experience queueing from the Q Street intersection that would affect operations at Uptown Loop.
 - The northbound through and right movements are observed to degrade to LOS E in the PM peak hour compared to LOSD for the 2040 No Build and Louisiana Island Removals.

3.5.4 Traffic Signal at Indian School and Q Street

The following observations are made for the traffic signal based on 2040 traffic information from Figure 3-7 and Figure 3-8:

3.5.4.1 Indian School at Louisiana

- The intersection is observed to operate at an acceptable LOS C and LOS D in the AM and PM peak hours, respectively.
 - Similar to the 2040 No Build and Louisiana Island Removals, the eastbound left turn is
 observed to operate at a LOS E in the AM peak hour with similar queue lengths and vehicle
 delays.
 - Similar to the 2040 No Build, the northbound, southbound, eastbound, and westbound left turns are observed to operate at a LOS E in the PM peak hour with similar queue lengths and vehicle delays.

3.5.4.2 Indian School at Q Street

- The intersection is observed to operate at an acceptable LOS A and LOS B in the AM and PM peak hours, respectively.
 - All movements would operate within acceptable limits, but drivers would experience increased delays compared to the No Build or Louisiana Island Removals since vehicles at Q Street would need to wait for the traffic signal to change in order to proceed, particularly in the PM peak.

3.5.4.3 Indian School at Uptown Loop

• The intersection is observed to operate at an acceptable LOS A and LOS B with minimal changes to the queue length and vehicle delays in the AM and PM peak hours, respectively.

3.5.5 Pedestrian Hybrid Beacon (HAWK Signal) at Indian School and Q Street

The following observations are made for the Pedestrian Hybrid Beacon from Figure 3-7 and Figure 3-8:

3.5.5.1 Indian School at Louisiana

- The intersection is observed to operate at an acceptable LOS C and LOS D in the AM and PM peak hours, respectively.
 - Similar to the 2040 No Build and Louisiana Island Removals, the eastbound left turn is observed to operate at a LOS E in the AM peak hour with similar queue lengths and vehicle delays.
 - Similar to the 2040 No Build, the northbound, southbound, eastbound, and westbound left turns are observed to operate at a LOS E in the PM peak hour with similar queue lengths and vehicle delays.

3.5.5.2 Indian School at Q Street

- The intersection is observed to operate at an acceptable LOS A in the AM peak hour and LOS B in the PM peak hour.
 - All movements would operate within acceptable limits, but drivers would experience minor increased delays compared to the No Build or Louisiana Island Removals in the PM peak for some eastbound and westbound turns since drivers at Q Street would occasionally need to wait for pedestrians to cross at the pedestrian hybrid beacon.

3.5.5.3 Indian School at Uptown Loop

• The intersection is observed to operate at an acceptable LOS A and LOS B in the AM and PM peak hours, respectively.

3.5.6 Pedestrian Flashing Beacon at Indian School and Q Street

A pedestrian flashing beacon operates similarly to a pedestrian hybrid beacon except it requires vehicles to come to a complete stop (rather than yield) and does not have the capability to be coordinated with other signals. When a pedestrian activates the beacon, warning signs and amber LED lights signal to drivers that a pedestrian is attempting to cross. The pedestrian flashing beacon is a non-regulatory traffic-controlled device, hence there may be a challenge for driver compliance. It should be noted that the VISSIM model assumes that traffic will always yield to pedestrians when they activate the pedestrian flashing beacon. The following observations are made for the Pedestrian Flashing Beacon from Figure 3-7 and Figure 3-8:

3.5.6.1 Indian School at Louisiana

- The intersection is observed to operate at an acceptable LOS C and LOS D in the AM and PM peak hours, respectively.
 - Similar to the 2040 No Build and Louisiana Island Removals, the eastbound left turn is observed to operate at a LOS E in the AM peak hour with similar queue lengths and vehicle delays.
 - Similar to the 2040 No Build, the northbound, southbound, westbound, and eastbound left turns are observed to operate at a LOS E in the PM peak hour with similar queue lengths and vehicle delays.

3.5.6.2 Indian School at Q Street

• The intersection is observed to operate at an acceptable LOS A in the AM and PM peak hours.

3.5.6.3 Indian School at Uptown Loop

• The intersection is observed to operate at an acceptable LOS A and LOS B in the AM and PM peak hours, respectively.

3.6 Alternatives Evaluation and Comparison

In addition to the traffic analysis discussed above, the alternatives at Q Street were evaluated by comparing potential impacts and considerations as listed below and described in Figure 3-9.

- Traffic operations Describes traffic performance and LOS
- Pedestrian Safety Describes pedestrian safety
- Right-of-way impacts Identifies right-of-way impacts
- Drainage considerations Identifies drainage considerations
- Utility considerations Identifies utilities considerations
- Geotechnical considerations Identifies geotechnical considerations
- Construction impacts Identifies construction impacts

- Environmental considerations Evaluates environmental constraints
- Cost Compares relative costs

Figure 3-9 does not compare impacts of the No Build, since this there would be no change with this alternative or the Louisiana Island Alternatives, since these were discussed previously in Section 3.5.2.

3.7 Alternatives Discussion and Recommendations

Based on the information provided in Figure 3-9, the following discussion and recommendations are provided for pedestrian improvements at Indian School and Q Street.

3.7.1 One-Lane Roundabout

The one-lane roundabout was found to impact traffic to unacceptable levels (LOS F) at multiple locations during the PM peak hour. The one-lane roundabout would be problematic for vehicles at Q Street and the Target parking garage and all along Indian School between Louisiana and Uptown Loop. In addition, this alternative has the biggest footprint of the four alternatives evaluated and would require about 0.07 acres of property at the driveway entering Target and property at ABQ Uptown. Because there are other options available that could meet the project need with fewer impacts, this concept was dropped from further consideration.

3.7.2 Traffic Signal

All three of the signal alternatives including the traffic signal, pedestrian hybrid beacon, and the pedestrian flashing beacon were found to meet the project purpose of improving pedestrian access and safety and operate with acceptable LOS and traffic operations. Spacing between traffic signals at Louisiana and Uptown Loop would be about 300 feet, which can be allowed per the City of Albuquerque's *Development Process Manual* but is rarely selected as a pedestrian crossing treatment unless there is also a traffic-related need as described in the *City of Albuquerque Bicycle and Trail Crossings Guide* (2022b). Currently, traffic operations are acceptable at this location and are expected to be acceptable for the 2040 No Build. Therefore, aside from the need to provide a safe pedestrian crossing, there is not an identified traffic need for a signal at this location. Furthermore, for most times of the day, drivers would have less delay with the pedestrian beacon alternatives, since during off-peak times, drivers coming out of ABQ Uptown or the Target garage would need to wait at for the stop light before proceeding into the intersection. For these reasons, a full traffic signal is not recommended at this location and has been dropped from further consideration.

Figure 3-9. Alternatives Comparison

Alternative/Metric	One-Lane Roundabout	Traffic Signal	Pedestrian Hybrid Beacon (HAWK Signal)
 Traffic Operations Describes traffic performance 	 The 1-lane roundabout was found to impact traffic to unacceptable levels (LOS F) at multiple locations during the PM peak hour: Traffic and congestion at the roundabout on Indian School and Q Street would degrade traffic operations at intersections with Louisiana and Uptown Loop. Four turning movements at Louisiana, three movements at Q Street, and four movements at Uptown Loop would be expected to operate at LOS F with unacceptable levels of congestion and delay. Overall intersection operations at Indian School and Uptown Loop would degrade to LOS F at four legs of the intersection (northbound lefts and all westbound movements) and drivers would experience a few minutes of delay. 	 Traffic operations are expected to operate with acceptable LOS and would operate better with any of the signals/beacons than with the roundabout. Performance of the signal/beacon options would be similar; however, with the traffic signal, drivers leaving ABQ Uptown or the Target parking garage would experience additional delay when compared to existing conditions or the beacons in cases where they would need to wait at a stoplight when there is no traffic. For most times of the day, drivers would have less delay with the pedestrian beacon alternatives. If a traffic signal were selected, a signal warrant analysis would be needed. Spacing between traffic signals at Louisiana and Uptown Loop would be about 300 feet, which can be allowed per the City's <i>Development Process Manual</i> but are rarely selected as a pedestrian crossing treatment unless there is also a traffic-related need (COA 2022b). 	 Traffic operations are expected to operate with acceptable LOS and would operate better with any of the signal/beacon options than with the roundabout. The pedestrian hybrid beacon provides a more protected crossing for pedestrians than a pedestrian flashing beacon since drivers must stop for the solid red and may stop and proceed when clear, with a flashing red. As a result, during the PM peak period drivers taking a westbound turn from Q Street or the Target parking garage could experience slightly more delay than they would with the pedestrian flashing beacon. A pedestrian hybrid can be timed with signals at Louisiana and Uptown Loop to control queuing. Application is consistent with City guidance suggesting use of pedestrian hybrid beacons in areas where speed limits are 35 mph or higher, average daily traffic is over 15,000 vehicles per day, and pedestrians must cross more than three traffic lanes.
 Pedestrian Safety Compares pedestrian safety 	 All the proposed alternatives would improve pedestrian safety for mid-block crossings on Indian School Road near Q street. The roundabout would provide a marked mid-block crossing for pedestrians at two locations east and west of the intersection with Q Street and it would provide a pedestrian refuge area in the median. This alternative would provide two new mid-block crossings rather than one mid-block crossing with the pedestrian beacon alternatives. This option would not provide a protected pedestrian movement, meaning that there would be no signal that stops traffic for pedestrians to cross. 	 The traffic signal alternative would provide a pedestrian phase offering four protected movements. Similar to the roundabout alternative, this alternative would include two protected mid-block crossings across Indian School rather than one mid-block crossing with the pedestrian beacon alternatives. 	 The pedestrian hybrid beacon alternative would provide one protected pedestrian crossing of Indian School just west of Q Street and the Target entrance. The pedestrian hybrid beacon provides a higher level of protection for pedestrians because when activated, it requires vehicles on Indian School to stop. Marked pedestrian crossings would be provided across the Target entrance and Q Street, and these movements would continue to be unprotected.
Right-of-Way (ROW) Impacts • Compares ROW impacts	 The 1-lane roundabout would have the biggest footprint of the four alternatives. Most of the roundabout could fit within the existing ROW but approximately 0.07 acres would be needed at the driveway entering Target and the area adjacent to Q Street in ABQ Uptown and additional easements or temporary construction permits may be required. 	 Most of needed components for the traffic signal could fit inside of the existing ROW. Items that could potentially be located outside of the existing ROW are pedestal poles or portions of curb access ramps. Depending on design, ROW needs could include a small permanent take, a permanent easement, or a temporary construction permit. 	 Most of the needed components for the pedestrian hybrid beacon could fit inside of the existing ROW. Items that could potentially be located outside of the existing ROW are modifications to the curb access ramps. Depending on design, ROW needs could include a small permanent take, a permanent easement, or a temporary construction permit.
 Drainage Considerations Identifies drainage considerations 	• No drop inlets or storm drain would need to be relocated. Care should be taken to ensure the new medians do not create ponds between the crown location and proposed median. Curb cuts through the medians could be installed to convey flows across the median and prevent ponding.	• A traffic signal would not affect current drainage conditions on Indian School. Care should be taken to ensure the new medians at the Target entrance and Q Street do not create ponds between the crown location and proposed median. Curb cuts through the medians could be installed to convey flows to prevent ponding.	• A pedestrian hybrid beacon would not affect current drainage conditions on Indian School. Care should be taken to ensure the new medians at the Target entrance and Q Street do not create ponds between the crown location and proposed median. Curb cuts through the medians could be installed to convey flows to prevent ponding.

Pedestrian Flashing Beacon

Traffic operations are expected to operate with acceptable LOS and would operate better with any of the signals/beacons than with the roundabout.

- This type of signal is more "permissive" for drivers than the pedestrian hybrid beacon signal since it is yellow (and not red) light that allows drivers to stop, look for pedestrians, and proceed into the intersection as soon as the pedestrian has crossed. Because of this, vehicle delays may be slightly reduced with the pedestrian flashing beacon when compared to the traffic signal or pedestrian hybrid beacon. However, during times with high pedestrian traffic, vehicles could experience more delay than with the pedestrian flashing beacon if the beacon is activated multiple times in a row by a pedestrian, which could cause traffic to queue on Indian School.
- A pedestrian flashing beacon could not be coordinated with other traffic signals at Louisiana or Uptown Loop to minimize vehicle queuing.
- The pedestrian flashing beacon would have a similar configuration as the pedestrian hybrid beacon. The primary difference is that the flashing beacon is "permissive" meaning that it flashes yellow signaling drivers to yield rather than come to a complete stop.
- The pedestrian flashing beacon is not a completely protected movement like it is for a traffic signal or a pedestrian hybrid beacon, but it would provide a dedicated mid-block crossing in this area, which would be an improvement over existing conditions.
- Most of the needed components for the pedestrian flashing beacon could fit inside of the existing ROW.
- Items that could potentially be located outside of the existing ROW are modifications to the curb access ramps. Depending on design, ROW needs could include a small permanent take, a permanent easement, or a temporary construction permit.
- A pedestrian flashing beacon would not affect current drainage conditions on Indian School. Care should be taken to ensure the new medians at the Target entrance and Q Street do not create ponds between the crown location and proposed median. Curb cuts through the medians could be installed to convey flows to prevent ponding.

Alternative/Metric	One-Lane Roundabout	Traffic Signal	Pedestrian Hybrid Beacon (HAWK Signal)	Pedestrian Flashing Beacon
Utility ConsiderationsIdentifies utility considerations	 The 1-lane roundabout would impact utilities to a greater degree than the other alternatives due to its larger footprint. Impacts to existing utilities would include: Manhole adjustments for sewer and electric Underground electric associated with moving light poles and bollards Relocation of light poles and foundations 	 The traffic signal would potentially impact the following utilities: Underground electric associated with moving light poles and bollards Potential relocation of light poles and foundations 	 A pedestrian hybrid beacon would potentially impact the following utilities: Underground electric associated with moving light poles and bollards Relocation of light poles and foundations 	 A pedestrian hybrid beacon would potentially impact the following utilities: Underground electric associated with moving light poles and bollards Relocation of light poles and foundations
 Geotechnical Considerations Identifies geotechnical considerations 	 Based on current information, geotechnical conditions suitable for the proposed roadway improvements. 	Based on current information, geotechnical conditions suitable for the proposed roadway improvements.	 Based on current information, geotechnical conditions suitable for the proposed roadway improvements. 	 Based on current information, geotechnical conditions suitable for the proposed roadway improvements.
 Construction Impacts Identifies construction impacts 	• The roundabout would affect traffic operations in the area during construction. In the short-term, congestion would increase on Indian School, particularly at the intersection with Q street. Lane closures would be required for an extended period, likely a few months.	 Signal construction impacts would be minimal and would mostly occur outside of the roadway. A brief lane closure of a few days would be needed to provide updated striping at the new crosswalks and install signals at the intersection of Indian School and Q Street. 	 Signal construction impacts would be minimal and would mostly occur outside of the roadway. A brief lane closure of a few days would be needed to provide updated striping at the new crosswalks and install the pedestrian hybrid beacon at the intersection of Indian School and Q Street. 	• Signal construction impacts would be minimal and would mostly occur outside of the roadway. A brief lane closure of a few days would be needed to provide updated striping at the new crosswalks and install the pedestrian flashing beacon at the intersection of Indian School and Q Street.
 Environmental Considerations Evaluates environmental constraints 	 All the proposed improvements are located in an urbanized area where there is no habitat for listed species or cultural or natural resource concerns. Impacts to the built and human environment would be limited to those discussed above. 	 All the proposed improvements are located in an urbanized area where there is no habitat for listed species or cultural or natural resource concerns. Impacts to the built and human environment would be limited to those discussed above. 	 All the proposed improvements are located in an urbanized area where there is no habitat for listed species or cultural or natural resource concerns. Impacts to the built and human environment would be limited to those discussed above. 	 All the proposed improvements are located in an urbanized area where there is no habitat for listed species or cultural or natural resource concerns. Impacts to the built and human environment would be limited to those discussed above.
Cost Compares relative costs 	The roundabout would be the most expensive option.	• The traffic signal would cost less than the roundabout and more than the pedestrian beacons.	 The pedestrian hybrid beacon would cost more than a pedestrian flashing beacon and less than the roundabout or traffic signal. 	The pedestrian flashing beacon would have the least cost of the options considered.

3.7.3 Pedestrian Hybrid Beacon (HAWK signal)

The pedestrian hybrid beacon was found to meet the project purpose of improving pedestrian access and safety and operate with acceptable LOS and traffic operations. Studies have documented that pedestrian hybrid beacons can reduce pedestrian crashes by 29% and serious injury and fatal crashes by 15% (FHWA 2021).

The City of Albuquerque's *Development Process Manual* strongly encourages the use of mid-block crossings in Urban Centers where block lengths are longer than 400 feet, particularly in areas where there are two major pedestrian generators. In this area, pedestrian activity is high and there are more than two major pedestrian generators due to the presence of ABQ Uptown, Target, retail parking, and the two bus stops located on both sides of Indian School. In this case, the distance between protected/signalized crossings at Louisiana and Uptown Loop is just over 600 feet. Guidance provided in the *City of Albuquerque's Bicycle and Trail Crossings Guide* (2022b) suggests the use of pedestrian hybrid beacons in areas where speed limits are 35 mph or higher, average daily traffic is over 15,000 vehicles per day, and pedestrians need to cross more than three lanes of traffic. At this location, speeds are 35 mph, average daily traffic is about 16,000 vehicles per day, and there are four lanes of traffic. For these reasons, a pedestrian hybrid beacon is recommended over the pedestrian flashing beacon at this location. In addition, when compared to the pedestrian flashing beacon, the pedestrian hybrid beacon:

- Provides a more protected crossing for pedestrians since drivers must stop for the solid red signal.
- Can be timed with the adjacent traffic signals to control queuing on Indian School.

3.7.4 Pedestrian Flashing Beacon

The pedestrian flashing beacon was found to meet the project purpose of improving pedestrian access and safety and operate with acceptable LOS and traffic operations; however, as previously discussed, a pedestrian flashing beacon is more "permissive" than a pedestrian hybrid beacon and is generally recommended in areas with lower speed limits, lower average daily traffic, and fewer traffic lanes. In addition, the pedestrian flashing beacon cannot be timed with adjacent traffic signals to optimize traffic performance. Finally, per guidance in the *City of Albuquerque's Bicycle and Trail Crossings Guide* (2022b), pedestrian flashing beacons are typically more appropriate in areas where traffic volumes are lower and pedestrians need to cross one or two lanes of traffic, rather than the four lanes located on Indian School. For these reasons, the pedestrian flashing beacon is not recommended at this location.

4. **RECOMMENDATIONS AND NEXT STEPS**

4.1 Recommendations

4.1.1 Louisiana Island Removals

Based on the results of the traffic analysis conducted and benefits to pedestrians, it is recommended to move forward with the design and construction of removing the right turn lanes at the northwest, southwest, and southeast corners of Louisiana and Indian School. Removing the free-right turns at these locations will add modest delay to drivers taking right turns, but even during the AM and PM peak hours traffic is expected to operate with an acceptable LOS. Benefits to pedestrians include:

- Creating fewer lanes for pedestrians crossing the street and creating shorter crosswalk lengths across all four intersection legs.
- Reducing the speed of right-turning vehicles where pork chop islands are removed.
- Widening the sidewalk areas at the three corners of the intersection to provide additional pedestrian refuge and additional space.

4.1.2 Improvements at Indian School and Q Street

Based on the results of the traffic analysis conducted and benefits to pedestrians as a proven FHWA safety countermeasure, it is recommended to move forward with the design and construction of a pedestrian hybrid beacon at Indian School and Q Street. The pedestrian hybrid beacon was found to meet the project purpose of improving pedestrian access and safety and operate with acceptable LOS and traffic operations. Key benefits of the pedestrian hybrid beacon include:

- Providing a protected mid-block crossing for pedestrians in the Uptown Urban Center to improve pedestrian and safety and access across two major retail/commercial areas and the bus stops located on both sides of Indian School.
- The ability to time the pedestrian hybrid beacon with adjacent traffic signals to control queuing on Indian School.

The recommended location for the pedestrian hybrid beacon is on the west side of the Target parking garage and Q Street. The west side of Q Street was selected based on pedestrian generators at ABQ Uptown, Target, and the transit stations and data provided in Figure 2-13 that showed that pedestrians not using existing crosswalks at Louisiana and Uptown Loop tend to cross near Q Street or just west of it. The proposed placement of the pedestrian hybrid beacon is consistent with guidance in the *Manual on Uniform Traffic Control Devices* (MUTCD) that beacons should be placed no less than 300 feet from adjacent traffic signals (FHWA 2012). In this case, a beacon located west of Q Street is about 300 feet from the intersection of Louisiana and just over 300 feet from the intersection at Uptown Loop.

4.2 Design Considerations

This section contains information on design considerations.

4.2.1 ITS

As discussed in Section 2.5, there are plans to install fiber communications along Louisiana between Central Avenue and Menaul Avenue in 2022. This project proposes to update the ITS system on Indian School to replace outdated copper networks that do not meet current City standards with a fiber network, install closed-circuit television cameras to monitor signal operations, and connect ITS infrastructure on Louisiana and Indian School. The ITS improvements will help to improve traffic monitoring and operations to improve safety and traffic performance. The ITS improvements would also help to time the proposed pedestrian hybrid beacon with existing signals at Louisiana and Indian School. Specific ITS improvements will be identified as part of preliminary design.

4.2.2 Right-of-Way

Most of the needed components for the pedestrian hybrid beacon could fit inside of the existing rightof-way; however, improvements to curbs access ramps could require a small permanent take, a permanent easement, or a temporary construction permit to meet ADA requirements. Right-of-way impacts will be determined as part of preliminary design and will be minimized.

4.2.3 Drainage

4.2.3.1 Drainage Considerations at Louisiana and Indian School

Removing the pork chop islands at the northwest, southwest, and southeast corners of the Louisiana and Indian School intersection will require drainage relocations. All three of the corners have two curb drop inlets that will need to be relocated. There are 18-inch pipes that connect the inlets to the main storm drain in Indian School. Depending on the location of the new inlets, they may be able to tie into the existing 18-inch pipes. In the event the new drop inlet locations are not compatible with the existing pipes, new pipes will need to be designed that connect the new drop inlets to the existing manholes in Indian School.

4.2.3.2 Drainage Considerations at Indian School and Q Street

A pedestrian hybrid beacon would not affect current drainage conditions on Indian School. Care should be taken to ensure the new medians at the Target entrance and Q Street do not create ponds between the crown location and proposed median. Curb cuts through the medians could be installed to convey flows to prevent ponding.

4.2.4 Utilities

4.2.4.1 Utility Considerations at Louisiana and Indian School

The following utilities will be impacted with the improvements proposed at Louisiana and Indian School

• Underground Electric - The affected electric lines are all associated with traffic signal infrastructure at the intersection. All the impacted lines would be removed and relocated/replaced as part of the project.

- Storm Drain Five storm drain inlets would likely need to be removed and replaced at the northwest, southwest, and southeast corners of the intersection. The associated storm drains would also need to be modified.
- Water Meter and Valve A water meter and valve located at the northwest corner of the intersection would need to be adjusted to grade or modified.

4.2.4.2 Utility Considerations at Indian School and Q Street

For the intersection at Indian School and Q Street, the following utilities could potentially be impacted depending on the intersection design:

- Underground electric associated with moving light poles and bollards
- Potential relocation of aboveground light poles and foundations

4.2.5 Geotechnical Considerations

Geotechnical conditions in the project study area appear suitable for the type of improvements that are being evaluated. Subgrade soils consist predominately of relatively high-quality sand subgrade. On-site sands are expected to be suitable for use as structural backfill for pavements. Pavement thickness will be based on existing subgrade materials and traffic types and volumes in the study area. Thicker pavement sections will be associated with poorer quality subgrades with clayey sands. Subgrade stabilization may be required in lower quality subgrade soils and/or areas of loose or elevated moisture contents.

Excavations are expected to be accomplished using conventional earthwork equipment. Caving soils should be anticipated during construction. Light and traffic structures are anticipated to be supported on a deep foundation of drilled shafts bearing on undisturbed soil. Casing and/or drilling slurry may be required for drilled shaft construction.

Soils in the study area have moderate to mild corrosion potential to petal piping or conduits. Therefore, site specific corrosion test results will need to be considered in the selection of driven piles, metal conduits and drainage structures, and other metal elements of the project. Additional details regarding geotechnical considerations are provided in Appendix B, Preliminary Geotechnical Report.

4.2.6 Environmental Considerations

All the proposed improvements are located in an urbanized area where there is no habitat for listed species or cultural or natural resource concerns. Impacts to the built and human environment would be limited to those related to right-of-way acquisitions and short-term construction impacts. The project would benefit the built environment by improving pedestrian safety. Proposed improvements would be partially funded using federal funds programmed in the 2023 Transportation Improvement Program. As such, the project must obtain approval under the National Environmental Policy Act (NEPA). Based on the project scope and expected level of environmental impact, a Programmatic Categorical Exclusion with no supporting cultural or natural resources surveys is recommended.

4.2.7 Required Certifications

Since this project is federally funded, certifications will be required from the NMDOT. Based on the project description and expected impacts, this project will require the following certifications:

CN A302250 Uptown Intersection Improvements Scoping and Alternatives Analysis Report City of Albuquerque

- ITS certification
- Right-of-way certification
- Utility certification
- Environmental certification
- Railroad certification

4.3 Preliminary Cost Estimate

Preliminary costs for the recommended improvements are estimated about \$1,100,000 as shown in Appendix C, Preliminary Cost Estimates. Improvements at Louisiana and Indian School are estimated at about \$464,000; the proposed pedestrian hybrid beacon and associated improvements are estimated at about \$492,000; and ITS improvements are estimated at \$144,000. Preliminary costs assume that right-of-way would not be required, but this will be analyzed in detail as part of preliminary engineering. Costs will be updated and refined as part of preliminary design.

4.4 Next Steps

Next steps for the project include:

- Completing preliminary engineering plans and identifying needed right-of-way, including permanent takes, permanent easements, or temporary construction easements.
- Coordination with adjacent property owners and the public as part of preliminary engineering.
- Completing environmental documentation.

5. REFERENCES

- City of Albuquerque (COA). 2013. *Uptown Sector Development Plan.* Adopted January 15, 2009, Amended through December 2013, Repealed in 2017.
- COA. 2020. Development Process Manual. June 8, 2020.
- COA. 2021a. Integrated Development Ordinance. Amended July 2021.
- COA. 2021b. Albuquerque's Vision Zero Action Plan. 2021.
- COA. 2022a. Complete Streets Ordinance. Available at <u>https://www.cabq.gov/council/projects/current-projects/complete-streets</u>. Accessed February 15, 2022.
- COA 2022b. City of Albuquerque Bicycle and Trail Crossings Guide. April 2022.
- City of Albuquerque and Bernalillo County. 2017. *Albuquerque and Bernalillo County Comprehensive Plan.* March 2017.
- EPA (Environmental Protection Agency). 2022. Environmental Justice Screening and Mapping Tool. Available at <u>https://ejscreen.epa.gov/mapper/</u>. Accessed February 23, 2022.
- Federal Highway Administration (FHWA). 2012. *Manual on Uniform Traffic Control Devices* (MUTCD). May 2012.
- FHWA. 2021. Proven Safety Countermeasures. <u>https://safety.fhwa.dot.gov/provencountermeasures/</u>
- Google. 2022. Photos of Indian School Road and ABQ Uptown. Google Earth Accessed February 23, 2022.
- MRCOG. 2020a. Connections 2040, Metropolitan Transportation Plan. April 17, 2020.

MRCOG. 2020b. Long Range Transportation System Guide. April 2020.

- OpenEnviroMap. 2022. Available at <u>https://gis.web.env.nm.gov/oem/?map=egis</u>. Accessed February 21, 2022.
- Parametrix. 2014. Uptown Pedestrian Study, prepared for MRCOG. October 27, 2014.

Appendix A

Supporting Traffic Information

	Total	33.4		Ŧ	523	588	1886	598	538	487	543	2166	445	467	497	569	1978		715	741	801	855	3112	850	863	797	869	3379	895	896	883	829	3503		866	884	1750
	App.	101al	1	C Z	30	44	126	45	29	46	51	171	43	47	46	56	192		61	84	78	89	312	85	85	87	97	354	95	88	82	74	339		79	103	187
	Peds	~	- c	7	0	0	3	0	0	0	0	0	1	1	0	1	co		0	1	0	1	2	0	0	0	0	0	0	4	3	0	7	ı	0	2	2
<i>ti</i> _	U-Tum	c		5	0	0	0	0	0	0	0	0	0	0	0	1	-		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	6
Eastbound St. Eastbound	Left	ų		7	m	2	13	2	-	7	٢	11	-	0	з	5	6		4	15	80	6	36	12	7	8	6	36	14	11	12	7	44		11	10	5
Е Е	Thru	10	4	2	18	33	79	31	24	30	33	118	26	35	27	34	122		36	50	44	49	179	50	61	53	64	228	53	58	42	51	204		48	77	105
	Right Ded	00110	4 0	0	9	0	11	2	ю	2	5	12	9	2	9	4	18		2	3	3	4	12	6	5	2	0	16	8	2	5	5	20		2	-	°
	Right	2	-	t	т	6	23	10	-	7	12	30	10	10	10	12	42		19	16	23	27	85	14	12	24	24	74	20	17	23	11	71		18	15	00
	App. Total	15.2	176		211	231	770	262	250	191	264	967	206	223	206	250	885		328	345	328	376	1377	363	346	315	320	1344	331	368	343	320	1362		350	371	101
	Peds	0	-	_	0	-	2	0	1	2	1	4	3	3	2	2	10		0	0	0	3	ŝ	1	0	1	2	4	0	4	1	1	9	ı	1	2	G
st.	U-Tum	c		5	-	ю	4	0	0	0	0	0	0	0	0	0	0		3	9	3	0	12	2	٢	1	2	6	4	4	1	2	11		1	0	+
Northbound St. Northbound	Left	24	-	nc	28	43	122	38	38	31	31	138	26	28	19	23	96		30	27	30	39	126	28	30	35	31	124	31	33	43	33	140		25	31	55
o z z	Thru	100	act	071	155	150	540	165	159	129	200	653	133	150	149	187	619		243	264	247	276	1030	291	261	229	248	1029	233	260	256	236	985	,	266	285	551
	Right	16	2	<u>t</u>	12	25	67	49	33	21	23	126	32	32	22	24	110		33	20	18	31	102	11	15	30	7	63	36	29	12	23	100	,	24	21	15
	Right	ų	» د	D I	15	10	37	10	20	10	10	50	15	13	16	16	09	-	19	28	30	30	107	31	39	20	32	122	27	42	31	56	126		34	34	68
	App. Total	62	3 6	00	113	144	408	138	134	118	95	485	79	81	117	123	400		143	147	177	205	672	190	182	157	211	740	178	191	188	173	730		166	174	340
	Peds	0	0	0	~	~	5	1	2	-	2	9	-	0	-	0	2		0	0	0	0	0	2	3	2	9	13	2	3	2	3	10		9	2	α
St. d	U-Tum	c			-	0	+	0	0	-	0	1	0	0	0	0	0		2	1	0	0	e	0	3	٢	0	4	0	0	٢	٢	2		1	-	ç
Westbound St. Westbound	Left	75	2	23	35	34	123	58	51	43	31	183	24	27	38	39	128		50	42	99	86	244	74	77	60	79	290	68	79	67	68	282		70	67	137
3 -	Thru	36		00	64	98	254	67	66	55	49	237	43	33	47	52	175		43	53	65	66	227	68	62	61	83	274	72	63	59	57	251		45	99	111
	Right			4	7	2	11	4	5	4	3	16	8	5	10	14	37		15	16	17	20	68	4	8	10	10	32	5	12	17	19	53		4	11	45
	Right	-		7	9	9	19	6	12	15	12	48	4	16	22	18	60	'	33	35	29	33	130	44	32	25	39	140	33	37	44	28	142	'	46	29	76
	App.	03	11	2	169	169	582	153	125	132	133	543	117	116	128	140	501		183	165	218	185	751	212	250	238	241	941	291	249	270	262	1072		271	236	507
	Peds	0	0	0	e	3	6	З	0	0	1	4	1	2	1	1	5		1	2	5	4	12	2	9	1	5	14	2	4	3	7	16	1	2	З	¢
d St. nd	U-Turn	c			0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	1	-	2	2	٢	1	9	0	-	1	2	4		0	0	C
Southbound St. Southbound	Left	σ	•	0	7	14	38	25	5	15	26	71	21	16	28	26	91		33	43	54	29	159	42	56	54	44	196	62	28	55	22	202		58	35	g
ŵ ,	Thru	- 8	000	20	155	144	519	121	115	114	103	453	92	95	97	109	393		143	113	156	150	562	165	182	176	186	709	222	218	210	194	844		208	197	405
	Right	00110	4 c	7	ю	2	6	3	2	-	2	8	2	0	0	2	4		2	1	٢	2	9	0	٢	0	4	5	2	2	1	2	7		0	2	¢
	Right		- ~	7	4	6	16	4	e	2	2	11	2	5	з	3	13	•	5	8	7	3	23	3	6	7	9	25	5	0	3	7	15		5	2	~
	Start Time	7-00 AM	7:15 AM		7:30 AM	7:45 AM	Hourly Total	8:00 AM	8:15 AM	8:30 AM	8:45 AM	Hourly Total	9:00 AM	9:15 AM	9:30 AM	9:45 AM	Hourty Total	*** BREAK ***	11:00 AM	11:15 AM	11:30 AM	11:45 AM	Hourly Total	12:00 PM	12:15 PM	12:30 PM	12:45 PM	Hourly Total	1:00 PM	1:15 PM	1:30 PM	1:45 PM	Hourly Total	*** BREAK ***	3:30 PM	3:45 PM	Hourty Total

37	220 50 0 4 274 35 17 74 77 0 6 203 22 199 51 2 1 256 31 24 59 61 2 9 177 37	50 0 4 274 35 17 74 77 0 6 203 22 51 2 1 256 31 24 59 61 2 9 177 37	0 0 4 274 35 17 74 77 0 6 203 22 2 1 256 31 24 59 61 2 9 177 37	4 274 35 17 74 77 0 6 203 22 1 266 31 24 59 61 2 9 177 37	274 35 17 74 77 0 6 203 22 256 31 24 59 61 2 9 177 37	35 17 74 77 0 6 203 22 31 24 59 61 2 9 177 37	17 74 77 0 6 203 22 24 59 61 2 9 177 37	74 77 0 6 203 22 59 61 2 9 177 37	77 0 6 203 22 61 2 9 177 37	0 6 203 22 2 9 177 37	6 203 22 9 177 37	203 22 177 37	37		5 ~	333	3 31	9 4	2 2	405 377	26 19	4 0	64 71	18	0 0	ω Ο	112 104
1 1	5	4	206	53	+	-	269 4	40 1	19 4	43 6	69 0		171			8 296		3	2	393	23	2	73	15	0	1	113
Ì	÷	۲	198	49	0	2	249 4	40 1	12 7	76 7	78 0	3	206	96 32	2 22	2 298	3 22	2	7	376	30	-	78	13	0	3	122
	10	9	823 2	203	3	8	1048 1	146 7	72 2:	252 28	285 2	19	757		133 97	7 1204	4 99	18	13	1551	98	7	286	60	0	7	451
	7	0	226	61	0	2	294 :	31 1	16 4	43 5	58 0	3	148	42 42	2 28	8 291	1 21	3	3	385	21	٢	80	15	0	0	117
	3	+	185	62	-	-	252 3	36 1	16 6	62 7	74 2	5	190	90 26	6 24	4 302	2 24	0	3	376	23	4	86	8	0	2	121
	3	1	227	66	1	0	298	34 1	19 5	58 6	64 0	3	175			2 290	0 22	3	5	365	18	2	73	17	0	1	110
	5	2	183	48	2	3	240 4	40	9 6	62 9	90 0	3	201	01 42	2 25	5 274	4 19	2	1	362	25	0	41	8	1	0	75
	18	4	821 2	237	4	6 1	1084 1	141 6	60 2:	225 28	286 2	14	114	14 148	18 89	9 1157	7 86	8	12	1488	87	7	280	48	1	3	423
	6	0	230	54	0	1	290	46 1	10 4	46 6	68 1	4	171	71 33	3 24	4 254	4 12	3	3	326	19	5	37	2	0	1	63
	5	2	190	36	0	0	233 2	36 1	14 3	38 8	80 0	1	168			7 209	9 19	5	10	280	12	3	48	8	1	2	72
	149	56	5949 1	1380	18	83 7	7552 9	983 34	388 20	2090 21	2106 18	8 82	5585	85 914	14 840	0 8231	1 1018	8 68	73	11071	574	114	1706	288	3	33	2685
-	2.0	0.7	78.8 1	18.3	0.2		- 1	17.6 6	6.9 37	37.4 37	37.7 0.3	3 -		. 8.3	3 7.6	6 74.3	3 9.2	0.6		•	21.4	4.2	63.5	10.7	0.1		
-	0.6	0.2	22.1	5.1	0.1	-	28.1 3	3.7 1	1.4 7	7.8 7.	7.8 0.1	1 -	20.8	.8 3.4	4 3.1	1 30.6	6 3.8	0.3		41.2	2.1	0.4	6.3	1.1	0.0	1	10.0
_	146	56	5900 1	1374	18	- 7	7494 9	976 34	386 20	2050 20	2092 17	- 2	5521	21 908	38 833	3 8153	3 999	68		10961	557	109	1670	281	3		2620
	98.0 1	100.0	99.2 9	99.6 1	100.0	- 6	99.2	99.3 99	99.5 98	98.1 99	99.3 94.4	- 4.	98.9	.9 99.	.3 99.2	.2 99.1	1 98.1	1 100.0	- (99.0	97.0	95.6	97.9	97.6	100.0		97.6
	2	0	33	4	0		39	5	2 3	39 1	11 1	-	58	8 4	4 4	61	17	0		86	12	5	34	5	0		56
	1.3	0.0	0.6 (0.3	0.0	-	0.5 C	0.5 0	0.5 1	1.9 0.	0.5 5.6	- 9	1.0	.0 0.4	.4 0.5	5 0.7	1.7	0.0		0.8	2.1	4.4	2.0	1.7	0.0		2.1
	1	0	16	2	0	-	19	2	0	0	3 0	-	5	5 2	2 3	17	2	0		24	5	0	۲	2	0		8
	0.7	0.0	0.3 (0.1	0.0	-	0.3 0	0.2 0	0.0	0.0	0.1 0.0	- 0	0.1	.1 0.2	2 0.4	4 0.2	2 0.2	0.0		0.2	0.9	0.0	0.1	0.7	0.0		0.3
	0	0	0	0	0		0	0	0	1	0 0	-	1	0	0	0	0	0		0	0	0	-	0	0		۲
% Bicycles on Road	0.0	0.0	0.0	0.0	0.0	-	0.0 0	0.0	0.0	0.0	0.0 0.0	- 0	0.0	0.0	0.0 0.0	0.0 0.0	0.0	0.0		0.0	0.0	0.0	0.1	0.0	0.0		0.0
						6			-		-	4					'		2							2	
						10.8						4.9	- 6						2.7							6.1	
						74		,			'	78	-	'	'	'	'	'	71	'	'		,	,		31	'
		,			α	000						OF 1	Ŧ						07.0							000	

									Ц	Irning	Furning Movement Peak Hour Data (7:30 AM)	'eme	nt P€	sak F	lour [Data	(7:30	AM)										
			Sol	Southbound St. Southbound	St. d					Υ. Μ	Westbound St. Westbound	ند					, Northb North	Northbound St. Northbound						Eastbound St. Eastbound	d St. Ind			
Start Time	Right	Right on Red	Thru	Left	U-Turn	Peds	App. Total	Right	Right on Red	Thru	Left L	U-Tum	Peds	App. Total	Right o	Right _T on Red	Thru	Left U-T	U-Tum Peds	ds App. Total	o. Right	nt Right on Red	it Thru	Left	U-Tum	Peds	App. Total	Int. Total
7:30 AM	4	ю	155	7	0	ю	169	9	7	64	35	-	-	113	15	12	155 2	28	1 0	211	1 3	9	18	з	0	0	30	523
7:45 AM	6	2	144	14	0	3	169	10	2	98	34	0	1	144	10	25	150 4	43	3 1	231	1 9	0	33	2	0	0	44	588
8:00 AM	4	3	121	25	0	3	153	6	4	67	58	0	1	138	10	49	165 3	38 (0 0	262	2 10	2	31	2	0	0	45	598
8:15 AM	3	2	115	5	0	0	125	12	5	66	51	0	2	134	20	33	159 3	38 (0	250	1	3	24	1	0	0	29	538
Total	20	10	535	51	0	6	616	37	18	295	178	1	5	529	55	119 6	629 1	147 4	4 2	954	4 23	11	106	8	0	0	148	2247
Approach %	3.2	1.6	86.9	8.3	0.0			7.0	3.4	55.8	33.6	0.2			5.8	12.5 6	65.9 15	15.4 0	0.4 -		15.5	5 7.4	71.6	5.4	0.0	1		
Total %	0.9	0.4	23.8	2.3	0.0		27.4	1.6	0.8	13.1	7.9	0.0		23.5	2.4	5.3 2	28.0 6	6.5 0	0.2	42.5	5 1.0	0.5	4.7	0.4	0.0		6.6	
PHF	0.556	0.833	0.863	0.510	0.000	ı	0.911	0.771	0.643	0.753	0.767 (0.250	-	0.918	0.688 0	0.607 0	0.953 0.8	0.855 0.3	0.333	0.910	0.575	5 0.458	8 0.803	3 0.667	0.000	1	0.822	0.939
Lights	20	10	531	50	0	ı	611	37	17	292	177	٢		524	54	119 6	620 1	144 ,	4	941	1 23	11	101	9	0	1	141	2217
% Lights	100.0	100.0	99.3	98.0			99.2	100.0	94.4	99.0	99.4	100.0		99.1	98.2 1	100.0 \$	98.6 98	98.0 10	100.0	98.6	6 100.0	0 100.0	0 95.3	75.0	•		95.3	98.7
Mediums	0	0	3	0	0		3	0	-	3	0	0		4	0	0	4	3 (- 0	7	0	0	5	1	0		9	20
% Mediums	0.0	0.0	0.6	0.0			0.5	0.0	5.6	1.0	0.0	0.0		0.8	0.0	0.0	0.6 2	2.0 0	0.0	0.7	0.0	0.0	4.7	12.5			4.1	0.9
Articulated Trucks	0	0	-	.	0		2	0	0	0	-	0		-	-	0	5	0	- 0	9	0	0	0	~	0		~	10
% Articulated Trucks	0.0	0.0	0.2	2.0		·	0.3	0.0	0.0	0.0	0.6	0.0		0.2	1.8	0.0	0.8 0	0.0	- 0.0	0.6	0.0	0.0	0.0	12.5	•		0.7	0.4
Bicycles on Road	0	0	0	0	0		0	0	0	0	0	0		0	0	0	0	0	- 0	0	0	0	0	0	0		0	0
% Bicycles on Road	0.0	0.0	0.0	0.0		ı	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	- 0.0	0.0	0.0	0.0	0.0	0.0		1	0.0	0.0
Bicycles on Crosswalk	•	•				~		•					0						- 0	-	•	•	•	•	•	0	•	•
% Bicycles on Crosswalk	•					11.1	-	•					0.0						- 0.0	- 0		•	•	•	•			
Pedestrians	'		,	,		8		'				,	5	'					- 2	'	'	'	'	'	•	0	•	
% Pedestrians	'	'		'	' '	88.9		'	'	'			100.0						- 10(100.0	'	'	•	•	•		•	

									Tur	ning	Turning Movement Peak Hour Data (11:00 AM)	men	t Pe	ak H	our D	ata (11:00	AM)										
			ů. N	Southbound St. Southbound	St. d					, we	Westbound St. Westbound					•	Northbound St. Northbound	orthbound St. Northbound					ů L	Eastbound St. Eastbound	م تخ			
Start Time	Right	Right on Red	Thru	Left	U-Turn	Peds	App. Total	Right	Right on Red	Thru	Left U	U-Tum F	Peds /	App. Total	Right R	Right on Red Th	Thru Left	eft U-Turn	rn Peds	s App. Total	Right	Right on Red	Thru	Left	U-Tum	Peds	App. Total	Int. Total
11:00 AM	5	2	143	33	0	-	183	33	15	43	50	2	0	143	19	33 2,	243 30	0 3	0	328	19	2	36	4	0	0	61	715
11:15 AM	8	-	113	43	0	2	165	35	16	53	42	1	0	147	28	20 20	264 27	7 6	0	345	16	3	50	15	0	1	84	741
11:30 AM	7	-	156	54	0	5	218	29	17	65	66	0	0	177	30	18 2,	247 30	0 3	0	328	23	3	44	8	0	0	78	801
11:45 AM	3	2	150	29	٢	4	185	33	20	66	86	0	0	205	30	31 2	276 39	9 0	3	376	27	4	49	6	0	1	89	855
Total	23	9	562	159	٢	12	751	130	68	227	244	3	0	672	107 1	102 10	1030 126	26 12	3	1377	85	12	179	36	0	2	312	3112
Approach %	3.1	0.8	74.8	21.2	0.1			19.3	10.1	33.8	36.3	0.4			7.8 7	7.4 7/	74.8 9.2	2 0.9	- (27.2	3.8	57.4	11.5	0.0	1		
Total %	0.7	0.2	18.1	5.1	0.0		24.1	4.2	2.2	7.3	7.8	0.1		21.6	3.4	3.3 33	33.1 4.0	0 0.4		44.2	2.7	0.4	5.8	1.2	0.0		10.0	
PHF	0.719	0.750	0.901	0.736	0.250		0.861	0.929	0.850	0.860	0.709 0	0.375	- 0	0.820 C	0.892 0.	0.773 0.9	0.933 0.808	08 0.500	- 0	0.916	0.787	0.750	0.895	0.600	0.000		0.876	0.910
Lights	23	9	555	158	٢	ı	743	130	67	220	244	3		664	105 1	102 10	1019 123	23 12	1	1361	80	12	174	36	0	1	302	3070
% Lights	100.0	100.0	98.8	99.4	100.0		98.9	100.0	98.5	96.9	100.0 1	100.0	-	98.8	98.1 1(100.0 98	98.9 97.6	.6 100.0	- 0	98.8	94.1	100.0	97.2	100.0			96.8	98.7
Mediums	0	0	4	-	0		5	0	+	6	0	0		7	+	0	9 3	3 0		13	4	0	5	0	0		6	34
% Mediums	0.0	0.0	0.7	0.6	0.0		0.7	0.0	1.5	2.6	0.0	0.0		1.0	0.9 (0.0 0	0.9 2.4	.4 0.0		0.9	4.7	0.0	2.8	0.0			2.9	1.1
Articulated Trucks	0	0	e	0	0		с	0	0	0	0	0		0	-	0	2 0	0		e	-	0	0	0	0		-	7
% Articulated Trucks	0.0	0.0	0.5	0.0	0.0	ı	0.4	0.0	0.0	0.0	0.0	0.0		0.0	0.9	0.0	0.2 0.0	0.0 0.0	-	0.2	1.2	0.0	0.0	0.0	•	1	0.3	0.2
Bicycles on Road	0	0	0	0	0		0	0	0	-	0	0		-	0	0	0 0	0 0		0	0	0	0	0	0		0	-
% Bicycles on Road	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.4	0.0	0.0		0.1	0.0	0.0	0.0 0.0	0.0 0.0	-	0.0	0.0	0.0	0.0	0.0			0.0	0.0
Bicycles on Crosswalk						33							0					•	0		•			•	•	1	-	
% Bicycles on Crosswalk						25.0												'	0.0		'					50.0		
Pedestrians			,			6		,	,	,	,		0		,	,		'	S	'	'	'	,			-	'	
% Pedestrians						75.0	,	,						,				'	100.0	-	'	,	,			50.0		

			_	-		ין אוס י	<u>כ</u>) 	-									I				_
outhbound St. Southbound					3 -	Westbound St Westbound	ť					Northbound S Northbound	Northbound St. Northbound					Eas	Eastbound St. Eastbound	<u>ن</u> ـ		
U-Turn Peds App. Total		App. rotal	Right	jht Right on Red	t ad Thru	Left	U-Tum F	Peds	App. Total	Right ^F or	Right Th on Red Th	Thru Left	eft U-Turn	n Peds	s App. Total	Right	Right on Red	Thru	Left l	U-Turn	Peds A	App. Int. Total Total
1 5 241		241	39	9 10	83	79	0	9	211	32	7 24	248 31	1 2	2	320	24	0	64	6	0	0	97 869
0 2 291		291	33	3 5	72	68	0	2	178	27	36 2:	233 31	1 4	0	331	20	8	53	14	0	0	95 895
1 4 249		249	37	7 12	63	79	0	3	191	42	29 2(260 33	3 4	4	368	17	2	58	11	0	4	88 896
1 3 270		270	44	4 17	59	67	1	2	188	31	12 29	256 43	3 1	1	343	23	5	42	12	0	3	82 883
3 14 1051		1051	153	3 44	277	293	+	13	768	132	84 99	997 138	38 11	7	1362	84	15	217	46	0	7 3	362 3543
0.3			19.9	.9 5.7	36.1	38.2	0.1			9.7	6.2 73	73.2 10.1	.1 0.8			23.2	4.1	59.9	12.7	0.0		
0.1 - 29.7	- 29.7	29.7	4.3	3 1.2	7.8	8.3	0.0		21.7	3.7	2.4 28	28.1 3.9	9 0.3		38.4	2.4	0.4	6.1	1.3	0.0	- 1	10.2
0.750 - 0.903 0	0.903		ø.	0.869 0.647	7 0.834	0.927	0.250	-	0.910	0.786 0	0.583 0.9	0.959 0.802	02 0.688	- 8	0.925	0.875	0.469	0.848	0.821	0.000	- 0.	0.933 0.989
3 - 1043			152	52 44	273	290	1	I	760	132	82 98	984 138	38 11		1347	83	15	212	45	0		355 3505
100.0 - 99.2 99	99.2		- mil	99.3 100.0	98.6	99.0	100.0	-	99.0	100.0	97.6 98	98.7 100	100.0 100.0	- (98.9	98.8	100.0	97.7	97.8		- 9	98.1 98.9
0 - 7	- 2 -	7		0	4	3	0		8	0	1	9 0	0 0		10	0	0	5	1	0		6 31
0.0 - 0.7 0.7	_	_		0.0	1.4	1.0	0.0		1.0	0.0	1.2 0	0.0 0.0	0.0 0.0		0.7	0.0	0.0	2.3	2.2			1.7 0.9
0 - 1 0	1	1		0	0	0	0		0	0	1	4 0	0 (5	+	0	0	0	0	-	1
0.0 - 0.1 0	0.1		-:	0.0 0.0	0.0	0.0	0.0		0.0	0.0	1.2 0	0.4 0.0	0.0 0.0		0.4	1.2	0.0	0.0	0.0		-	0.3 0.2
0 - 0	0			0 0	0	0	0		0	0	0	0 0	0		0	0	0	0	0	0		0
0.0 - 0.0	0.0			0.0 0.0	0.0	0.0	0.0		0.0	0.0	0.0 0	0.0 0.0	0.0		0.0	0.0	0.0	0.0	0.0		-	0.0 0.0
- 0 -	- 0				•			1	-			-		0							0	-
- 0.0 -								7.7				•	'	0.0							0.0	-
- 14 -	- 14		'	'			.	12				'	•	7							7	_
- 100.0	- 100.0		· '					92.3						100.0				•			100.0	

	App. Int. Total Total	123 1134	133 1047	113 1068	108 1075	477 4324	100 1055	127 1036	78 989	121 1028	426 4108	83 988	77 960	77 926	66 933	303 3807	60 855	80 865	72 778	68 760	280 3258	1486 15497	,	- 9.6	1473 15429	99.1 99.6	12 63	0.8 0.4	1 4	0.1 0.0	0 1	0.0 0.0	
	Peds	co	2	0	0	5	1	4	1	2	8	2	0	0	2	4	0	0	1	3	4	21											2
l St. Dd	U-Tum	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-	٢	-	0.1	0.0	-	100.0	0	0.0	0	0.0	0	0.0	
Eastbound St. Eastbound		13	11	6	10	43	7	18	8	11	44	12	11	6	5	37	8	10	11	7	36	160	10.8	1.0	160	100.0	0	0.0	0	0.0	0	0.0	
	it Thru	80	87	79	71	317	70	85	51	78	284	42	53	43	44	182	37	45	39	36	157	940	63.3	6.1	928	0 98.7	12	1.3	0	0.0	0	0.0	
	nt Right on Red	6	10	2	5	26	7	3	5	11	26	6	3	1	2	15	3		7	8	27	1 94	6.3	0.6) 94	7 100.0	0	0.0	0	0.0	0	0.0	
	o. Right	4 21	2 25	5 23	1 22	2 91	5 16	2 21	9 14	9 21	6 72	9 20	0 10	0 24	2 15	1 69	8 12	0 16	1 15	6 16	55 59	4 291	19.6	8 1.9	0 290	6 99.7	0	t 0.0	-	0.3	0	0.0	'
	Peds App. Total	3 454	2 412	415	5 431	14 1712	416	412	409	409	16 1646	389	400	350	3 352	17 1491	308	2 290	3 291	5 276	12 1165	59 6014	'	38.8	- 5990	9.66	23	. 0.4	-	0.0	0	- 0.0	10
	U-Tum Pe	5	3	4 4	9 9	15 1	6 5	5 2	6 2	3 7	20 1	0 4	5 6	5 4	7 3	17 1	0 2	5	4	2	11 1	63 5	1.0	0.4	63	100.0	0	0.0	0	0.0	. 0	0.0	-
Northbound St. Northbound	Left U-	36	27	22	26	111	39	14	35	24	112	25	32	26	21	104	23	30	26	29	108	435 (7.2	2.8 (433 (99.5 10	2	0.5 (0	0.0	0	0.0	
North	Thru	346	316	329	342	1333	304	325	297	295	1221	292	302	269	264	1127	235	206	217	197	855	4536	75.4	29.3	4515	99.5	20	0.4	-	0.0	0	0.0	
	Right on Red	13	16	27	22	78	22	23	19	31	95	33	30	16	29	108	22	22	17	23	84	365	6.1	2.4	365	100.0	0	0.0	0	0.0	0	0.0	
	Right	57	50	33	35	175	45	45	52	56	198	39	31	34	31	135	28	27	27	25	107	615	10.2	4.0	614	99.8	-	0.2	0	0.0	0	0.0	
	App. Total	216	199	178	213	806	188	196	167	197	748	162	204	178	171	715	182	193	166	151	692	2961	,	19.1	2943	99.4	17	0.6	0	0.0	1	0.0	
	Peds	2	3	2	5	12	1	2	3	7	13	3	9	3	9	21	11	21	2	9	43	89	,			,							0
īd St	U-Tum	-	1	0	0	2	0	0	0	3	3	0	0	4	0	4	+	3	2	-	7	16	0.5	0.1	16	100.0	0	0.0	0	0.0	0	0.0	
Westbound St. Westbound	Left	78	69	71	86	304	79	73	62	85	299	62	83	79	78	302	82	83	73	70	308	1213	41.0	7.8	1212	99.9	-	0.1	0	0.0	0	0.0	
>	d Thru	80	82	62	69	293	48	60	47	58	213	49	56	40	42	187	44	39	38	30	151	844	28.5	5.4	830	98.3	13	1.5	0	0.0	-	0.1	
	t Right on Red	19	16	10	20	65	25	15	28	12	80	15	17	22	18	72	19	27	20	23	89	306	10.3	2.0	306	100.0	0	0.0	0	0.0	0	0.0	
	o. Right	38	3 31	2 35	3 38	9 142	1 36	1 48	5 30	1 39	8 153	4 36	9 48	1 33	4 33	8 150	5 36	2 41	9 33	5 27	137	6 582	19.7	5 3.8	3 579	7 99.5	з	2 0.5	0	0.0	0	0.0	
	ds App. Total	341	303	362	323	1329	351	301	335	301	1288	354	279	321	344	1298	305	302	249	265	1121	5036	'	32.5	5023	99.7	11	0.2	2	0.0	0	0.0	
	U-Turn Peds	0	0 1	0 1	0 5	0 8	0 0	2 1	1 2	0 0	3 3	0 2	1 0	0 2	0 1	1 5	0 3	1 3	0 3	0	1 10	5 26	0.1	0.0	5 -	100.0	- 0	- 0.0	0	0.0	- 0	- 0.0	0
Southbound St. Southbound	Left U-1	60	56 (63 (71 (250 (68 (56	81	39 (244	71 (51	65 (70 (257	68 (62	67 (61 (258	1009	20.0 0	6.5 0	1008	99.9 10	-	0.1 0	0	0.0	0 0	0.0	
South South	Thru L	274	246	293	247	1060 2	283	239	249	256	1027 2	277	215	240	262	994 2	235	230	176	197	838 2	3919 1	77.8 2	25.3 6	3907 1	99.7 9	10	0.3 (2	0.1 0	0	0.0	
	Right on Red	0	0	2	1	3	0	1	2	2	5 1	0	1	6	3	10 §	0	9	4	4	14 8	32 3	0.6 7	0.2 2	32 3	100.0 5	0	0.0	0	0.0	0	0.0	
	Right F	7	1	4	4	16	0	3	2	4	6	9	11	10	6	36	2	3	2	з	10	71	1.4	0.5	71	100.0 1	0	0.0	0	0.0	0	0.0	
	Start Time	4:00 PM	4:15 PM	4:30 PM	4:45 PM	Hourly Total	5:00 PM	5:15 PM	5:30 PM	5:45 PM	Hourly Total	6:00 PM	6:15 PM	6:30 PM	6:45 PM	Hourly Total	7:00 PM	7:15 PM	7:30 PM	7:45 PM	Hourly Total	Grand Total	Approach %	Total %	Lights	% Lights	Mediums	% Mediums	Articulated Trucks	% Articulated Trucks	Bicycles on Road	% Bicycles on Road	Bicycles on

- - 22 - - - 16.9 - - - - - 87 - - - 49 - - - - - 97.8 - - - 49 - -	· · · ·	7.7 24 92.3 -	Bicycles on Crosswalk edestrians
---	---------	---------------------	--

							-		Tur	ning.	Turning Movement Peak Hour Data (4:00 PM)	amen	it Pe	jak F	lour [Data	(4:00	Md (-							-
			South Sou	Southbound St. Southbound	ž					West Wei	Westbound St. Westbound						North Nort	Northbound St. Northbound						Eastbo	Eastbound St. Eastbound			
Right Right on Red	Right in Red	•	Thru	Left L	U-Turn	Peds	App. F Total	Right o	Right on Red	Thru	Left U-	U-Tum Pe	Peds /	App. Total	Right F	Right on Red	Thru	Left U.	U-Tum P	Peds A	App. R Total	Right ^F on	Right TI on Red TI	Thru L	Left U-1	U-Tum Pi	Peds App. Total	p. Int. tal Total
7 0	0		274	60	0	-	341	38	19	80	78	1	2	216	57	13	346	36	2	3 4	454	21	3 6	80	13	0	3 12	123 1134
1 0	0		246	56	0	-	303	31	16	82	69	-	3	199	50	16	316	27	3	2 2	412	25	10 8	87 1	11	0	2 13	133 1047
4 2	2		293	63	0	1	362	35	10	62	71	0	2	178	33	27	329	22	4	4 4	415	23	2 7	79	9 6	0	0 11	113 1068
4 1	-		247	71	0	5	323	38	20	69	86	0	5	213	35	22	342	26	6	2 2	431	22	5 7	71 1	10	0	0 10	108 1075
16 3	3		1060	250	0	8	1329	142	65	293	304	2	12	806	175	78 1	1333	111	15	14 1	1712	91	26 3	317 4	43	0	5 477	7 4324
1.2 0.2	0.2		79.8	18.8	0.0			17.6	8.1	36.4	37.7 (0.2			10.2	4.6	77.9	6.5	0.9		-	19.1	5.5 6(66.5 9	9.0 0	0.0		'
0.4 0.1	0.1		24.5	5.8	0.0		30.7	3.3	1.5	6.8	7.0 (0.0		18.6	4.0	1.8	30.8	2.6	0.3	- 3	39.6	2.1	0.6 7	7.3 1	1.0 0	0.0	- 11	11.0
0.571 0.375	0.37		0.904 0	0.880	0.000		0.918 0	0.934 (0.813 0	0.893 0	0.884 0.	.500	- 0	0.933 (0.768 0	0.722 0	0.963 0	0.771 0	0.625	- 0	0.943 0	0.910 0	0.650 0.9	0.911 0.8	0.827 0.0	0.000	- 0.897	97 0.953
16 3	3		1053	250	0		1322	141	65	288	304	2	1	800	175	78 1	1325	110	15	-	1703	91	26 3	314 2	43 (0	- 474	4 4299
100.0 100.0	100		99.3 1	100.0		-	99.5	99.3	100.0	98.3 1	100.0 10	0.00	-	99.3	100.0 1	100.0	99.4 6	99.1 1	100.0	- 6	99.5 1	100.0 1	100.0 99	99.1 10	100.0	-	- 99.4	.4 99.4
0 0			5	0	0		5	1	0	4	0	0	I	5	0	0	8	1	0	-	6	0	0	3	0	0	- 3	22
0.0 0.0	0	0.0	0.5	0.0			0.4	0.7	0.0	1.4	0.0	0.0		0.6	0.0	0.0	0.6	0.9	0.0	-	0.5	0.0	0.0 0.0	6	0.0		- 0.	0.6 0.5
0		0	2	0	0	I	2	0	0	0	0	0		0	0	0	0	0	0		0	0	0	0	0	0	- 0	2
0.0 0		0.0	0.2	0.0		I	0.2	0.0	0.0	0.0	0.0	0.0	1	0.0	0.0	0.0	0.0	0.0	0.0	-	0.0	0.0	0.0 0	0.0 0	0.0	-	- 0.0	0 0.0
0		0	0	0	0		0	0	0	1	0	0	-	+	0	0	0	0	0		0	0	0	0	0	0	- 0	
0.0 0	0	0.0	0.0	0.0		-	0.0	0.0	0.0	0.3	0.0	0.0	-	0.1	0.0	0.0	0.0	0.0	0.0	-	0.0	0.0	0.0 0	0.0 0	0.0	-	- 0.0	0.0
-	· 1			•		1		-	-	-			0		•					3	-	-	-	-	-	-	1	
	'					12.5						-	0.0	,						21.4						- 2		
						7							12			,				11							4	
						87.5						- 1(100.0						- 7	78.6						- 8	80.0	

		Int. Total	118	162	201	298	779	305	307	245	214	1071	223	221	254	279	977		328	357	376	420	1481	409	407	395	459	1670	419	440	384	424	1667		449	441	890
		App. Total	32	42	47	72	193	101	77	75	71	324	83	73	82	90	328		107	120	116	125	468	121	140	119	131	511	141	131	113	137	522		135	146	281
		Peds	0	0	0	0	0	-	0	0	0	1	2	2	0	1	2		0	-	1	0	2	-	-	0	-	3	2	0	0	0	2		0	0	0
		U-Turn	0	0	0	0	0	0	0	1	0	1	0	0	0	0	0		0	0	0	1	1	0	0	0	-	1	0	0	1	1	2		1	-	2
Eastbound St	Eastbound	Left L	5	3	5	7	20	26	31	16	16	89	22	15	14	17	68		20	21	18	20	79	16	21	29	24	90	23	34	15	20	92		11	22	33
East	Ш	Thru	25	38	38	58	159	74	40	50	49	213	53	54	60	58	225		72	85	87	78	322	83	92	71	78	324	94	79	73	89	335		105	102	207
		Right on Red	1	0	1	1	3	-	2	1	0	4	0	2	0	4	9		2	4	2	5	13	-	-	0	2	4	3	5	3	3	14		4	12	16
		Right _c	1	1	3	6	11	0	4	7	9	17	8	2	8	11	29		13	10	9	21	53	21	26	19	26	92	21	13	21	24	79		14	6	23
		App. Total	10	6	13	17	49	18	30	18	16	82	18	27	30	28	103		32	43	38	43	156	56	58	58	69	241	55	56	54	86	251		56	70	126
		Peds	2	0	0	0	2	1	0	1	2	4	2	2	1	0	2		1	3	1	2	7	-	3	3	0	7	1	1	4	0	9		1	0	~
jt.	_	U-Turn	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	-	+	0	0	0	٢	-		0	0	0
Northbound St.	Northbound	Left	2	3	1	2	8	٢	5	4	9	16	6	2	5	5	18		13	13	17	20	63	22	25	23	29	66	23	24	24	31	102		24	28	52
Nor	ž	Thru	0	0	٢	3	4	4	10	4	5	23	3	15	6	6	36		7	11	6	11	35	14	15	16	22	67	14	13	12	29	68		6	24	33
		Right on Red	7	4	6	7	27	12	10	6	3	34	6	4	14	5	29		6	7	3	5	21	11	8	8	9	33	8	6	10	4	31		7	7	14
		Right	1	2	2	5	10	٢	5	1	2	6	3	9	2	6	20		6	12	12	7	37	6	10	11	11	41	10	10	8	21	49		16	11	27
		App. Total	67	96	133	190	486	167	178	128	109	582	101	105	122	134	462		154	149	181	210	694	175	158	169	196	698	171	199	162	144	676		204	182	386
		Peds	1	1	0	0	2	0	0	0	0	0	-	0	0	0	1		1	0	2	2	5	2	~	4	<u></u>	8	2	0	1	0	3		0	0	0
j.		U-Turn	0	0	0	0	0	-	0	2	0	3	4	3	1	3	11		2	٢	2	2	7	-	-	٢	-	4	٢	5	4	3	13		2	2	4
Westbound St.	Westbound	Left	15	15	20	25	75	12	41	19	11	83	14	14	24	18	70		20	26	32	28	106	34	34	25	31	124	28	37	20	19	104		24	25	49
We	5	Thru	51	80	109	158	398	138	125	93	85	441	74	83	92	104	353		120	106	133	159	518	122	113	131	140	506	125	142	126	113	506		163	131	294
		Right on Red	0	1	0	2	3	2	1	2	٢	6	+	٢	1	+	4		1	4	2	2	6	÷	0	0	0	1	4	٢	0	0	5		٢	4	5
		Right	1	0	4	5	10	14	11	12	12	49	8	4	4	8	24		11	12	12	19	54	17	10	12	24	63	13	14	12	6	48		14	20	8
		App. Total	6	15	8	19	51	19	22	24	18	83	21	16	20	27	84		35	45	41	42	163	57	51	49	63	220	52	54	55	57	218		54	43	97
		Peds	-	0	0	0	1	-	0	0	0	1	-	-	1	3	9		2	-	2	0	5	-	0	2	0	3	2	3	1	0	9		3	0	ŝ
St.	q	U-Turn	0	0	0	1	1	0	0	0	٢	1	1	0	0	1	2		0	-	0	0	1	0	0	0	0	0	0	-	1	0	2		0	-	-
Southbound St	Southbound	Left	5	5	1	9	17	9	9	12	7	31	8	5	8	7	28		11	19	17	19	66	18	21	20	20	79	23	16	25	28	92		29	22	51
Sou	Sc	Thru	٢	1	3	5	10	7	4	4	2	17	3	7	4	6	23		10	11	10	8	39	14	12	20	16	62	12	14	10	11	47		14	7	21
		Right on Red	2	9	2	9	16	3	9	5	7	21	8	3	4	5	20		13	10	12	12	47	з	4	2	11	20	12	17	16	17	62		10	1	21
		Right	1	3	2	1	7	3	9	3	٢	13	+	+	4	5	11	-	1	4	2	3	10	22	14	7	16	59	5	9	3	٢	15		٢	2	з
		Start Time	7:00 AM	7:15 AM	7:30 AM	7:45 AM	Hourly Total	8:00 AM	8:15 AM	8:30 AM	8:45 AM	Hourly Total	9:00 AM	9:15 AM	9:30 AM	9:45 AM	Hourly Total	*** BREAK ***	11:00 AM	11:15 AM	11:30 AM	11:45 AM	Hourly Total	12:00 PM	12:15 PM	12:30 PM	12:45 PM	Hourly Total	1:00 PM	1:15 PM	1:30 PM	1:45 PM	Hourly Total	*** BREAK ***	3:30 PM	3:45 PM	Hourly Total

2	9	e				181	-			19	0	0	57	11	3	98	23	4	0	+
ļ		2	116	22 22	2	156	56 25	5 8	18	19	0	4	70	13	7	105	29	-	0	155 421
		5	140	38 4	1	201	14 14	4 21	1 12	28	1	4	76	19	2	113	23	1	0	158 482
		7	129	22 2	0	174	74 11	1 12	2 18	24	-	1	99	17	3	125	29	0	1	174 481
		17	522	110 11	1 4	712	12 68	8 50	59	90	2	6	269	60	15	441	104	6	1	626 1815
		7	107	32 6	0	156	56 20	0 6	11	16	0	0	53	27	1	134	29	0	5	191 453
		5	123	27 3	1	165	35 14	4 14	1 13	21	0	2	62	25	-	120	20	+	0	167 451
		-	132	25 1	0	171	71 16	6 14	11	22	0	~	63	1	9	127	21	e	-	168 456
		3	143	25 2	0	185	35 7	14	1 18	21	0	~	60	16	з	87	24	2	-	132 449
16	-	9	505	109 1	12 1	677	77 57	7 48	3 53	80	0	4	238	79	11	468	94	9	7	658 1809
~		3	120	34	0	166	36 8	14	8	22	0	2	52	14	2	105	19	-	c	141 418
0	0		94	20 2	2	122	22 20	0 6	18	25	0	0	69	21	7	69	18	0	1	115 367
69	69		4257 8	884 6	68 26	5661	61 346	6 307	7 404	575	4	47	1636	478	95	2868	706	20	25 4	4167 12944
1. 2	1.2		75.2 1	15.6 1.	1.2 -	'	21.1	.1 18.8	8 24.7	35.1	0.2	'	'	11.5	2.3	68.8	16.9 (0.5		
0.5	0.5		32.9 (6.8 0.	0.5 -	43.7	.7 2.7	7 2.4	4 3.1	4.4	0.0		12.6	3.7	0.7	22.2	5.5 (0.2		32.2
69	69		4226 8	877 68	- 8	5620	20 342	12 303	3 398	541	4		1588	456	87	2850	701	20	-	4114 12787
0.00	100.0		99.3 9	99.2 100	- 0.00	99.3	.3 98.8	.8 98.7	.7 98.5	94.1	100.0	'	97.1	95.4	91.6	99.4	99.3 10	100.0		98.7 98.8
0	0		23	6 (- 0	31	1 3	3	9	32	0		44	19	7	12	4	0		42 128
0.0	0.0		0.5 (0.7 0.	- 0.0	0.5	.5 0.9	9 1.0	0 1.5	5.6	0.0		2.7	4.0	7.4	0.4	0.6 (0.0		1.0 1.0
0	0			-	- 0	3	-	-	0	7	0		4	с	.	4	-	0		6
0.0	0.0		0.0	0.1 0.	- 0.0	0.1	.1 0.3	3 0.3	3 0.0	0.3	0.0		0.2	0.6	1.1	0.1	0.1 (0.0		0.2 0.1
0	0		7	0	- 0	7	0	0	0	0	0		0	0	0	2	0	0		2 10
0.0	0.0		0.2 (0.0 0.0	- 0.0	0.1	.1 0.0	0.0 0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.1	0.0	0.0		0.0 0.1
	'				5	•	•	•	•	•	•	5	•						-	-
	'				19.2	2 -	·	•	•	•	•	10.6							4.0	-
· '					- 21	'		'	'	•		42	'						24	
1					0.00														0.00	

									μ	Irning	J Mov	/eme	int Pe	eak F	Turning Movement Peak Hour Data (7:45 AM)	Data	(7:45	AM	~									
			° S S	Southbound St. Southbound	d St.					Υ. Υ	Westbound St. Westbound	ž					Northi Nort	Northbound St. Northbound						Eastbound St. Eastbound	ind St. bund			
Start Time	Right	Right on Red	Thru	Left	U-Turn	Peds	App. Total	Right	Right on Red	Thru	Left	U-Tum	Peds	App. Total	Right F	Right on Red	Thru	Left U-	U-Turn Pe	Peds App. Total	p. Right	tht Right on Red	ght Thru Red	u Left	ft U-Tum	rn Peds	s App. Total	Int. Total
7:45 AM	-	9	5	9	£	0	19	5	2	158	25	0	0	190	5	7	3	2	0	0 1	17 6	1	58	7	0	0	72	298
8:00 AM	ю	3	7	9	0	4	19	14	2	138	12	-	0	167	-	12	4	-	0	1,	18 0	-	74	. 26	0	1	101	305
8:15 AM	9	9	4	9	0	0	22	11	٢	125	41	0	0	178	5	10	10	5	0 0	0 30	30 4	1 2	2 40	31	0	0	77	307
8:30 AM	3	5	4	12	0	0	24	12	2	93	19	2	0	128	1	6	4	4	0	1.	18 7	1	50	16	1	0	75	245
Total	13	20	20	30	٢	1	84	42	7	514	97	3	0	663	12	38	21	12	0	2 8:	83 17	7 5	5 222	2 80	1	1	325	1155
Approach %	15.5	23.8	23.8	35.7	1.2			6.3	1.1	77.5	14.6	0.5			14.5	45.8 2	25.3 1	14.5	0.0		- 5.2		1.5 68.3	3 24.6	6 0.3		•	
Total %	1.1	1.7	1.7	2.6	0.1		7.3	3.6	0.6	44.5	8.4	0.3		57.4	1.0	3.3	1.8	1.0	0.0	7.	7.2 1.5	5 0.4	4 19.2	2 6.9	9 0.1	-	28.1	
PHF	0.542	0.833	0.714	0.625	0.250	ı	0.875	0.750	0.875	0.813	0.591	0.375		0.872	0.600 C	0.792 0	0.525 0	0.600 0	0.000	- 0.6	.692 0.607	07 0.625	25 0.750	0.645	15 0.250	- 0	0.804	0.941
Lights	12	20	20	29	£	ı	82	42	7	510	67	3	ı	629	10	37	21	6	- 0	- 77	7 14	4 5	5 220	08 C	1 1	1	320	1138
% Lights	92.3	100.0	100.0	96.7	100.0		97.6	100.0	100.0	99.2	100.0	100.0		99.4	83.3	97.4 1	100.0 7	75.0		92	92.8 82.4		100.0 99.1	1 100.0	.0 100.0	- 0	98.5	98.5
Mediums	-	0	0	0	0		٢	0	0	2	0	0		2	+	+	0	2	. 0	- 4	1	0	1	0	0	-	2	6
% Mediums	7.7	0.0	0.0	0.0	0.0		1.2	0.0	0.0	0.4	0.0	0.0		0.3	8.3	2.6	0.0	16.7		4.	4.8 5.9	9 0.0	0 0.5	0.0	0.0	1	0.6	0.8
Articulated Trucks	0	0	0	-	0		+	0	0	0	0	0		0	+	0	0	+	0	- 2	2 2	0	1	0	0		3	9
% Articulated Trucks	0.0	0.0	0.0	3.3	0.0		1.2	0.0	0.0	0.0	0.0	0.0		0.0	8.3	0.0	0.0	8.3		- 2.	2.4 11.8	.8 0.0	0 0.5	0.0	0.0		0.9	0.5
Bicycles on Road	0	0	0	0	0		0	0	0	2	0	0		2	0	0	0	0	. 0	- 0	0 0	0 (0 (0	0		0	2
% Bicycles on Road	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.4	0.0	0.0		0.3	0.0	0.0	0.0	0.0		- 0	0.0 0.0	0.0 0.0	0.0 0.0	0.0	0.0		0.0	0.2
Bicycles on Crosswalk	•		•	•		~							0						•	- 0	-	•	•	•	•	0	•	•
% Bicycles on Crosswalk						100.0													- 0	- 0.0	•			'		0.0		
Pedestrians	'	,		,		0	'	'		,	,	,	0		,	,	,	,	-	2	'	'	'	'	'	-	'	'
% Pedestrians	'	'	'	'		0.0	'	'		' '									- 10	100.0	•	'	•	•	•	100.0	- 0	•

										,											_							
			Sour	Southbound St. Southbound	ŝt.					Wes We	Westbound St. Westbound						Northi Norti	Northbound St. Northbound						Eastbound St. Eastbound	astbound St. Eastbound			
Right		Right on Red	Thru	Left	U-Turn	Peds	App. Total	Right o	Right on Red	Thru	Left U	U-Tum F	Peds /	App. Total	Right R	Right T on Red	Thru l	Left U-	U-Tum Pe	Peds A	App. Total Riç	Right Ri	Right Thru on Red		Left U-Turn	um Peds	ls App. Total	Int. Total
-		13	10	11	0	2	35	11	-	120	20	2	1	154	9	9	7	13	0	-	32 1	13	2 72	2 20	0 0	0	107	328
I	4	10	1	19	-	-	45	12	4	106	26	-	0	149	12	7	11	13	0	0	43 1	10	4 85	21	1	-	120	357
	2	12	10	17	0	2	41	12	2	133	32	2	2	181	12	e	9	17	0	-	38	6	2 87		18 0	1	116	376
	3	12	8	19	0	0	42	19	2	159	28	2	2	210	7	5	11	20	0	2 4	43 2	21	5 78		20 1	0	125	420
	10	47	39	66	1	5	163	54	6	518	106	7	5	694	37	21	35	63	0	7 1	156 5	53 1	13 322		79 1	2	468	1481
	6.1	28.8	23.9	40.5	0.6	,	,	7.8	1.3	74.6	15.3	1.0	,	,	23.7 1	13.5 2	22.4 4	40.4 (0.0	,	, -	11.3 2	2.8 68.8		16.9 0.2	-	'	'
	0.7	3.2	2.6	4.5	0.1		11.0	3.6	0.6	35.0	7.2	0.5		46.9	2.5	1.4	2.4	4.3 (0.0	-	10.5 3	3.6 0	0.9 21.7		5.3 0.1		31.6	1
	0.625 0	0.904	0.886	0.868	0.250	I	0.906 0	0.711	0.563	0.814	0.828 0	0.875	-	0.826 (0.771 0.	0.750 0	0.795 0.	0.788 0.	0.000	- 0.	0.907 0.6	0.631 0.6	0.650 0.925	25 0.940	40 0.250	- 09	0.936	0.882
	6	47	39	99	٢	ı	162	53	6	515	103	7	ı	687	37	20	34	59	0		150 5	50 1	12 320		78 1		461	1460
	90.0	100.0	100.0	100.0	100.0		99.4	98.1	100.0	99.4	97.2 1	100.0	-	. 0.66	100.0 5	95.2 6	97.1 9	93.7		- 6	96.2 94	94.3 92	92.3 99.4	4 98.7	.7 100.0	- 0:	98.5	98.6
	1	0	0	0	0	ı	1	0	0	2	3	0	1	5	0	0	1	4	0		5	3	1 2	0	0 0	-	9	17
	10.0	0.0	0.0	0.0	0.0		0.6	0.0	0.0	0.4	2.8	0.0		0.7	0.0	0.0	2.9	6.3			3.2 5	5.7 7	7.7 0.6		0.0 0.0	- (1.3	1.1
	0	0	0	0	0		0	-	0	0	0	0	ı	+	0	-	0	0	0	ı	+	0	0 0	-	0	1	~	3
	0.0	0.0	0.0	0.0	0.0		0.0	1.9	0.0	0.0	0.0	0.0	I	0.1	0.0	4.8	0.0	0.0		- 0	0.6 0	0.0	0.0 0.0		1.3 0.0	- (0.2	0.2
	0	0	0	0	0		0	0	0	۲	0	0		1	0	0	0	0	0		0 0	0 0	0 0	0	0 0		0	1
	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.2	0.0	0.0		0.1	0.0	0.0	0.0	0.0		- 0	0.0	0.0	0.0 0.0		0.0 0.0	- (0.0	0.1
				•		0							0							-					•	0	•	•
						0.0							0.0						-	14.3					•	0.0	-	'
. 1						5							5							9						2	'	'

							_		Turni	ng ∿	Turning Movement Peak Hour Data (12:30 PM)	Jent	Peak	(Hou	ır Dat	a (12	:30 P	(M		_							_
Southbound St. Southbound	Southbound St. Southbound	Southbound St. Southbound	nbound St. Ithbound							Westbound St. Westbound	/estbound St. Westbound					Z	Northbound St. Northbound	l St. Id					East	Eastbound St. Eastbound			
Right Right Thru Left U-Turn Peds App. Right On Red Th	Thru Left U-Turn Peds App. Right on Red	Left U-Turn Peds App. Right Right on Red	U-Turn Peds App. Right Right on Red	Peds App. Right Right Total Right on Red	App. Right Right on Red	Right Right on Red	Right on Red			Thru Left	eft U-Turn	rn Peds	ls App. Total	o. Right	ht Right on Red	d Thru	Left	U-Tum	Peds	App. Total	Right 6	Right on Red	Thru	Left U-	U-Turn P	Peds App. Total	p. Int. tal Total
7 2 20 20 0 2 49 12 0 131	20 20 0 2 49 12 0	20 0 2 49 12 0	0 2 49 12 0	2 49 12 0	49 12 0	12 0	0				25 1	4	169	9 11	8	16	23	0	с	58	19	0	71	29	0	0	119 395
16 11 16 20 0 0 63 24 0 1	16 20 0 0 63 24 0	20 0 0 63 24 0	0 0 63 24 0	0 63 24 0	63 24 0	24 0	0		_ VI	140 31	-	~	196	6 11	9	22	29		0	69	26	2	78	24	-	1 131	1 459
5 12 12 23 0 2 52 13 4 1	12 23 0 2 52 13 4	23 0 2 52 13 4	0 2 52 13 4	2 52 13 4	52 13 4	13 4	4		N	125 24	28 1	2	171	1 10	8	14	23	0	-	55	21	3	94	23	0	2 141	1 419
6 17 14 16 1 3 54 14 1 142	14 16 1 3 54 14 1	16 1 3 54 14 1	1 3 54 14 1	54 14 1	54 14 1	14 1	-	1		2 37	7 5	0	199	9 10	6	13	24	0	-	56	13	5	79	34	0	0 131	1 440
34 42 62 79 1 7 218 63 5 538	62 79 1 7 218 63 5	79 1 7 218 63 5	1 7 218 63 5	218 63 5	218 63 5	63 5	5		ا متن	8 121	21 8	7	735	5 42	31	65	66	-	5	238	79	10	322	110	-	3 52	522 1713
15.6 19.3 28.4 36.2 0.5 8.6 0.7 73.2	28.4 36.2 0.5 8.6 0.7	36.2 0.5 8.6 0.7	0.5 8.6 0.7	8.6 0.7	- 8.6 0.7	8.6 0.7	0.7		2		16.5 1.1		•	17.6	6 13.0	27.3	41.6	0.4			15.1	1.9	61.7	21.1 0	0.2		•
2.0 2.5 3.6 4.6 0.1 - 12.7 3.7 0.3 31.4	3.6 4.6 0.1 - 12.7 3.7 0.3	4.6 0.1 - 12.7 3.7 0.3	0.1 - 12.7 3.7 0.3	- 12.7 3.7 0.3	3.7 0.3	3.7 0.3	0.3		I	1 7.1	.1 0.5		42.9	9 2.5	5 1.8	3.8	5.8	0.1	,	13.9	4.6	0.6	18.8	6.4 (0.1	- 30	30.5
0.531 0.618 0.775 0.859 0.250 - 0.865 0.656 0.313 0.947	0.775 0.859 0.250 - 0.865 0.313	0.859 0.250 - 0.865 0.656 0.313	0.250 - 0.865 0.656 0.313	- 0.865 0.656 0.313	0.656 0.313	0.656 0.313	0.313				0.818 0.400	- 0	0.923	23 0.955	55 0.861	0.739	0.853	0.250		0.862	0.760	0.500 0	0.856 (0.809 0.	0.250	- 0.5	0.926 0.933
33 41 62 79 1 - 216 63 5 535	62 79 1 - 216 63 5	79 1 - 216 63 5	1 - 216 63 5	63 5	63 5	63 5	5		ы	÷.	119 8	'	730	0 42	31	65	93	-		232	75	10	320	110	+	- 5	516 1694
97.1 97.6 100.0 100.0 100.0 - 99.1 100.0 100.0 99.4	100.0 100.0 100.0 - 99.1 100.0 100.0	100.0 100.0 - 99.1 100.0 100.0	100.0 - 99.1 100.0 100.0	- 99.1 100.0 100.0	100.0 100.0	100.0 100.0	100.0		4		98.3 100.0	-	99.3	3 100.0	.0 100.0	100.0	93.9	100.0	,	97.5	94.9	100.0	99.4	100.0 10	100.0	- 96	98.9 98.9
1 1 0 0 0 - 2 0 0 3	0 0 - 2 0 0	0 0 - 2 0 0	0 - 2 0 0	- 2 0 0	0 0	0 0	0		_	. 1	2 0	'	5	0	0	0	9	0		9	4	0	-	0	0	- 5	18
2.9 2.4 0.0 0.0 0.0 - 0.9 0.0 0.0 0.6	0.0 0.0 - 0.0 0.0 0.0	0.0 0.0 - 0.9 0.0 0.0	0.0 - 0.9 0.0 0.0	- 0.9 0.0 0.0	0.9 0.0 0.0	0.0 0.0	0.0		9		1.7 0.0	'	0.7	0.0	0.0	0.0	6.1	0.0		2.5	5.1	0.0	0.3	0.0	0.0	-	.0 1.1
0 0 0 - 0 0 0 0	0 0 - 0 0 0	0 0 - 0 0	0 0 0 - 0	0 0 -	0 0 0	0 0	0			5	0 0		0	0	0	0	0	0		0	0	0	-	0	0	` ,	
0.0 0.0 0.0 0.0 0.0 - 0.0 0.0 0.0	0.0 0.0 0.0 - 0.0 0.0	0.0 0.0 - 0.0 0.0	0.0 - 0.0 0.0	- 0.0 0.0	0.0 0.0	0.0 0.0	0.0				0.0 0.0	- (0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.3	0.0	0.0	- 0	0.2 0.1
0 0 0 0 - 0 0 0	0 0 - 0 0 0	0 0 - 0 0	0 0 0 - 0	0 0 -	0 0 0	0 0	0			5	0 0		0	0	0	0	0	0		0	0	0	0	0	0	- 0	0
0.0 0.0 0.0 0.0 0.0 - 0.0 0.0 0.0	0.0 0.0 0.0 - 0.0 0.0	0.0 0.0 - 0.0 0.0	0.0 - 0.0 0.0	- 0.0 0.0	0.0 0.0	0.0 0.0	0.0		0		0.0 0.0	- (0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	- 0	0.0 0.0
	1		- 1	1		-	-		.		•	-		'	•	•	•	•	0			-	-		-	-	-
	- 14.3 -	- 14.3 -	- 14.3						!		•	14.3	3	'					0.0						- 33	33.3	
- 9						•	•		1		'	9	'	'	'	•			5	,			,			2	
- 85.7		- 85.7 -	- 85.7	- 85.7	85.7	•			1.1		, ,	85.7		'	'	'	•		100.0						- 6	66.7	

									Tu	Irning	Turning Movement Peak Hour Data (4:30 PM)	eme	nt Pe	jak F	lour E)ata ((4:30	(Md										
			SoL	Southbound St. Southbound	st. 1					We	Westbound St. Westbound						Northbu North	Northbound St. Northbound					-	Eastbound St. Eastbound	d St. nd			
Start Time	Right	Right on Red	Thru	Left	U-Turn	Peds	App. Total	Right	Right on Red	Thru	Left U	U-Tum	Peds	App. Total	Right A	Right T on Red	Thru Le	Left U-Turn	urn Peds	ls App. Total	Right	t Right on Red	t d Thru	Left	U-Tum	Peds	App. Total	Int. Total
4:30 PM	ю	10	12	22	0	~	47	14	5	140	38	4	~	201	14	21	12 2	28 1	4	76	19	2	113	23	-	0	158	482
4:45 PM	5	14	15	26	-	0	67	4	7	129	22	2	0	174	11	12	18 2	24 1	-	99	17	n	125	29	0	-	174	481
5:00 PM	9	6	17	20	-	-	53	4	7	107	32	6	0	156	20	. 9	11 1	16 0	0	53	27	1	134	29	0	2	191	453
5:15 PM	7	11	15	24	0	2	57	7	5	123	27	3	-	165	14	14	13 2	21 0	2	62	25	-	120	20	-	0	167	451
Total	27	44	59	92	2	4	224	39	24	499	119	15	2	696	59	53 (54 8	89 2	7	257	88	7	492	101	2	9	690	1867
Approach %	12.1	19.6	26.3	41.1	0.9			5.6	3.4	71.7	17.1	2.2			23.0 2	20.6 2	21.0 34.	6 0.	- 8		12.8	1.0	71.3	14.6	0.3	1		
Total %	1.4	2.4	3.2	4.9	0.1		12.0	2.1	1.3	26.7	6.4	0.8		37.3	3.2	2.8 2	2.9 4	4.8 0.1	-	13.8	4.7	0.4	26.4	5.4	0.1		37.0	
PHF	0.614	0.786	0.868	0.885	0.500		0.836	0.696	0.857	0.891	0.783 0	0.625)	0.866	0.738 0.	0.631 0.	0.750 0.7	0.795 0.500	- 00	0.845	5 0.815	5 0.583	3 0.918	3 0.871	0.500		0.903	0.968
Lights	26	44	58	92	2		222	39	24	497	119	15		694	58	53 (53 8	86 2	-	252	85	7	490	101	2	,	685	1853
% Lights	96.3	100.0	98.3	100.0	100.0		99.1	100.0	100.0	99.66	100.0	100.0		99.7	98.3 1	100.0 9	98.1 96.	3.6 100.0	- 0.(98.1	96.6	100.0	9.66 (100.0	100.0		99.3	99.3
Mediums	0	0	-	0	0		٢	0	0	2	0	0		2	1	0	1	3 0	- (5	3	0	+	0	0		4	12
% Mediums	0.0	0.0	1.7	0.0	0.0		0.4	0.0	0.0	0.4	0.0	0.0		0.3	1.7	0.0	1.9 3	3.4 0.0	- 0	1.9	3.4	0.0	0.2	0.0	0.0		0.6	0.6
Articulated Trucks	-	0	0	0	0		-	0	0	0	0	0		0	0	0	0	0 0	-	0	0	0	-	0	0		-	2
% Articulated Trucks	3.7	0.0	0.0	0.0	0.0		0.4	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0 0.0	- 0	0.0	0.0	0.0	0.2	0.0	0.0	1	0.1	0.1
Bicycles on Road	0	0	0	0	0		0	0	0	0	0	0		0	0	0	0 0	0 0	- (0	0	0	0	0	0		0	0
% Bicycles on Road	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0 0.0	- 0	0.0	0.0	0.0	0.0	0.0	0.0	1	0.0	0.0
Bicycles on Crosswalk		•				0							0					•	0	•	•	•		•	•	0	•	•
% Bicycles on Crosswalk						0.0							0.0					•	0.0	- (•	•		•	•	0.0		•
Pedestrians						4							2						7		'					9		
% Pedestrians						100.0					•	1	100.0	,					100.0	- 0	1	1		•		100.0	•	

		Int. Total	502	470	486	492	1950	475	473	480	429	1857	426	439	441	426	1732	416	381	390	316	1503	7042			7008	99.5	31	0.4	7	0.0	+	0.0	
		App. Total	169	165	176	154	664	179	166	183	164	692	156	133	138	143	570	130	122	132	117	501	2427	,	34.5	2413	99.4	12	0.5		0.0	+	0.0	-
		Peds	3	0	0	1	4	5	1	2	3	11	ę	0	1	0	4	0	0	1	0	-	20	,			,				1			0
t,		U-Turn	0	0	0	0	0	4	0	1	3	8	-	2	2	0	5	0	0	0	1	1	14	9.0	0.2	14	100.0	0	0.0	0	0.0	0	0.0	
Eastbound St	Eastbound	Left	23	24	23	17	87	21	24	25	30	100	28	19	17	29	93	15	17	17	17	66	346	14.3	4.9	346	100.0	0	0.0	0	0.0	0	0.0	-
Ea	ш	Thru	118	115	125	103	461	128	123	132	107	490	101	85	91	82	359	81	76	85	78	320	1630	67.2	23.1	1626	99.8	3	0.2	0	0.0	۲	0.1	
		Right on Red	7	0	3	0	10	4	5	8	7	24	ю	з	3	4	13	8	7	4	4	23	70	2.9	1.0	67	95.7	2	2.9	-	1.4	0	0.0	
		Right	21	26	25	34	106	22	14	17	17	70	23	24	25	28	100	26	22	26	17	91	367	15.1	5.2	360	98.1	7	1.9	0	0.0	0	0.0	
		App. Total	79	67	63	74	283	57	87	60	48	252	60	82	86	75	303	64	75	79	66	284	1122		15.9	1105	98.5	16	1.4	-	0.1	0	0.0	•
		Peds	1	2	0	3	9	3	0	2	2	7	0	1	5	1	7	0	0	0	0	0	20	,			,							3
St.	pc	U-Tum	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0	0.0	0		0		0	•	0		•
Northbound St.	Northbound	Left	28	29	23	35	115	21	34	18	24	97	31	40	38	23	132	26	36	31	24	117	461	41.1	6.5	447	97.0	13	2.8	-	0.2	0	0.0	•
ž		Thru	22	12	17	17	68	14	15	19	10	58	10	12	20	21	63	16	16	17	12	61	250	22.3	3.6	248	99.2	2	0.8	0	0.0	0	0.0	•
		Right on Red	11	8	13	13	45	12	13	14	7	46	6	6	5	8	31	3	11	11	13	38	160	14.3	2.3	159	99.4	1	0.6	0	0.0	0	0.0	•
		Right	18	18	10	6	55	10	25	6	7	51	10	21	23	23	77	19	12	20	17	68	251	22.4	3.6	251	100.0	0	0.0	0	0.0	0	0.0	'
		App. Total	185	175	181	183	724	168	144	185	160	657	148	147	139	149	583	156	116	120	104	496	2460	'	34.9	2458	99.9	2	0.1	0	0.0	0	0.0	•
		n Peds	3	4	2	2	11	1	1	0	0	2	ĉ	~	0	2	9	-	7	0	-	6	28	'			-				1			0
nd St.	pun	U-Turn	3	9	5	4		2	1	3	4	10	7	+	4	4		4	1	3	2	10	54			54	É	0	0.0	0	0.0	0	0.0	•
Westbound St.	Westbound	u Left	34	25	37	30	126	29	27	28	35	119	27	29	29	17	102	18	14	14	16	62	5 409	2 16.6	5.8	4 408	99.8	1	0.2	0	0.0	0	0.0	•
		tt Thru	132	128	124	127	511	128	104	142	104	478	103	103	98	110	414	117	92	84	79	372	1775	72.2	25.2	1774	0 99.9	1	0.1	0	0.0	0	0.0	
		ht Right on Red	3	3	1	9	13	3	1	4	2	10	3	7	1	1	12	1	5	5	1	12	5 47	1.9	5 0.7	5 47	.0 100.0	0	0.0	0	0.0	0	0.0	•
		p. Right	9 13	3 13	3 14	1 16	99 6.	1 6	3 11	2 8	7 15	6 40	8	7 7	3 7	9 17	6 39	3 16	3 4	9 14	9 6	2 40	33 175	7.1	.7 2.5	32 175	.9 100.0	0	1 0.0	0	0.0	0	0.0	-
		ds App. Total	69	63	99	81	279	71	76	52	57	256	62	77	78	59	276	66	68	59	29	0 222	4 1033	'	14.7	1032	99.9	1	0.1	0	0.0	0	0.0	-
		U-Turn Peds	1	2 3	4	1	6	3	3	1	2	6	-	1	4	0	9	0	9	2	2	6 10	16 34	1.5 -	0.2 -	- 16	100.0	-	- 0.0	-	0.0	-	0.0	0
Southbound St.	Southbound	Left U-T	24 0	28 28	26 2	37 0	115 4	28 0	30 0	25 1	25 1	108 2	22	30 1	28 2	23 0	103 4	26 0	27 1	25 3	11 2	89 6	415 1	40.2 1.	5.9 0.	415 1	100.0 100	0 0	0.0 0.0	0 0	0.0	0 0	0.0	
Southbo	South	Thru Le	19 2	13 2	19 2	21 3	72 1	21 2	22 3	12 2	15 2	70 1(11 2	15 3	24 2	20 2	70 1(15 2	16 2	16 2	6 1	53 8	265 4	25.7 40	3.8 5	264 4	99.6 10	1	0.4 0	0	0.0	0	0.0	-
		Right TI on Red	14 1	18 1	15 1	18 2	65 7	14 2	12 2	8	11 1	45 7	14 1	23 1	16 2	11 2	64 7	19 1	13 1	6 1	7	45 5	219 2	21.2 2	3.1 3	219 2	100.0 99	0	0.0 0	0	0.0 0	0	0.0	-
		Right ^{Ri}	12 1	2	4	5	23 6	8	12 1	9	5	31 4	14	8	8	5	35 6	6	11	6	3	29 2	118 2	11.4 2	1.7 3	118 2	100.0 10	0	0.0 0	0	0.0 0	0	0.0 0	
							_					_												_					_					n Ă
		Start Time	4:00 PM	4:15 PM	4:30 PM	4:45 PM	Hourly Tota	5:00 PM	5:15 PM	5:30 PM	5:45 PM	Hourly Tota	6:00 PM	6:15 PM	6:30 PM	6:45 PM	Hourly Tota	7:00 PM	7:15 PM	7:30 PM	7:45 PM	Hourly Total	Grand Tota	Approach %	Total %	Lights	% Lights	Mediums	% Mediums	Articulated Trucks	% Articulated Trucks	Bicycles on Road	% Bicycles on Road	Bicycles on Crosswalk

0.0		100.0 -
'		
	•	•
15.0	17	85.0
		•
		•
'	•	•
'	'	•
	•	
0.0	28	100.0
'		•
'	•	•
'	•	•
'		
•	'	'
'	•	-
0.0	34	100.0
'		'
'		
'	•	
'		-
% Bicycles on Crosswalk	Pedestrians	% Pedestrians

Southbound st. Nearbound st. Nearbound st. Nearbound st. Nearbound Thru Let U-Turn Peak Ppa Thru Let U-Turn Reathound Thru Let U-Turn Peak Ppa Right Thru Let U-Turn Peak Ppa Thru Let U-Turn Peak Thru Let <thu-turn< th=""> Thru Let<th>_</th><th></th><th></th><th></th><th></th><th></th><th></th><th>-</th><th></th><th>Tu</th><th>rning</th><th> Mov</th><th>emel</th><th>nt Pe</th><th>jak F</th><th>Turning Movement Peak Hour Data (4:00 PM)</th><th>Data</th><th>(4:00</th><th>Md (</th><th></th><th></th><th>-</th><th></th><th></th><th></th><th></th><th></th><th></th><th>-</th></thu-turn<>	_							-		Tu	rning	Mov	emel	nt Pe	jak F	Turning Movement Peak Hour Data (4:00 PM)	Data	(4:00	Md (-							-
				SoL Sc	uthbound	d St.					Ϋ́e	stbound St estbound						North Nort	bound St Thbound						Eastbo	Eastbound St. Eastbound			
	Right Right on Red	Rig on R	ht ed	Thru		U-Turn	Peds	App. Total		Right on Red	Thru				App. Total							App. Total Ri	Right Ri	Right on Red Th	Thru Li	Left U-T	U-Turn P€	Peds App. Total	al Total
	12 14	4		19	24	0	-	69	13	3	132	34	3	3	185	18	11	22	28	0	1	79 2	21	7 11	118 2	23 (0	3 169	9 502
10 26 2 4 1 124 37 5 2 181 10 13 17 23 0 1 21 37 0 1 81 16 6 127 30 4 2 183 17 35 0 3 72 115 4 5 73 13 706 17.4 25 18 17 35 35 0 3 25.8 10.0 10.0 2 13 510 150 1 25 18 17 35 35 50 0 3 368 10.0 100 10 1 1 1 2 18 17 25 18 17 26 12 3 1	2 1	-	18	13	28	2	3	63	13	3	128	25	9	4	175	18	8	12	29	0		67 2	26	0 11	115 2	24 0	0 0	0 165	5 470
21 37 0 1 61 6 127 30 4 2 183 17 35 0 31 35 0 3 72 115 4 9 279 56 13 511 126 13 511 126 13 51 14 5 45 68 115 0 6 6 6 6 115 0 6 6 6 115 0 6 6 6 15 0 6 6 15 0 5 55 55 55 55 55 55 55 0 <td< td=""><th>4</th><td>ì</td><td>15</td><td>19</td><td>26</td><td>2</td><td>4</td><td>66</td><td>14</td><td>-</td><td>124</td><td>37</td><td>5</td><td>2</td><td>181</td><td>10</td><td>13</td><td>17</td><td>23</td><td>0</td><td></td><td>63 2</td><td>25</td><td>3 12</td><td>125 2</td><td>23 (</td><td>0</td><td>0 176</td><td>3 486</td></td<>	4	ì	15	19	26	2	4	66	14	-	124	37	5	2	181	10	13	17	23	0		63 2	25	3 12	125 2	23 (0	0 176	3 486
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	5	Ì	18	21	37	0	1	81	16	9	127	30	4	2	183	6	13	17	35	0		74 3	34	0 10	103 1	17 0	0	154	492
256 14 \cdot 7 18 70.6 174 2.5 \cdot 194 150 40.6 00 \cdot 37 5.9 0.2 \cdot 143 2.9 0.7 26.2 6.5 0.9 \cdot 37.1 2.9 2.7 3.6 6.9 0.0 \cdot 0857 0.771 0.500 \cdot 376 0.54 0.54 0.54 0.54 0.54 0.51 0.73 0.821 0.00 \cdot 2.9 0.0 \cdot 2.9 0.74 0.92 0.00 \cdot 2.9 0.74 0.74 0.74 0.0 0.0 \cdot 2.9 0.74 0.7<	23		65	72	115	4	6	279	56	13	511	126	18	11	724	55	45		115	0		283 1	106 1	10 461		87 0	· 0	4 664	1950
37 59 02 - 143 29 07 26.2 6.3 13 28 0.0 28 0.0 28 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.00 0.00 0.85 0.54 0.56 0.75 0.50 0.76 0.50 0.76 0.50 0.76 0.50 0.76 0.50 0.76 0.50 0.76 0.50 0.76 0.50 0.76 0.50 0.76 0.50 0.76 0.50 0.76 0.50 0.76 0.50 0.76 0.50 0.76 0.50 0.76	8.2 2	2	3.3	25.8	41.2	1.4		,	7.7	1.8	70.6	17.4	2.5	I					40.6	0.0		- 16	16.0 1	1.5 69	69.4 13	13.1 0.	0.0	-	
0.857 0.777 0.500 \cdot 0.861 0.875 0.861 0.875 0.861 0.875 0.861 0.875 0.871 0.801 0.773 0.801 0.773 0.801 0.700 \cdot 278 56 13 0.00 \cdot 72 55 45 66 12 0 \cdot \cdot 1 0 0 0 0 10 100 100 97.4 12 0 \cdot <	1.2	Ŭ,	3.3	3.7	5.9	0.2		14.3	2.9	0.7	26.2	6.5	0.9		37.1	2.8	2.3	3.5	5.9	0.0	- 1	14.5 5	5.4 0	0.5 23	23.6 4	4.5 0.	0.0	34.1	1 -
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.479 0.	o	903	0.857	0.777	0.500		0.861	0.875		0.968		0.750	-	_					000.0	- 0	0.896 0.7	0.779 0.3	0.357 0.9	0.922 0.9	0.906 0.0	0.000	0.943	3 0.971
98.6 100.0 100.0 100.0 100.0 100.0 100.0 100.0 97.1 97.4 \cdot	23		65	71	115	4	ı	278	56	13	510	125	18	ı	722	55	45		112	0	-	278 1	104	9 461		87 (0	- 661	1939
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	100.0 1		100.0	98.6	100.0	100.0		99.6	100.0	100.0	99.8		100.0	1					97.4		- 6	98.2 98	98.1 90	90.0 100	100.0 10	100.0	-	99.5	5 99.4
	0		0	t	0	0		٢	0	0	-	+	0		2	0	0	2	3	0	-	5	2	1 0		0 0	0	3	11
	0.0		0.0	1.4	0.0	0.0		0.4	0.0	0.0	0.2	0.8	0.0		0.3	0.0	0.0	2.9	2.6		1	1.8 1	1.9 10	10.0 0.	0.0 0	0.0		- 0.5	0.6
	0		0	0	0	0		0	0	0	0	0	0		0	0	0	0	0	0	-	0	0	0 0		0 0	0	- 0	0
0 0	0.0		0.0	0.0	0.0	0.0	ı	0.0	0.0	0.0	0.0	0.0	0.0	ı	0.0	0.0	0.0	0.0	0.0			0.0 0.0	0.0	0.0 0.0	0.0	- 0.0	-	- 0.0	0.0
0.0 0	0		0	0	0	0		0	0	0	0	0	0		0	0	0	0	0	0		0	0	0 0		0 0	0	- 0	0
· · · · · · · · · · · · 0 · · · · · · · · · · 0 · · · · · · · · · · 0 · · · · · · · · · · 0 · · · · · · · · · · 0 · · · · · · · · · · · 0 · · · · · · · · · · 0	0.0		0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0			0.0 0.0	0.0 0.0	0.0 0.0	0.0	- 0.0		- 0.0	0.0
• • • • • • • 0.0 • • • • • • • • 0.0 • • • • • • • • • 0.0 • • • • • • • • • • 0.0 • • • • • • • • • • 0.0 • • • • • • • • • • 0.0 • • • • • • • • • • • 0.0			-				0							0	-						0	-		•	-		-	- 0	-
9 6 100.0 6							0.0							0.0							0.0						- 0	- 0.0	'
100.0							6							11							6	-					-	4	-
							100.0	,					-	100.0	,				,	- 1(0.00						- 10	100.0	'

Appendix B

Preliminary Geotechnical Report

Draft Preliminary Geotechnical Report

Uptown Intersection Improvements Indian School Road NE – Americas Parkway NE and Uptown Loop NE NMDOT CN A302250 Albuquerque, Bernalillo County, New Mexico

> January 18, 2022 Terracon Project No. 66215129

Prepared for:

Parametrix Albuquerque, New Mexico

Prepared by:

Terracon Consultants, Inc. Albuquerque, New Mexico

January 18, 2022

lerracon

Parametrix 9600 San Mateo Boulevard NE Albuquerque, New Mexico 87113

- Attn: Ms. Stephanie Miller P: (505) 998-5580 E: <u>SMiller@parametrix.com</u>
- Re: Preliminary Geotechnical Report Uptown Intersection Improvements Indian School Road NE – Americas Parkway NE to Uptown Loop NE NMDOT CN A302250 Albuquerque, Bernalillo County, New Mexico Terracon Project No. 66215129

Dear Ms. Miller:

Terracon Consultants, Inc. (Terracon) has completed the Preliminary Geotechnical Report for the above referenced project. These services were performed in general accordance with our Proposal Number P66215129 dated June 16, 2021 and the Parametrix Subconsultant Agreement For Professional Services dated September 7, 2021. This preliminary geotechnical report presents the results of literature research, geologic and geotechnical literature searches, site reconnaissance, review of Geotechnical data in the area, and current field exploration and laboratory testing being performed along the project alignment.

This report provides preliminary geotechnical information concerning the evaluation and conceptual and preliminary design of the geotechnical-related phases of the project.

Terracon will also be performing the geotechnical services for the Final Geotechnical Report and Pavement Design Report as part of future phases of the project. The results of these studies will be submitted under separate cover and include boring logs, laboratory test results, and final design parameters and recommendations.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning this report, or if we may be of further service, please contact us.

Sincerely, Terracon Consultants, Inc.

Stenson D. Lee Staff Engineer Michael E. Anderson, P.E. Principal

Terracon Consultants, Inc. 6805 Academy Parkway West NE Albuquerque, New Mexico 87109 P (505) 797 4287 F (505) 797 4288 terracon.com

EXECL	JTIVE S	SUMMARY	i
1.0	INTRO	DUCTION	. 1
2.0	PROJE	ECT INFORMATION	. 2
	2.1 Site	e Location and Description	. 2
	2.2 Pro	pject Description	. 3
3.0	GEOL	DGIC CONDITIONS	. 3
	3.1	Regional Geology	. 3
	3.2	Site Geology	. 3
	3.3	Soil Conservation Service Soil Maps	. 4
	3.4	Intersection and Pavement Conditions	. 5
4.0	SUBSURFACE CONDITIONS		
	4.1	Typical Subsurface Profile	. 8
	4.2	Groundwater	. 9
5.0	PRELI	MINARY RECOMMENDATIONS FOR DESIGN AND CONSTRUCTION	. 9
	5.1	Preliminary Geotechnical Design and Construction Considerations	10
	5.2	Earthwork and Construction Considerations	10
	5.3	Preliminary Foundation Recommendations	10
	5.4	Seismic Considerations	11
	5.5	Pavement Design Considerations	11
	5.6	Corrosion Potential	11
6.0	GENE	RAL COMMENTS	12
7.0	REFEF	RENCES	13

Exhibit No.

Terracon

Page

Appendix A – Geologic Map and Quaternary Fault Map

A1
A1
A2
A3

Appendix B – USDA NCRS Soil Survey

Preliminary Geotechnical Report Uptown Intersection Improvements - Indian School Road NE - CN A302250 Albuquerque, Bernalillo County, New Mexico January 18, 2022 Terracon Project No. 66215129

EXECUTIVE SUMMARY

This geotechnical executive summary should be used in conjunction with the entire report for conceptual and preliminary design purposes. It should be recognized that specific details were not included or fully developed in this section, and the report must be read in its entirety for a comprehensive understanding of the items contained herein. The section titled General Comments should be read for an understanding of the report limitations.

leccacon

A Preliminary Geotechnical Report based upon geologic and geotechnical literature searches, site reconnaissance, review of Geotechnical data in the area, and the current field exploration and laboratory testing services being performed along the project alignment for the proposed Uptown Intersection Improvements Project located along Indian School Road NE from Americas Parkway NE to Uptown Loop Road in Albuquerque, Bernalillo County, New Mexico

Based on the information obtained from our literature search, site reconnaissance, Terracon geotechnical reports in the area and current field exploration and laboratory testing programs being performed along the project alignment, it is our opinion that the project is suitable for the planned roadway improvements. The following geotechnical considerations were identified:

Existing Pavement Section Thickness: Based upon our current field exploration, the existing pavement section along the project alignment consists of approximately 6 to 9 inches of asphalt concrete overlying 0 to 8 inches of base course.

Site Soils: Based upon our current field exploration program, the site subsurface consist predominantly of sand with varying amounts of clay, silt and gravel with some interbedded clay and silt layers to the full depth of exploration of about 26.5 feet below existing site grade. The surface and shallow subsurface soils at the project site exhibit a low to moderate tendency for compression with increasing load and when elevated in moisture content. The shallow and deeper soils exhibit low to moderate bearing capacity. The soils may be recompacted to increase bearing capacity and reduce settlement. It is our opinion that the sand soils have relatively good quality pavement support characteristics.

Groundwater: Groundwater was not encountered in the borings during field exploration.

Construction and Excavation: On-site sands are anticipated to be suitable for use as structural backfill for pavements. Existing pavements, concrete curb, gutter, and sidewalks, utilities, and possibly landscaping will require removal prior to new construction. Shallow excavations into the on-site soils are expected to be accomplished with conventional earthwork equipment. Caving soils will likely be encountered during construction.

Foundations: The light and traffic structures are anticipated to be supported on a deep foundation consisting of drilled shafts bearing on undisturbed soil. The foundations can be designed per NMDOT or COA Standard Drawings. Casing and/or drilling slurry may be required for drilled shaft construction.

Pavement: The subgrade soils consist predominantly of relatively high quality sand subgrade. The anticipated pavement thickness will be based upon the subgrade materials and traffic types and volumes along the project alignment. Thicker pavement sections will be associated with poorer quality subgrades associated with clayey sand subgrade.

Terracon will also be performing the geotechnical services for the Final Geotechnical Report and Pavement Design Report as part of future phases of the project. The results of these studies will be submitted under separate cover and include boring logs, laboratory test results, and final design parameters and recommendations.

PRELIMINARY GEOTECHNICAL REPORT UPTOWN INTERSECTION IMPROVEMENTS INDIAN SCHOOL ROAD NE – AMERICAS PARKWAY NE TO UPTOWN LOOP ROAD CN A30100 ALBUQUQUERQUE, BERNALILLO COUNTY, NEW MEXICO

Terracon Project No. 66215129 January 18, 2022

1.0 INTRODUCTION

This report presents the results of our preliminary geotechnical report performed for proposed Uptown Intersection Improvements Project located along Indian School Road NE from Americas Parkway NE to Uptown Loop Road in Albuquerque, Bernalillo County, New Mexico. The report addresses the following:

- Subsurface soil conditions
- Groundwater levels
- Geologic conditions that could impact the proposed alignment and structures
- Possible impacts, effects, and possible mitigation measures associated with improvements within the project area
- Construction difficulties
- Preliminary foundation considerations
- Preliminary pavement design and construction considerations

The scope of the work performed for this project included site reconnaissance by a Terracon geotechnical engineer, a search of available geologic literature, geologic and geotechnical literature searches, site reconnaissance, review of Geotechnical data in the area, and current field exploration and laboratory testing (currently in progress) performed along the project alignment.

Terracon will also be performing the geotechnical services for the Final Geotechnical Report and Pavement Design Report as part of future phases of the project. The results of these studies will be submitted under separate cover and include boring logs, laboratory test results, and final design parameters and recommendations.

2.0 **PROJECT INFORMATION**

2.1 Site Location and Description

ITEM	DESCRIPTION
Location	Indian School Road NE from Americas Parkway NE to Uptown Loop Road NE including the north and south legs of the intersection of Louisiana Boulevard NE in Albuquerque, New Mexico.
Existing Improvements	Majority 4-lane asphalt concrete paved roadway with narrow paved shoulders/bike lanes, center medians and turn lanes, Portland cement concrete curb, gutter, and sidewalk, landscaping, and utilities.
Length of improvements	Indian School - Approximately 1,800 lineal feet Louisiana Boulevard – 900 lineal feet
Current Ground Cover	Asphalt concrete, Portland cement concrete, and landscaping
Existing Topography	Relatively flat sloping gently down to the west (assumed).
Geotechnical Conditions	The subsurface soils are anticipated to consist of loose to medium dense sands with some stiff to very stiff clay and silt layers.

2.2 **Project Description**

ITEM	DESCRIPTION
	At this time, the improvements will generally consist of the following:
Improvements	 Expanded sidewalk, ADA ramps, and landscaping Pedestrian crosswalk improvements Roundabout at Indian School Road and Q Street Traffic signal and intersection lighting improvements
Grading	At or near existing roadway alignment grade
New Traffic Signals	Intersections at: Indian School Road and Louisiana Boulevard Indian School Road and Q Street
Pavement Wearing Surface	Asphalt concrete overlying aggregate base course
New traffic signal foundations	Drilled shafts per NMDOT Standard Drawings

ITEM	DESCRIPTION
Design Requirements	2020 NMDOT Design Manual
Design Requirements	NMDOT IDD -2008-05 Pavement Design Guideline
Material Specifications	2019 NMDOT Standard Specifications for Highway and Bridge Construction

3.0 GEOLOGIC CONDITIONS

3.1 Regional Geology

The site occupies a position on a gently sloping piedmont surface on the east side of the Albuquerque-Belen basin. The piedmont surface extends from the Sandia Mountains to the Rio Grande. The Albuquerque-Belen basin is part of an interconnected series of north-south aligned grabens and structural basins which have subsided between mountain and highland uplifts comprising the Rio Grande Rift. The complex structural basin was formed during the Tertiary Period, more than seven million years ago, when the Sandia-Manzano fault block was uplifted and tilted. The basin is approximately 100 miles long and varies from 20 to 40 miles wide. The sloping surface of the valley fill consists of a series of coalescing alluvial fans deposited unconformably on the formations of the Santa Fe Group. The Santa Fe Group consists of beds of unconsolidated to loosely consolidated sediments (detritus consisting of gravel, sand, silt, clay, and caliche) locally interbedded with volcanic rocks.

The piedmont soils at and around the site are composed of valley-fill alluvium. The valley-fill alluvium (silt, clay, sand, and gravel) was deposited as arroyo channel fill and lenticular interchannel deposits. These soils range from poorly-sorted mudflow material to well-sorted stream gravel. The variable depositional conditions occasionally created low density/loose layers within the recent arroyo deposits.

3.2 Site Geology

Geologic conditions at the project site are consistent with the regional geology. The surficial geologic formations at or near the project site are comprised of the following.

 Qay – Young Slope Alluvium (Upper Pleistocene) – Poorly consolidated deposits of light brown to yellowish brown sand, sandy clay, and local gravel foriming low gradient alluvial slopes.

- <u>Qpy Young Piedmont-Slope Alluvium (Upper Pleistocene)</u> Poorly consolidated deposits of sand and gravel
- <u>Qpo Old Piedmont-Slope Alluvium (Middle to Lower Pleistocene)</u> Moderately consolidated deposists of sand and gravel

A Geologic Map and descriptions of the geologic units is included on the Geologic Map Legend in Appendix A.

Review of geologic information from the U.S. Geological Survey and New Mexico Bureau of Mines and Mineral Resources, 1997, Quaternary fault and fold database for the United States, accessed January 17, 2021, from USGS web site: <u>http://earthquake.usgs.gov/regional/qfaults/</u> indicates that there are no Quaternary faults passing within about 4 to 5 miles of the project alignment. The Quaternary Fault Map is included in Appendix A.

3.3 Soil Conservation Service Soil Maps

The soils along the proposed alignment have been surveyed and classified by the USDA Natural Resource Conservation Service (NRCS). The report of this survey is presented in the "Custom Soil Resource Report for Bernalillo County, New Mexico" issued November 18, 2020. The soil survey maps of this report indicate that the soils in the area are as follows:

- Embudo-Tijeras Complex (EtC) makes up 86.21 percent of the map area. Slopes are 0 to 9 percent. This component is located on fan remnants. The parent material consists of recent alluvium derived from igneous and sedimentary bedrock. Depth to a restrictive layer (bedrock) is greater than 80 inches. Depth to water table is more than 80 inches. The natural drainage class is well drained. The AASHTO soil classifications are A-1, A-2, A-4, and A-6.
- <u>Cut and Fill Land (Cu)</u> makes up 13.8 percent of the map unit. Slopes are 0 to 5 percent. This component is located in various landforms. The parent material consists is variable. Depth to a restrictive layer (bedrock) is greater than 80 inches. Depth to water table is more than 80 inches. The natural drainage class is poorly drained. The AASHTO soil classification is variable.

Detailed descriptions of the soil survey units are shown on the Soil Survey Maps and Legends in Appendix B.

3.4 Intersection and Pavement Conditions

Photo 1: Indian School Road at Americas Parkway - Looking North. Low to moderate severity of raveling, oxidation, and weathering. Low severity transverse cracking of asphalt concrete.

Photo 2: Indian School Road at Louisiana Boulevard - Looking North. Low to moderate severity raveling, oxidation, weathering, and lifting/stripping of overlay/OGFC. Low to moderate severity longitudinal and transverse cracking of asphalt concrete.

Photo 3: Indian School Road at Q Street - Looking North. Low severity raveling, oxidation, and weathering. Low severity to moderate transverse cracking of asphalt concrete.

Terracon

Uptown Intersection Improvements - Indian School Road NE - CN A302250 Albuquerque, Bernalillo County, New Mexico January 18, 2022 - Terracon Project No. 66215129

Photo 4: Indian School Road at Q Street - Looking North. Low to moderate severity raveling, oxidation, weathering, and patching. Low severity longitudinal and transverse cracking of asphalt concrete.

4.0 SUBSURFACE CONDITIONS

4.1 Typical Subsurface Profile

Based upon borings performed as part of our geotechnical study (currently in progress), a summary of the subsurface conditions is outlined below:

lerracon

Uptown Intersection Improvements - Indian School Road NE - CN A302250 Albuquerque, Bernalillo County, New Mexico January 18, 2022 - Terracon Project No. 66215129

Description ¹	Approximate Depth to Bottom of Stratum (feet)	Material Encountered	AASHTO Soil Classification	Relative Density, Consistency, and Hardness		
Stratum 1	0.6 to 1	Asphalt Concrete – about 6" to 9" Aggregate Base Course – about 0" to 8"	N/A	N/A		
Stratum 2	5 to 12	Sand. The clay, silt, and gravel content varied	A-2-4 A-4 A-6	Loose to Medium Dense		
Stratum 3	18	Clay and Silt. The sand and gravel content varied.	N/A	Stiff to Very Stiff		
Stratum 4	26.5	Sand. The silt and gravel content varied	N/A	Loose Medium		
1. *Data obtained from boring logs conducted by Terracon as part of the current field exploration program						

Based upon the laboratory testing completed to date as part of our current study, the on-site soils

4.2 Groundwater

exhibit R-values ranging from 33 to 80.

Groundwater was not observed in the borings at the time of field exploration. These observations represent groundwater conditions at the time of the field exploration and may not be indicative of other times, or at other locations. Groundwater conditions can change with varying seasonal and weather conditions, and other factors.

5.0 PRELIMINARY RECOMMENDATIONS FOR DESIGN AND CONSTRUCTION

Terracon will also be performing the geotechnical services for the Final Geotechnical Report and Pavement Design Report as part of future phases of the project. The results of these studies will be submitted under separate cover and include boring logs, laboratory test results, and final design parameters and recommendations.

The geotechnical conditions encountered along the project alignment appear to be suitable for the proposed improvements. Loose soils, shallow low bearing capability soils to moderate depths, and caving soil conditions will require particular attention in the design and construction.

5.1 Preliminary Geotechnical Design and Construction Considerations

Preliminary geotechnical engineering recommendations for earth connected phases of the project are outlined below. The preliminary recommendations contained in this report are based upon the results of our literature research, our experience in the area, current field exploration, and our current understanding of the proposed project.

Based upon our current field exploration, the existing pavement section along the project alignment consists of approximately 6 to 9 inches of asphalt concrete overlying 0 to 8 inches of base course. These material will require removal prior to new pavement construction.

On-site sands are anticipated to be suitable for use as structural backfill for pavements. Excavations into the on-site soils are expected to be accomplished with conventional earthwork equipment. Caving soils should be anticipated during construction.

The light and traffic structures are anticipated to be supported on a deep foundation consisting of drilled shafts bearing on undisturbed soil. The foundations can be designed per NMDOT or COA Standard Drawings. Casing and/or drilling slurry may be required for drilled shaft construction.

The subgrade soils consist predominantly of relatively high quality sand subgrade. The anticipated pavement thickness will be based upon the subgrade materials and traffic types and volumes along the project alignment. Thicker pavement sections will be associated with poorer quality subgrades associated with clayey sand subgrade.

5.2 Earthwork and Construction Considerations

Existing pavements, concrete curb, gutter, and sidewalks, utilities, and possibly landscaping will require removal prior to new construction. On-site sands are anticipated to be suitable for use as structural backfill for pavements. Shallow excavations into the on-site soils are expected to be accomplished with conventional earthwork equipment. Caving soils will likely be encountered during construction.

5.3 **Preliminary Foundation Recommendations**

It is our opinion that deep foundation systems consisting of drilled shafts can be used for support of the proposed traffic and light pole structures. The foundations can be designed per NMDOT or COA Standard Drawings.

Drilled shaft excavations for foundation construction will likely encounter caving soils. Therefore, a slurry or temporary casing may be required during installation.

5.4 Seismic Considerations

Ground Motion Parameter	Value ¹
PGA	0.148
Ss	0.352
S1	0.101
F _{pga}	1.505
Fa	1.518
	2.397
As	0.222
SDS	0.534
S _{D1}	0.241
1. Latitude 35.1019 and Longitude -106.5680 degrees.	

5.5 Pavement Design Considerations

Based upon our current field exploration, the existing pavement section along the project alignment consists of approximately 6 to 9 inches of asphalt concrete overlying 0 to 8 inches of base course. These material will require removal prior to new pavement construction.

The anticipated pavement thickness will be based upon the subgrade materials and traffic types and volumes at the project site.

The subgrade soils will consist predominantly of relatively high quality sand subgrade. The anticipated pavement thickness will be based upon the subgrade materials and traffic types and volumes along the project alignment. Thicker pavement sections will be associated with poorer quality subgrades associated with clayey sand subgrade. Subgrade stabilization may be required in lower quality subgrade soils and/or in areas of loose or elevated moisture contents present within some of the subgrade soils at the project site.

Terracon is performing the geotechnical services for the Pavement Design Report as part of this phase of the project. The results of this study will be submitted under separate cover.

5.6 Corrosion Potential

Based upon the laboratory testing completed to date as part of our current study, the on-site soils exhibit soluble sulfate concentrations ranging from about 33 to 253 mg/kg, chloride concentrations ranging from about 45 to 92 mg/kg resistivity values ranging from about 17,342 to 37,352 ohm-

cms, and pH values ranging from about 8.5 to 8.6. Therefore, ASTM Type I-II or II Portland cement will likely be required for all concrete on and below grade. Foundation concrete will need to be designed for low to high sulfate exposure in accordance with the provisions of the ACI Design Manual, Section 318, Chapter 4.

The results of the pH and minimum resistivity testing indicate a moderate to mild corrosion potential to metal piping or conduits. Therefore, the site specific corrosion test results will need to be considered in the selection of driven piles, metal conduits/drainage structures, other metal elements for the project.

6.0 GENERAL COMMENTS

Terracon be providing supplemental geotechnical services for future phases of the project. In addition, Terracon should be retained to review the final design plans and specifications so comments can be made regarding interpretation and implementation of our geotechnical recommendations in the preliminary design and specifications. Terracon also should be retained to provide observation and testing services during grading, excavation, foundation construction and other earth-related construction phases of the project.

The preliminary recommendations presented in this report are based upon the data obtained from information discussed in this report. This report does not reflect variations that may occur across the corridor study areas, or due to the modifying effects of construction or weather. The nature and extent of such variations may not become evident until further corridor specific studies have been completed or during or after construction. If variations appear, we should be immediately notified so that further evaluation and supplemental recommendations can be provided.

The scope of services for this project does not include either specifically or by implication any environmental or biological (e.g., mold, fungi, bacteria) assessment of the site or identification or prevention of pollutants, hazardous materials or conditions. If the owner is concerned about the potential for such contamination or pollution, other studies should be undertaken.

This preliminary report has been prepared for the exclusive use of our client for specific application to the project discussed and has been prepared in accordance with generally accepted geotechnical engineering practices. No warranties, either express or implied, are intended or made. In the event that changes in the nature, design, or location of the project as outlined in this report are planned, the recommendations contained in this report shall not be considered valid unless Terracon reviews the changes and either verifies or modifies the conclusions of this report in writing.

7.0 REFERENCES

Williams, Paul L. and Cole, James C. "Geologic Amp[of the Albuquerque 30'x60' Quadrangle, North- central, New Mexico" USGS, 2007.

New Mexico Bureau of Geology and Mineral Resources, Peter A. Scholle, State Geologist. "Geologic Map of New Mexico." 2003.

U.S. Geological Survey, Quaternary fault and fold database for the United States, accessed January 17, 2022, from USGS web site: <u>http://earthquake.usgs.gov/hazards/qfaults/</u>

Sean Connell, "GM-78 — Geologic map of the Albuquerque–Rio Rancho metropolitan area and vicinity, Bernalillo and Sandoval Counties, New Mexico", 2008.

APPENDIX A SITE LOCATION MAP GEOLOGIC MAP AND LEGEND QUATERNARY FAULT MAP

SITE LOCATION

Uptown Intersection Improvements Albuquerque, NM January 18, 2022 - Terracon Project No. 66215129

ietter

22

GeoReport llerracon

ROAD MAP PROVIDED BY MICROSOFT BING MAPS

DIAGRAM IS FOR GENERAL LOCATION ONLY, AND IS NOT INTENDED FOR CONSTRUCTION PURPOSES

EXPLORATION PLAN

Uptown Intersection Improvements = Albuquerque, NM January 18, 2022 = Terracon Project No. 66215129

Note: Boring Nos. B-01 through B-05 drilled as part of our current study (in progress). MICKUSUT BING MAPS All boring logs, lab testing results, engineering analysis, design parameters, and final recommendations will be included in the Final Geotechnical Report and Pavement Design Report. AERIAL PHOTOGRAPHY PROVIDED BY MICROSOFT BING MAPS

DIAGRAM IS FOR GENERAL LOCATION ONLY, AND IS NOT INTENDED FOR CONSTRUCTION PURPOSES

SITE LOCATION

Uptown Intersection Improvements Albuquerque, NM January 17, 2022 Terracon Project No. 66215129

DIAGRAM IS FOR GENERAL LOCATION ONLY, AND IS NOT INTENDED FOR CONSTRUCTION PURPOSES

TOPOGRAPHIC MAP IMAGE COURTESY OF THE U.S. GEOLOGICAL SURVEY QUADRANGLES INCLUDE: ALAMEDA, NM (1/1/1990) and ALBUQUERQUE EAST, NM (1/1/1990).

GEOLOGIC MAP

Uptown Intersection Improvements - Albuquerque, NM January 18, 2022 - Terracon Project No. 66215129

DIAGRAM IS FOR GENERAL LOCATION ONLY, AND IS NOT INTENDED FOR CONSTRUCTION PURPOSES

GEOLOGIC MAP LEGEND

Uptown Intersection Improvements = Albuquerque, NM January 18, 2022 = Terracon Project No. 66215129

Description of Map Units

River Alluvium of the Rio Grande and Major Tributaries

terrace-fill deposits accumulated over an extended period of early Pleistocene time between about 1.6 Ma and 1.2 Ma. Deposits are commercially significant sand younger piedmont-slope materials (Cather and others, 2000). Relict calcareous soils display stage III-IV morphology in Bk horizons. Vertebrate fossils recovered rom this unit are early Irvingtonian (early Pleistocene; Morgan and Lucas, 2000); clasts and tephra of the older and younger Bandelier Tuff eruptions indicate the scale. Gravel clasts are highly diverse and include fine-grained quartzose metamorphic rocks, metaquartzite, granite and mylonite gneiss, intermediate and felsic : Older river alluvium (lower Pleistocene)—Light-grayish-brown, coarse, heterolithic bouldery gravel, and light-brown to yellowish-gray sand, cobble gravel, pebbly sand, and silt; weakly cemented, moderately sorted; coarse sand deposits typically display conspicuous planar and trough crossbedding at meter oumice. Top of these deposits forms an extensive terrace surface at Albuquerque International Airport (the Cuarto Alto surface of Stone and others, 2001a, b; Sunport surface of Lambert, 1968, and Bachman and Machette, 1977) about 370 ft above the modern floodplain. North and east of Bernalillo, the uppermost /olcanic porphyries, basalt, quartz sandstone, limestone, "Pedernal chert," and petrified wood as well as conspicuous pebbles and cobbles of Bandelier Tuff Iuvial deposits that contain Bandelier pumice are similarly situated above the local Rio Grande floodplain, although the relict terrace surface is covered by and gravel resources in the valley. Thickness highly variable, but may exceed 400 ft in total.

Alluvium Deposits on Eroded Slopes

Оау

Deposits form low-gradient alluvial slopes adjacent to floodplains of the Rio Grande and major tributary drainages, and form the youngest stream channels and : Young slope alluvium (upper Pleistocene)—Poorly consolidated deposits of light-brown to yellowish-brown sand, sandy clay, and local gravel. terraces along minor tributary valleys. Calcareous soils weakly developed.

Alluvial Deposits on Piedmont Slopes West of Sandia Mountains

gravels contain subangular clasts near foot of Sandia Mountains. Calcareous soils moderately developed and display stage II-III morphology in Bk horizon. Unit :Medial-age piedmont-slope alluvium (middle Pleistocene)—Poorly consolidated deposits of sand and gravel in intermediate geomorphic positions; may locally include some upper Pleistocene deposits.

GEOLOGIC MAP LEGEND

Uptown Intersection Improvements = Albuquerque, NM January 18, 2022 = Terracon Project No. 66215129

1: Old piedmont-slope alluvium (middle to lower Pleistocene)— Moderately consolidated deposits of sand and gravel in high geomorphic positions near foot of Sandia Mountains; deposits are chiefly erosional remnants inset by younger piedmont-slope units. Clasts commonly show physical deterioration; calcareous soils strongly devloped and display stage III–IV morphology in Bk horizon.

Map Symbols

QUATERNARY FAULT MAPS

Uptown Intersection Improvements = Albuquerque, NM January 18, 2022 = Terracon Project No. 66215129

APPENDIX B

USDA NCRS SOIL SURVEY

United States Department of Agriculture

Natural Resources Conservation Service A product of the National Cooperative Soil Survey, a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local participants Custom Soil Resource Report for Bernalillo County and Parts of Sandoval and Valencia Counties, New Mexico

Preface

Soil surveys contain information that affects land use planning in survey areas. They highlight soil limitations that affect various land uses and provide information about the properties of the soils in the survey areas. Soil surveys are designed for many different users, including farmers, ranchers, foresters, agronomists, urban planners, community officials, engineers, developers, builders, and home buyers. Also, conservationists, teachers, students, and specialists in recreation, waste disposal, and pollution control can use the surveys to help them understand, protect, or enhance the environment.

Various land use regulations of Federal, State, and local governments may impose special restrictions on land use or land treatment. Soil surveys identify soil properties that are used in making various land use or land treatment decisions. The information is intended to help the land users identify and reduce the effects of soil limitations on various land uses. The landowner or user is responsible for identifying and complying with existing laws and regulations.

Although soil survey information can be used for general farm, local, and wider area planning, onsite investigation is needed to supplement this information in some cases. Examples include soil quality assessments (http://www.nrcs.usda.gov/wps/portal/nrcs/main/soils/health/) and certain conservation and engineering applications. For more detailed information, contact your local USDA Service Center (https://offices.sc.egov.usda.gov/locator/app?agency=nrcs) or your NRCS State Soil Scientist (http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/contactus/? cid=nrcs142p2_053951).

Great differences in soil properties can occur within short distances. Some soils are seasonally wet or subject to flooding. Some are too unstable to be used as a foundation for buildings or roads. Clayey or wet soils are poorly suited to use as septic tank absorption fields. A high water table makes a soil poorly suited to basements or underground installations.

The National Cooperative Soil Survey is a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local agencies. The Natural Resources Conservation Service (NRCS) has leadership for the Federal part of the National Cooperative Soil Survey.

Information about soils is updated periodically. Updated information is available through the NRCS Web Soil Survey, the site for official soil survey information.

The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or a part of an individual's income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require

alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W., Washington, D.C. 20250-9410 or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer.

Contents

Preface How Soil Surveys Are Made	
Soil Map	
Soil Map	
Legend	
Map Unit Legend	12
Map Unit Descriptions	12
Bernalillo County and Parts of Sandoval and Valencia Counties, New	
Mexico	14
Cu—Cut and fill land	14
EtC—Embudo-Tijeras complex, 0 to 9 percent slopes	14
References	17

How Soil Surveys Are Made

Soil surveys are made to provide information about the soils and miscellaneous areas in a specific area. They include a description of the soils and miscellaneous areas and their location on the landscape and tables that show soil properties and limitations affecting various uses. Soil scientists observed the steepness, length, and shape of the slopes; the general pattern of drainage; the kinds of crops and native plants; and the kinds of bedrock. They observed and described many soil profiles. A soil profile is the sequence of natural layers, or horizons, in a soil. The profile extends from the surface down into the unconsolidated material in which the soil formed or from the surface down to bedrock. The unconsolidated material is devoid of roots and other living organisms and has not been changed by other biological activity.

Currently, soils are mapped according to the boundaries of major land resource areas (MLRAs). MLRAs are geographically associated land resource units that share common characteristics related to physiography, geology, climate, water resources, soils, biological resources, and land uses (USDA, 2006). Soil survey areas typically consist of parts of one or more MLRA.

The soils and miscellaneous areas in a survey area occur in an orderly pattern that is related to the geology, landforms, relief, climate, and natural vegetation of the area. Each kind of soil and miscellaneous area is associated with a particular kind of landform or with a segment of the landform. By observing the soils and miscellaneous areas in the survey area and relating their position to specific segments of the landform, a soil scientist develops a concept, or model, of how they were formed. Thus, during mapping, this model enables the soil scientist to predict with a considerable degree of accuracy the kind of soil or miscellaneous area at a specific location on the landscape.

Commonly, individual soils on the landscape merge into one another as their characteristics gradually change. To construct an accurate soil map, however, soil scientists must determine the boundaries between the soils. They can observe only a limited number of soil profiles. Nevertheless, these observations, supplemented by an understanding of the soil-vegetation-landscape relationship, are sufficient to verify predictions of the kinds of soil in an area and to determine the boundaries.

Soil scientists recorded the characteristics of the soil profiles that they studied. They noted soil color, texture, size and shape of soil aggregates, kind and amount of rock fragments, distribution of plant roots, reaction, and other features that enable them to identify soils. After describing the soils in the survey area and determining their properties, the soil scientists assigned the soils to taxonomic classes (units). Taxonomic classes are concepts. Each taxonomic class has a set of soil characteristics with precisely defined limits. The classes are used as a basis for comparison to classify soils systematically. Soil taxonomy, the system of taxonomic classification used in the United States, is based mainly on the kind and character of soil properties and the arrangement of horizons within the profile. After the soil

scientists classified and named the soils in the survey area, they compared the individual soils with similar soils in the same taxonomic class in other areas so that they could confirm data and assemble additional data based on experience and research.

The objective of soil mapping is not to delineate pure map unit components; the objective is to separate the landscape into landforms or landform segments that have similar use and management requirements. Each map unit is defined by a unique combination of soil components and/or miscellaneous areas in predictable proportions. Some components may be highly contrasting to the other components of the map unit. The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The delineation of such landforms and landform segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, onsite investigation is needed to define and locate the soils and miscellaneous areas.

Soil scientists make many field observations in the process of producing a soil map. The frequency of observation is dependent upon several factors, including scale of mapping, intensity of mapping, design of map units, complexity of the landscape, and experience of the soil scientist. Observations are made to test and refine the soil-landscape model and predictions and to verify the classification of the soils at specific locations. Once the soil-landscape model is refined, a significantly smaller number of measurements of individual soil properties are made and recorded. These measurements may include field measurements, such as those for color, depth to bedrock, and texture, and laboratory measurements, such as those for content of sand, silt, clay, salt, and other components. Properties of each soil typically vary from one point to another across the landscape.

Observations for map unit components are aggregated to develop ranges of characteristics for the components. The aggregated values are presented. Direct measurements do not exist for every property presented for every map unit component. Values for some properties are estimated from combinations of other properties.

While a soil survey is in progress, samples of some of the soils in the area generally are collected for laboratory analyses and for engineering tests. Soil scientists interpret the data from these analyses and tests as well as the field-observed characteristics and the soil properties to determine the expected behavior of the soils under different uses. Interpretations for all of the soils are field tested through observation of the soils in different uses and under different levels of management. Some interpretations are modified to fit local conditions, and some new interpretations are developed to meet local needs. Data are assembled from other sources, such as research information, production records, and field experience of specialists. For example, data on crop yields under defined levels of management are assembled from farm records and from field or plot experiments on the same kinds of soil.

Predictions about soil behavior are based not only on soil properties but also on such variables as climate and biological activity. Soil conditions are predictable over long periods of time, but they are not predictable from year to year. For example, soil scientists can predict with a fairly high degree of accuracy that a given soil will have a high water table within certain depths in most years, but they cannot predict that a high water table will always be at a specific level in the soil on a specific date.

After soil scientists located and identified the significant natural bodies of soil in the survey area, they drew the boundaries of these bodies on aerial photographs and

identified each as a specific map unit. Aerial photographs show trees, buildings, fields, roads, and rivers, all of which help in locating boundaries accurately.

Soil Map

The soil map section includes the soil map for the defined area of interest, a list of soil map units on the map and extent of each map unit, and cartographic symbols displayed on the map. Also presented are various metadata about data used to produce the map, and a description of each soil map unit.

Custom Soil Resource Report

MAP LEGEND

MAP INFORMATION

imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

Map Unit Legend

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI		
Cu	Cut and fill land	0.9	13.8%		
EtC	Embudo-Tijeras complex, 0 to 9 percent slopes	5.9	86.2%		
Totals for Area of Interest		6.9	100.0%		

Map Unit Descriptions

The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions, along with the maps, can be used to determine the composition and properties of a unit.

A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic class rarely, if ever, can be mapped without including areas of other taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils.

Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas are identified by a special symbol on the maps. If included in the database for a given area, the contrasting minor components are identified in the map unit descriptions along with some characteristics of each. A few areas of minor components may not have been observed, and consequently they are not mentioned in the descriptions, especially where the pattern was so complex that it was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape.

The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic classes but rather to separate the landscape into landforms or landform segments that have similar use and management requirements. The delineation of such segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, however,

onsite investigation is needed to define and locate the soils and miscellaneous areas.

An identifying symbol precedes the map unit name in the map unit descriptions. Each description includes general facts about the unit and gives important soil properties and qualities.

Soils that have profiles that are almost alike make up a *soil series*. Except for differences in texture of the surface layer, all the soils of a series have major horizons that are similar in composition, thickness, and arrangement.

Soils of one series can differ in texture of the surface layer, slope, stoniness, salinity, degree of erosion, and other characteristics that affect their use. On the basis of such differences, a soil series is divided into *soil phases*. Most of the areas shown on the detailed soil maps are phases of soil series. The name of a soil phase commonly indicates a feature that affects use or management. For example, Alpha silt loam, 0 to 2 percent slopes, is a phase of the Alpha series.

Some map units are made up of two or more major soils or miscellaneous areas. These map units are complexes, associations, or undifferentiated groups.

A *complex* consists of two or more soils or miscellaneous areas in such an intricate pattern or in such small areas that they cannot be shown separately on the maps. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas. Alpha-Beta complex, 0 to 6 percent slopes, is an example.

An *association* is made up of two or more geographically associated soils or miscellaneous areas that are shown as one unit on the maps. Because of present or anticipated uses of the map units in the survey area, it was not considered practical or necessary to map the soils or miscellaneous areas separately. The pattern and relative proportion of the soils or miscellaneous areas are somewhat similar. Alpha-Beta association, 0 to 2 percent slopes, is an example.

An *undifferentiated group* is made up of two or more soils or miscellaneous areas that could be mapped individually but are mapped as one unit because similar interpretations can be made for use and management. The pattern and proportion of the soils or miscellaneous areas in a mapped area are not uniform. An area can be made up of only one of the major soils or miscellaneous areas, or it can be made up of all of them. Alpha and Beta soils, 0 to 2 percent slopes, is an example.

Some surveys include *miscellaneous areas*. Such areas have little or no soil material and support little or no vegetation. Rock outcrop is an example.

Bernalillo County and Parts of Sandoval and Valencia Counties, New Mexico

Cu—Cut and fill land

Map Unit Setting

National map unit symbol: 1vwr Elevation: 4,850 to 6,000 feet Mean annual precipitation: 7 to 10 inches Mean annual air temperature: 58 to 60 degrees F Frost-free period: 170 to 195 days Farmland classification: Not prime farmland

Map Unit Composition

Cut and fill land: 100 percent *Estimates are based on observations, descriptions, and transects of the mapunit.*

Description of Cut And Fill Land

Setting

Landform: Scarp slopes Down-slope shape: Linear Across-slope shape: Linear

EtC—Embudo-Tijeras complex, 0 to 9 percent slopes

Map Unit Setting

National map unit symbol: 1vwt Elevation: 2,700 to 7,000 feet Mean annual precipitation: 5 to 16 inches Mean annual air temperature: 48 to 70 degrees F Frost-free period: 130 to 250 days Farmland classification: Not prime farmland

Map Unit Composition

Embudo and similar soils: 50 percent *Tijeras and similar soils:* 35 percent *Minor components:* 15 percent *Estimates are based on observations, descriptions, and transects of the mapunit.*

Description of Embudo

Setting

Landform: Terraces Landform position (three-dimensional): Tread Down-slope shape: Concave Across-slope shape: Linear Parent material: Alluvium derived from igneous and sedimentary rock
Typical profile

- H1 0 to 4 inches: gravelly fine sandy loam
- H2 4 to 20 inches: gravelly sandy loam
- H3 20 to 60 inches: stratified gravelly loamy coarse sand to very gravelly loamy sand

Properties and qualities

Slope: 0 to 5 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Well drained
Runoff class: Very low
Capacity of the most limiting layer to transmit water (Ksat): High (2.00 to 6.00 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: RareNone
Frequency of ponding: None
Calcium carbonate, maximum content: 7 percent
Maximum salinity: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)
Sodium adsorption ratio, maximum: 2.0
Available water supply, 0 to 60 inches: Low (about 3.4 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 7e Hydrologic Soil Group: A Ecological site: R042XA051NM - Sandy Hydric soil rating: No

Description of Tijeras

Setting

Landform: Fan remnants Down-slope shape: Linear Across-slope shape: Linear Parent material: Alluvium derived from igneous and sedimentary rock

Typical profile

H1 - 0 to 4 inches: gravelly fine sandy loam

H2 - 4 to 14 inches: sandy clay loam

H3 - 14 to 19 inches: gravelly sandy loam

H4 - 19 to 60 inches: stratified very gravelly sand to very gravelly sandy loam

Properties and qualities

Slope: 1 to 9 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Well drained
Runoff class: Medium
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.60 to 2.00 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum content: 5 percent
Maximum salinity: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)
Sodium adsorption ratio, maximum: 2.0
Available water supply, 0 to 60 inches: Low (about 5.2 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 7c Hydrologic Soil Group: B Ecological site: R042XA051NM - Sandy Hydric soil rating: No

Minor Components

Tesajo

Percent of map unit: 5 percent Ecological site: R035XG114NM - Gravelly Hydric soil rating: No

Millett

Percent of map unit: 5 percent Ecological site: R035XG114NM - Gravelly Hydric soil rating: No

Wink

Percent of map unit: 5 percent Ecological site: R042XA052NM - Loamy Hydric soil rating: No

References

American Association of State Highway and Transportation Officials (AASHTO). 2004. Standard specifications for transportation materials and methods of sampling and testing. 24th edition.

American Society for Testing and Materials (ASTM). 2005. Standard classification of soils for engineering purposes. ASTM Standard D2487-00.

Cowardin, L.M., V. Carter, F.C. Golet, and E.T. LaRoe. 1979. Classification of wetlands and deep-water habitats of the United States. U.S. Fish and Wildlife Service FWS/OBS-79/31.

Federal Register. July 13, 1994. Changes in hydric soils of the United States.

Federal Register. September 18, 2002. Hydric soils of the United States.

Hurt, G.W., and L.M. Vasilas, editors. Version 6.0, 2006. Field indicators of hydric soils in the United States.

National Research Council. 1995. Wetlands: Characteristics and boundaries.

Soil Survey Division Staff. 1993. Soil survey manual. Soil Conservation Service. U.S. Department of Agriculture Handbook 18. http://www.nrcs.usda.gov/wps/portal/ nrcs/detail/national/soils/?cid=nrcs142p2_054262

Soil Survey Staff. 1999. Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys. 2nd edition. Natural Resources Conservation Service, U.S. Department of Agriculture Handbook 436. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2_053577

Soil Survey Staff. 2010. Keys to soil taxonomy. 11th edition. U.S. Department of Agriculture, Natural Resources Conservation Service. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2 053580

Tiner, R.W., Jr. 1985. Wetlands of Delaware. U.S. Fish and Wildlife Service and Delaware Department of Natural Resources and Environmental Control, Wetlands Section.

United States Army Corps of Engineers, Environmental Laboratory. 1987. Corps of Engineers wetlands delineation manual. Waterways Experiment Station Technical Report Y-87-1.

United States Department of Agriculture, Natural Resources Conservation Service. National forestry manual. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/ home/?cid=nrcs142p2 053374

United States Department of Agriculture, Natural Resources Conservation Service. National range and pasture handbook. http://www.nrcs.usda.gov/wps/portal/nrcs/ detail/national/landuse/rangepasture/?cid=stelprdb1043084

United States Department of Agriculture, Natural Resources Conservation Service. National soil survey handbook, title 430-VI. http://www.nrcs.usda.gov/wps/portal/ nrcs/detail/soils/scientists/?cid=nrcs142p2_054242

United States Department of Agriculture, Natural Resources Conservation Service. 2006. Land resource regions and major land resource areas of the United States, the Caribbean, and the Pacific Basin. U.S. Department of Agriculture Handbook 296. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/? cid=nrcs142p2_053624

United States Department of Agriculture, Soil Conservation Service. 1961. Land capability classification. U.S. Department of Agriculture Handbook 210. http://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs142p2_052290.pdf

AASHTO Group Classification (Surface)—Bernalillo County and Parts of Sandoval and Valencia Counties, New Mexico

	ž	MAP LEGEND			MAP INFORMATION
Area of Interest (AOI) Area of Interest (AOI)	2	A-2-4		A-7 ^ 7 5	The soil surveys that comprise your AOI were mapped at 1:24,000.
Soils	\$ }	A-2-6		A-7-6	Warning: Soil Map may not be valid at this scale.
Soil Rating Polygons	ł	A-2-7		A-8	Enlargement of maps beyond the scale of mapping can cause
A-1-a	ł	A-3		Not rated or not available	misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of
A-1-b	5	A-4	Water Features	tures	contrasting soils that could have been shown at a more detailed scale.
A-2	2	A-5	ζ	Streams and Canals	
A-2-4	ł	A-6	Transportation	ation Rails	Please rely on the bar scale on each map sheet for map measurements.
A-2-5	Ş	A-7		Interstate Highways	Source of Map: Natural Resources Conservation Service
A-2-6	ł	A-7-5	2	US Routes	Web Soil Survey URL: Coordinate Svstem: Web Mercator (EPSG:3857)
A-2-7	5	A-7-6	1	Maior Roads	Mans from the Web Soil Survey are based on the Web Mercator
A-3	Ş	A-8	} }	l ocal Roads	projection, which preserves direction and shape but distorts
A-4	1	Not rated or not available	Background		distance and area. A projection that preserves area, such as the Albers equal-area conic projection should be used if more
A-5	Soil Rat	Soil Rating Points	no Bunno	Aerial Photography	accurate calculations of distance or area are required.
A-6		A-1			This product is generated from the USDA-NRCS certified data
A-7		A-1-a			as of the version date(s) listed below.
A-7-6		A-1-b			Soil Survey Area: Bernalillo County and Parts of Sandoval and
A-7-6		A-2			varenda Countes, new mexico Survey Area Data: Version 16, Sep 12, 2021
		A-2-4			Soil map units are labeled (as space allows) for map scales
Not rotad ar not available		A-2-5			1:50,000 or larger.
		A-2-6			Date(s) aerial images were photographed: Nov 22, 2020—Jan 1 2021
A-1		A-2-7			1, 505 . The orthorhote or other here were an which the coil linee were
A-1-a		A-3			compiled and digitized probably differs from the background
A-1-b		A-4			imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.
🖌 A-2		A-5			-
		A-6			

AASHTO Group Classification (Surface)

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
Cu	Cut and fill land		0.9	13.8%
EtC	Embudo-Tijeras complex, 0 to 9 percent slopes	A-2	5.9	86.2%
Totals for Area of Intere	est		6.9	100.0%

Description

AASHTO group classification is a system that classifies soils specifically for geotechnical engineering purposes that are related to highway and airfield construction. It is based on particle-size distribution and Atterberg limits, such as liquid limit and plasticity index. This classification system is covered in AASHTO Standard No. M 145-82. The classification is based on that portion of the soil that is smaller than 3 inches in diameter.

The AASHTO classification system has two general classifications: (i) granular materials having 35 percent or less, by weight, particles smaller than 0.074 mm in diameter and (ii) silt-clay materials having more than 35 percent, by weight, particles smaller than 0.074 mm in diameter. These two divisions are further subdivided into seven main group classifications, plus eight subgroups, for a total of fifteen for mineral soils. Another class for organic soils is used.

For each soil horizon in the database one or more AASHTO Group Classifications may be listed. One is marked as the representative or most commonly occurring. The representative classification is shown here for the surface layer of the soil.

Rating Options

Aggregation Method: Dominant Condition Component Percent Cutoff: None Specified Tie-break Rule: Lower Layer Options (Horizon Aggregation Method): Surface Layer (Not applicable)

Engineering Properties

This table gives the engineering classifications and the range of engineering properties for the layers of each soil in the survey area.

Hydrologic soil group is a group of soils having similar runoff potential under similar storm and cover conditions. The criteria for determining Hydrologic soil group is found in the National Engineering Handbook, Chapter 7 issued May 2007(http://directives.sc.egov.usda.gov/OpenNonWebContent.aspx? content=17757.wba). Listing HSGs by soil map unit component and not by soil series is a new concept for the engineers. Past engineering references contained lists of HSGs by soil series. Soil series are continually being defined and redefined, and the list of soil series names changes so frequently as to make the task of maintaining a single national list virtually impossible. Therefore, the criteria is now used to calculate the HSG using the component soil properties and no such national series lists will be maintained. All such references are obsolete and their use should be discontinued. Soil properties that influence runoff potential are those that influence the minimum rate of infiltration for a bare soil after prolonged wetting and when not frozen. These properties are depth to a seasonal high water table, saturated hydraulic conductivity after prolonged wetting, and depth to a layer with a very slow water transmission rate. Changes in soil properties caused by land management or climate changes also cause the hydrologic soil group to change. The influence of ground cover is treated independently. There are four hydrologic soil groups, A, B, C, and D, and three dual groups, A/D, B/D, and C/D. In the dual groups, the first letter is for drained areas and the second letter is for undrained areas.

The four hydrologic soil groups are described in the following paragraphs:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

Depth to the upper and lower boundaries of each layer is indicated.

Texture is given in the standard terms used by the U.S. Department of Agriculture. These terms are defined according to percentages of sand, silt, and clay in the fraction of the soil that is less than 2 millimeters in diameter. "Loam," for example, is soil that is 7 to 27 percent clay, 28 to 50 percent silt, and less than 52 percent sand. If the content of particles coarser than sand is 15 percent or more, an appropriate modifier is added, for example, "gravelly."

Classification of the soils is determined according to the Unified soil classification system (ASTM, 2005) and the system adopted by the American Association of State Highway and Transportation Officials (AASHTO, 2004).

The Unified system classifies soils according to properties that affect their use as construction material. Soils are classified according to particle-size distribution of the fraction less than 3 inches in diameter and according to plasticity index, liquid limit, and organic matter content. Sandy and gravelly soils are identified as GW, GP, GM, GC, SW, SP, SM, and SC; silty and clayey soils as ML, CL, OL, MH, CH, and OH; and highly organic soils as PT. Soils exhibiting engineering properties of two groups can have a dual classification, for example, CL-ML.

The AASHTO system classifies soils according to those properties that affect roadway construction and maintenance. In this system, the fraction of a mineral soil that is less than 3 inches in diameter is classified in one of seven groups from A-1 through A-7 on the basis of particle-size distribution, liquid limit, and plasticity index. Soils in group A-1 are coarse grained and low in content of fines (silt and clay). At the other extreme, soils in group A-7 are fine grained. Highly organic soils are classified in group A-8 on the basis of visual inspection.

If laboratory data are available, the A-1, A-2, and A-7 groups are further classified as A-1-a, A-1-b, A-2-4, A-2-5, A-2-6, A-2-7, A-7-5, or A-7-6. As an additional refinement, the suitability of a soil as subgrade material can be indicated by a group index number. Group index numbers range from 0 for the best subgrade material to 20 or higher for the poorest.

Percentage of rock fragments larger than 10 inches in diameter and 3 to 10 inches in diameter are indicated as a percentage of the total soil on a dry-weight basis. The percentages are estimates determined mainly by converting volume percentage in the field to weight percentage. Three values are provided to identify the expected Low (L), Representative Value (R), and High (H).

Percentage (of soil particles) passing designated sieves is the percentage of the soil fraction less than 3 inches in diameter based on an ovendry weight. The sieves, numbers 4, 10, 40, and 200 (USA Standard Series), have openings of 4.76, 2.00, 0.420, and 0.074 millimeters, respectively. Estimates are based on laboratory tests of soils sampled in the survey area and in nearby areas and on estimates made in the field. Three values are provided to identify the expected Low (L), Representative Value (R), and High (H).

Liquid limit and *plasticity index* (Atterberg limits) indicate the plasticity characteristics of a soil. The estimates are based on test data from the survey area or from nearby areas and on field examination. Three values are provided to identify the expected Low (L), Representative Value (R), and High (H).

References:

American Association of State Highway and Transportation Officials (AASHTO). 2004. Standard specifications for transportation materials and methods of sampling and testing. 24th edition.

American Society for Testing and Materials (ASTM). 2005. Standard classification of soils for engineering purposes. ASTM Standard D2487-00.

Engineering Properties---Bernalillo County and Parts of Sandoval and Valencia Counties, New Mexico

Report—Engineering Properties

Absence of an entry indicates that the data were not estimated. The asterisk ** denotes the representative texture; other possible textures follow the dash. The criteria for determining the hydrologic soil group for individual soil components is found in the National Engineering Handbook, Chapter 7 issued May 2007(http://directives.sc.egov.usda.gov/ OpenNonWebContent.aspx?content=17757.wba). Three values are provided to identify the expected Low (L), Representative Value (R), and High (H).

		Engine	ering Pro	Engineering Properties–Bernalillo County and Parts of Sandoval and Valencia Counties, New Mexico	unty and Pa	arts of Sand	loval and	Valencia (Counties,	New Mexi	CO			
	Pct. of	Hydrolo	Depth	USDA texture	Classif	Classification	Pct Fra	Pct Fragments	Percenta	ge passin	Percentage passing sieve number-	umber—	Liquid	Plasticit
	unit	group			Unified	AASHTO	>10 inches	3-10 inches	4	10	40	200		y maex
-			Ч				L-R-H	L-R-H	L-R-H	L-R-H	L-R-H	L-R-H	L-R-H	L-R-H
	50	A	0-4	Gravelly fine sandy loam	SM	A-2, A-4	0-0-0	0-0-0	65-78- 90	50-63- 75	40-48- 55	30-35- 40	17-23 -28	2-6 -10
			4-20	Gravelly sandy loam, gravelly coarse sandy loam	SM	A-2	0-0-0	0-0-0	65-78- 90	50-63- 75	35-40- 45	25-30- 35	17-22 -27	2-6 -10
			20-60	Stratified gravelly loamy coarse sand to very gravelly loamy sand	SM, SP- SM	A-1	0-0-0	0-0-0	64-69- 76	29-49- 76	15-27- 44	6-11- 19	16-19 -23	2-4 -6
	35	В	0-4	Gravelly fine sandy loam	sc	A-2, A-4	0-0-0	0- 8- 15	80-88- 95	60-68- 75	45-50- 55	30-35- 40	21-25 -28	6-8 -10
			4-14	Sandy clay loam	CL, SC	A-2, A-6	0-0-0	0-0-0	85-93-1 00	75-83- 90	40-58- 75	30-48- 65	29-35 -40	13-17-2 1
			14-19	Gravelly sandy loam	sc	A-2	0-0-0	0-0-0	85-90- 95	65-70- 75	45-48- 50	25-28- 30	20-24 -27	6-8 -10
			19-60	Stratified very gravelly sand to very gravelly sandy loam	SM	A-1	0-0-0	0-0-0	78-82- 90	34-56- 88	25-43- 69	12-21- 36	16-19 -23	2-4 -6

1/17/2022 Page 4 of 5

Web Soil Survey National Cooperative Soil Survey

Natural Resources Conservation Service

NSDA

Data Source Information

Soil Survey Area: Bernalillo County and Parts of Sandoval and Valencia Counties, New Mexico Survey Area Data: Version 16, Sep 12, 2021

Web Soil Survey National Cooperative Soil Survey

Natural Resources Conservation Service

USDA

Corrosion of Steel-Bernalillo County and Parts of Sandoval and Valencia Counties, New Mexico

MAP LE	EGEND	MAP INFORMATION
rest (AOI) Area of Interest (AOI)	Background Aerial Photography	The soil surveys that comprise your AOI were mapped at 1:24,000.
		Warning: Soil Map may not be valid at this scale.
		Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil
		line placement. The maps do not show the small areas of
		contrasting soils that could have been shown at a more detailed scale.
Not rated or not available		Diasce rely on the har snale on each man sheet for man
		n rease rely on the bal scale on each map sheet to map measurements.
		Source of Map: Natural Resources Conservation Service
		Web Soil Survey URL:
		Coordinate System: Web Mercator (EPSG:3857)
Not rated or not available		Maps from the Web Soil Survey are based on the Web Mercator projection. which preserves direction and shape but distorts
		distance and area. A projection that preserves area, such as the
		Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required.
		This product is generated from the USDA-NRCS certified data as
		of the version date(s) listed below.
Not rated or not available		Soil Survey Area: Bernalillo County and Parts of Sandoval and
		Valencia Counties, New Mexico Survey Area Data: Voreion 16, Sen 12, 2021
Streams and Canals		ouivey Area Data. Versioni To, oep 12, 2021
		Soll map units are labeled (as space allows) for map scales 1:50.000 or larger.
		Data(s) aarial imaras wara nhotorranhad - Nov 22-2020 - Ian 1
Interstate Highways		2021 2021
		The orthophoto or other base map on which the soil lines were
Major Roads		compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor
Local Roads		shifting of map unit boundaries may be evident.

Natural Resources Conservation Service

NSDA

Corrosion of Steel

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
Cu	Cut and fill land		0.9	13.8%
EtC	Embudo-Tijeras complex, 0 to 9 percent slopes	High	5.9	86.2%
Totals for Area of Intere	est		6.9	100.0%

Description

"Risk of corrosion" pertains to potential soil-induced electrochemical or chemical action that corrodes or weakens uncoated steel. The rate of corrosion of uncoated steel is related to such factors as soil moisture, particle-size distribution, acidity, and electrical conductivity of the soil. Special site examination and design may be needed if the combination of factors results in a severe hazard of corrosion. The steel in installations that intersect soil boundaries or soil layers is more susceptible to corrosion than the steel in installations that are entirely within one kind of soil or within one soil layer.

The risk of corrosion is expressed as "low," "moderate," or "high."

Rating Options

Aggregation Method: Dominant Condition Component Percent Cutoff: None Specified Tie-break Rule: Higher

Corrosion of Concrete—Bernalillo County and Parts of Sandoval and Valencia Counties, New Mexico

MAP L		MAP INFORMATION
rest (AOI) Area of Interest (AOI)	Background Aerial Photography	The soil surveys that comprise your AOI were mapped at 1:24,000.
		Warning: Soil Map may not be valid at this scale.
		Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil
		line placement. The maps do not show the small areas of
		contrasung soils that could have been shown at a more detailed scale.
Not rated or not available	ble	Please relv on the bar scale on each man sheet for man
		neasurements.
		Source of Map: Natural Resources Conservation Service
		Web Soil Survey URL:
		Coordinate System: Web Mercator (EPSG:3857)
Not rated or not available	ble	Maps from the Web Soil Survey are based on the Web Mercator projection. which preserves direction and shape but distorts
		distance and area. A projection that preserves area, such as the
		Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required.
		This product is generated from the USDA-NRCS certified data as
		of the version date(s) listed below.
Not rated or not available	ble	Soil Survey Area: Bernalillo County and Parts of Sandoval and
		Valencia Counties, New Mexico Survey Area Data: Version 16 Sen 12 2021
Streams and Canals		
		Soll map units are labeled (as space allows) for map scales 1:50,000 or larger.
		Date(s) aerial imanes were nhotonranhed. Nov 22 2020— Jan 1
Interstate Highways		Date(y) actian minages were prioregraphica. Two 22, 2020-2021
		The orthophoto or other base map on which the soil lines were
Major Roads		compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor
		shifting of map unit boundaries may be evident.

Natural Resources Conservation Service

NSDA

Corrosion of Concrete

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
Cu	Cut and fill land		0.9	13.8%
EtC	Embudo-Tijeras complex, 0 to 9 percent slopes	Low	5.9	86.2%
Totals for Area of Intere	est		6.9	100.0%

Description

"Risk of corrosion" pertains to potential soil-induced electrochemical or chemical action that corrodes or weakens concrete. The rate of corrosion of concrete is based mainly on the sulfate and sodium content, texture, moisture content, and acidity of the soil. Special site examination and design may be needed if the combination of factors results in a severe hazard of corrosion. The concrete in installations that intersect soil boundaries or soil layers is more susceptible to corrosion than the concrete in installations that are entirely within one kind of soil or within one soil layer.

The risk of corrosion is expressed as "low," "moderate," or "high."

Rating Options

Aggregation Method: Dominant Condition Component Percent Cutoff: None Specified Tie-break Rule: Higher

Depth to Any Soil Restrictive Layer-Bernalillo County and Parts of Sandoval and Valencia Counties, New Mexico

Depth to Any Soil Restrictive Layer

Map unit symbol	Map unit name	Rating (centimeters)	Acres in AOI	Percent of AOI
Cu	Cut and fill land	>200	0.9	13.8%
EtC	Embudo-Tijeras complex, 0 to 9 percent slopes	>200	5.9	86.2%
Totals for Area of Intere	est		6.9	100.0%

Description

A "restrictive layer" is a nearly continuous layer that has one or more physical, chemical, or thermal properties that significantly impede the movement of water and air through the soil or that restrict roots or otherwise provide an unfavorable root environment. Examples are bedrock, cemented layers, dense layers, and frozen layers.

This theme presents the depth to any type of restrictive layer that is described for each map unit. If more than one type of restrictive layer is described for an individual soil type, the depth to the shallowest one is presented. If no restrictive layer is described in a map unit, it is represented by the "greater than 200" depth class.

This attribute is actually recorded as three separate values in the database. A low value and a high value indicate the range of this attribute for the soil component. A "representative" value indicates the expected value of this attribute for the component. For this soil property, only the representative value is used.

Rating Options

Units of Measure: centimeters Aggregation Method: Dominant Component Component Percent Cutoff: None Specified Tie-break Rule: Lower Interpret Nulls as Zero: No

Appendix C

Preliminary Cost Estimate

ENGINEER'S CONCEPTUAL ESTIMATE - LOUISIANA BLVD AND INDIAN SCHOOL RD INTERSECTION

CITY ITEM				ESTIN	IATE
NO.	DESCRIPTION	UNIT	QTY.	UNIT PRICE	EST. COST
4.01	CONSTRUCTION STAKING, COMPL	LS	1	\$5,547.66	\$6,000.00
6.01	CONSTRUCTION PROJECT SIGN, PER CONTRACT SPECIAL PROVISIONS, CIP	EA	2	\$275.00	\$550.00
19.010	CONSTRUCTION TRAFFIC CONTROL & BARRICADING, COMPL	LS	1	\$8,321.48	\$9,000.00
116.012	ASPHALT CONCRETE, MATERIAL ARTERIAL, GRADATION SP-III, COMPL	TON	50	\$80.00	\$4,000.00
301.011	ANY COMBINATION OF CUT/FILL AND/OR BALANCE AND/OR GRADING, LESS THAN 2' EXCAV, NO IMPORT OR EXPORT OF MATERIAL, CIP AT 95% COMPACTION	SY	325	\$3.00	\$975.00
301.02	SUBGRADE PREP 12" AT 95% COMPACTION	SY	225	\$6.50	\$1,462.50
302.01	AGGREGATE BASE COURSE, CRUSHED, 6" AT 95% COMPACTION, CIP. SD 2408	SY	225	\$7.50	\$1.687.50
336.01	PRIME COAT. EMULSIFIED ASPHALT. CIP	SY	225	\$1.00	\$225.00
336.08	ASPHALT CONCRETE, PLACEMENT, 3" THICK, ARTERIAL GRADATION SP-III OR SP-IV W/O MACHINE LAYDOWN, MATERIALS PAID SEPARATELY, CIP	SY	675	\$40.00	\$27,000.00
336.12	TACK COAT, CATIONIC EMULSIFIED ASPHALT, CIP	SY	225	\$1.00	\$225.00
340.01	SIDEWALK, 4" THICK, PCC, INCL. SUBGRADE COMPACTION, CIP, SD 2430	SY	345	\$40.00	\$13,800.00
340.023	CURB ACCESS RAMP, 4" PCC, STD. CURB, CIP	SY	30	\$60.00	\$1,800.00
340.029	DETECTABLE WARNING SURFACES FOR ADA RAMPS	SF	50	\$25.00	\$1,250.00
340.05	CURB & GUTTER, STANDARD, PORTLAND CEMENT CONCRETE, INCL. SUBGRADE PREPARATION, CIP, SD 2415	LF	5,710	\$20.00	\$114,200.00
340.11	HEADER CURB, PORTLAND CEMENT CONCRETE, INCL. SUBGRADE, CIP, SD 2415	LF	90	\$20.00	\$1,800.00
343.03	EXISTING PAVEMENT, ASPHALT CONCRETE, MORE THAN 4" THICK, SAWCUT, REMOVE AND DISPOSE, COMPL	SY	1,050	\$10.00	\$10,500.00
343.04	EXISTING PAVEMENT, PC CONCRETE, UP TO 6" THICK, SAWCUT, REMOVE AND DISPOSE, COMPL	SY	20	\$15.00	\$300.00
343.08	EXISTING CURB & GUTTER OR VALLEY GUTTER, PC CONCRETE, REMOVE & DISPOSE, COMPL.	LF	1,020	\$6.50	\$6,630.00
343.085	EXISTING SIDEWALK, 4" PC CONCRETE, REMOVE & DISPOSE	SY	300	\$6.50	\$1,950.00
421.015	SERVICE CONNECTION (SIGNAL), CIP	EA	1	\$300.00	\$300.00
422.002	TRAFFIC SIGNAL PEDESTAL POLE, 10', CIP	EA	3	\$800.00	\$2,400.00
422.11X	TRAFFIC SIGNAL MASTARM, ANY SIZE, REMOVE & RELOCATE, COMPL	EA	3	\$8,500.00	\$25,500.00
423.001	TRAFFIC SIGNAL FOUNDATION FOR PEDESTAL POLE, CIP	EA	3	\$500.00	\$1,500.00
423.101	TRAFFIC SIGNAL FOUNDATION MASTARM, REMOVE & DISPOSE, COMPL	EA	3	\$650.00	\$1,950.00
424.012	ELECTRICAL CONDUIT, 3", INCLUDING PUSHING, BORING, AND JACKING, CIP.	LF	590	\$10.00	\$5,900.00
425.003	ELECTRICAL PULL BOX (LARGE) CIP.	EA	2	\$550.00	\$1,100.00
425.1	ELECTRICAL PULL BOX, ANY TYPE, ADJUST TO GRADE, CIP	EA	7	\$300.00	\$2,100.00
425.101	ELECTRICAL PULL BOX, ANY TYPE, REMOVE & DISPOSE, CIP	EA	4	\$100.00	\$400.00
426.003	SINGLE CONDUCTOR #6, CIP	LF	1,755	\$2.00	\$3,510.00
426.010	MULTI-CONDUCTOR CABLE, #5, CIP	LF	1,000	\$1.50	\$1,500.00
426.014	MULTI-CONDUCTOR CABLE, #20, CIP	LF	1,500	\$4.00	\$6.000.00
426.02X	COMMUNICATION CABLE, ONE PAIR, CIP	LF	40	\$3.00	\$120.00
426.101	EXISTING WIRING, REMOVE & DISPOSE, COMPL	LS	1	\$1,500.00	\$1.500.00
427.023	PEDESTRIAN SIGNAL, L.E.D., COUNTDOWN, CIP	EA	4	\$600.00	\$2,400.00
427.121	PEDESTRIAN SIGNAL, ANY TYPE, REMOVE & SALVAGE, COMPL	EA	4	\$75.00	\$300.00
428.01	PUSH BUTTON STATION, CIP	EA	4	\$350.00	\$1,400.00
428.011	PUSH BUTTON STATION, REMOVE & SALVAGE, COMPL	EA	4	\$75.00	\$300.00
428.078	OPTICAL DETECTOR CABLE, CIP	LF	135	\$1.25	\$168.75
441.001	REFLECTORIZED PLASTIC PAVEMENT MARKINGS, 4" WIDTH, CIP	LF	250	\$1.30	\$325.00
441.002	REFLECTORIZED PLASTIC PAVEMENT MARKINGS, 6" WIDTH, CIP	LF	50	\$1.55	\$77.50
441.005	REFLECTORIZED PLASTIC PAVEMENT MARKINGS, 24" WIDTH, CIP	LF	90	\$6.85	\$616.50
441.031	REFLECTORIZED PLASTIC SYMBOL, BICYCLE, CIP	EA	2	\$210.00	\$420.00
450.101	SIGN, POST & BASE POST, REMOVE AND SALVAGE, COMPL	EA	3	\$50.00	\$420.00
621.4.1	MOBILIZATION, COMPL	LA	1	\$13,869.14	\$130.00
701.1	TRENCHING, BACKFILLING & COMPACTION, FOR 18" TO 36" SEWER PIPE, UP TO 8' IN DEPTH, PIPE NOT INCL., COMPL	LF	12	\$13,869.14	\$360.00
	BACKFILL MATERIAL. SELECT. INCL. COMPACTION. CIP	CY	5	\$20.00	\$100.00

ENGINEER'S CONCEPTUAL ESTIMATE - LOUISIANA BLVD AND INDIAN SCHOOL RD INTERSECTION

CITY ITEM				ESTIN	IATE
NO.	DESCRIPTION	UNIT	QTY.	UNIT PRICE	EST. COST
801.111	VALVE BOX, ADJUST TO GRADE, CIP	EA	1	\$500.00	\$500.00
910.005	18" REINFORCED CONCRETE PIPE, CLASS III, FURNISH & PLACE IN OPEN TRENCH, CIP	LF	12	\$40.00	\$480.00
910.103	DRAINLINE REMOVAL, 10" TO 18", EXCL. TRENCHING, COMPL	LF	14	\$25.00	\$350.00
915.03	CATCH BASIN, TYPE "C", SINGLE GRATE, CIP, SD 2205	EACH	1	\$3,500.00	\$3,500.00
915.04	CATCH BASIN, TYPE "C", DOUBLE GRATE, CIP, SD 2205	EACH	2	\$5,000.00	\$10,000.00
915.07	CATCH BASIN, EXISTING, REMOVE & DISPOSE, ANY TYPE, INCL. CLEANUP, COMPL, SD 2200	EACH	3	\$800.00	\$2,400.00
920.01	MANHOLE, 4' DIA, TYPE "C", LESS THAN 6' DEEP, CIP, SD 2101	EACH	2	\$3,000.00	\$6,000.00
920.42	EXISTING MANHOLE FRAME & COVER, ADJUST TO PAVEMENT GRADE WHERE ADJUSTMENT OF CONCRETE OR BLOCK BARREL IS REQUIRED, CIP	EACH	1	\$1,000.00	\$1,000.00
1005.32	GRAVEL MULCH 2"-4" CANYON GOLD, INCL. FILTER FABRIC, CIP	SY	325	\$12.00	\$3,900.00
1006.3	REMOVE ABOVE GRADE SEDIMENT AND DEBRIS FROM EXISTING CULVERTS AND DRAINAGE STRUCTURES, COMPL	LS	1	\$500.00	\$500.00
				SUBTOTAL	\$306,382.75

CONTINGENCY, 30% \$91,91 SUBTOTAL \$398,29 NMGRT, 7.875% \$31,36 SUBTOTAL \$429,66 CITY/ENGINEERING FEES/CM, 6% \$25,77 INSPECTION, SURVEY, TESTING, 2% \$8,59	6.59
CONTINGENCY, 30% \$91,91 SUBTOTAL \$398,29 NMGRT, 7.875% \$31,36 SUBTOTAL \$429,66	3.27
CONTINGENCY, 30% \$91,91 SUBTOTAL \$398,29 NMGRT, 7.875% \$31,36	9.81
CONTINGENCY, 30% \$91,91 SUBTOTAL \$398,29	3.51
CONTINGENCY, 30% \$91,91 SUBTOTAL \$398,29	5.93
	7.58
	4.83
CONSTRUCTION SUBTOTAL \$306,38	2.75

ENGINEER'S CONCEPTUAL ESTIMATE - HAWK SIGNAL INDIAN SCHOOL RD AND Q STREET

CITY ITEM				ESTIM	
NO.	DESCRIPTION	UNIT	QTY.	UNIT PRICE	EST. COST
4.01	CONSTRUCTION STAKING, COMPL	LS	1	\$5,308.10	\$6,000.0
4.02	CONSTRUCTION SURVEYING, COMPL	LS	1	\$7,962.14	\$8,000.0
6.01	CONSTRUCTION PROJECT SIGN, PER CONTRACT SPECIAL PROVISIONS	EA	2	\$650.00	\$1,300.00
19.01	CONSTRUCTION TRAFFIC CONTROL & BARRICADING, COMPL	LS	1	\$24,000.00	\$24,000.0
116.012	ARTERIAL ASPHALT CONCRETE TYPE B, COMPL	TON	2	\$500.00	\$1,000.00
301.02	SUBGRADE PREP. 12" AT 95% COMPACTION, CIP	SY	75	\$7.00	\$525.00
302.01	AGGREGATE BASE COURSE, CRUSHED, 6" AT 95% COMPACTION, CIP. SD 2408	SY	75	\$13.00	\$975.0
336.01	PRIME COAT, EMULSIFIED ASPHALT, CIP	SY	75	\$1.25	\$93.75
336.08	ASPHALT CONCRETE, PLACEMENT, 3" THICK, ARTERIAL, GRADATION SP-II AND SP-III OR SP-IV				
	W/O MACHINE LAYDOWN, MATERIALS PAID SEPARATELY, CIP	SY	75	\$40.00	\$3,000.00
336.12	TACK COAT, CATIONIC EMULSIFIED ASPHALT, CIP	SY	75	\$1.25	\$93.7
340.01	SIDEWALK, 4" THICK, PCC, INCL. SUBGRADE COMPACTION, CIP SD 2430	SY	43	\$55.00	\$2,365.0
340.023	ACCESS RAMP, 4" PCC, STD. CURB, CIP. SD 2418	SY	75	\$75.00	\$5,625.00
340.029	DETECTABLE WARNING SURFACE FOR ADA RAMPS, CIP	SF	120	\$31.00	\$3,720.00
340.05	CURB & GUTTER, STANDARD, PORTLAND CEMENT CONCRETE, INCL. SUBGRADE PREPARATION,				.
0.40.00	CIP SD 2415	LF	35	\$40.00	\$1,400.00
340.06	CURB & GUTTER, MEDIAN, PORTLAND CEMENT CONCRETE, CIP SD 2408	LF	650	\$34.00	\$22,100.00
340.11	HEADER CURB, PORTLAND CEMENT CONCRETE, INCL. SUBGRADE, CIP, SD 2415	LF	95	\$27.00	\$2,565.00
343.02	EXISTING PAVEMENT, ASPHALT CONCRETE, REMOVE AND DISPOSE, SAWCUT NOT REQUIRED,			A (A A A	A- (A - A
0.40.00		SY	425	\$12.00	\$5,100.00
343.08	EXISTING CURB & GUTTER OR VALLEY GUTTER, PC CONCRETE, REMOVE & DISPOSE, COMPL.	LF	480	\$12.00	\$5,760.00
343.09	REMOVE AND DISPOSE EXISTING PCC SIDEWALK AND DRIVEPAD	SY	260	\$15.00	\$3,900.00
346.1	TEXTURED PAVEMENT, 4" THICK, COLORED PC CONCRETE, INCL. SUBGRADE COMPACTION, CIP			• · · · · ·	
101.005		SF	3,000	\$12.00	\$36,000.00
421.005	SERVICE RISER (SIGNAL), CIP	EA	1	\$1,650.00	\$1,650.00
421.010		EA	1	\$6,800.00	\$6,800.00
421.015	SERVICE CONNECTION (SIGNAL), CIP	EA	1	\$335.00	\$335.00
422.004	TRAFFIC SIGNAL PEDESTAL POLE, 13', CIP	EA	4	\$1,900.00	\$7,600.00
422.017	TRAFFIC SIGNAL MASTARM, 30' ARM, TYPE III, TROMBONE, CIP	EA	2	\$11,300.00	\$22,600.00
423.001	TRAFFIC SIGNAL FOUNDATION FOR PEDESTAL POLE, CIP	EA	4	\$705.00	\$2,820.00
423.002	TRAFFIC SIGNAL MASTARM FOUNDATION, CIP	EA	2	\$2,330.00	\$4,660.00
423.003	TRAFFIC SIGNAL CONTROLLER FOUNDATION (TYPE M & P CABINET), CIP	EA	1	\$775.00	\$775.0
424.011	ELECTRICAL CONDUIT, 3", INCLUDING TRENCHING, BACKFILL, AND PATCHING, CIP	LF	890	\$38.00	\$33,820.00
425.003	ELECTRICAL PULL BOX (LARGE) CIP.	EA	11	\$935.00	\$10,285.00
426.001	SINGLE CONDUCTOR, #2, CIP.	LF	495	\$2.00	\$990.00
426.003	SINGLE CONDUCTOR, #6, CIP.	LF	1,385	\$2.25	\$3,116.2
426.010	MULTI-CONDUCTOR, #5, CIP.	LF	720	\$2.25	\$1,620.00
426.014	MULTI-CONDUCTOR, #20, CIP.	LF	880	\$8.50	\$7,480.00
427.001	1 SECTION TRAFFIC ASSEMBLY, CIP.	EA	18	\$313.00	\$5,634.00
427.023	PEDESTRIAN SIGNAL (COUNTDOWN), CIP. 1 SECTION BACKPLATE . CIP.	EA	2	\$890.00	\$1,780.00
427.030		EA	12	\$100.00	\$1,200.0
428.010 429.001	PEDESTRIAN PUSH BUTTON STATION, CIP. TRAFFIC ACTUATED CONTROLLER, CIP	EA	4	\$790.00	\$3,160.00
	8 PHASE TRAFFIC CONTROLLER, CIP	EA	1	\$6,150.00	\$6,150.0
429.021 432.00X	LED ROADWAY LUMINAIRE, 250S EQUIVALENT, CIP	EA	1	\$37,900.00	\$37,900.0
432.00X 440.015	REFLECTORIZED PAINT FOR MEDIAN NOSE, CIP.	EA	2	\$1,000.00	\$2,000.00
440.015	REFLECTORIZED PAINT FOR MEDIAN NOSE, CIP. REFLECTORIZED PLASTIC PAVEMENT MARKINGS, 4" WIDTH, CIP	SF	30	\$5.00	\$150.00
441.001	REFLECTORIZED PLASTIC PAVEMENT MARKINGS, 4 WIDTH, CIP	LF	500	\$3.50	\$1,750.00 \$1.050.00
443.101	REMOVAL OF PAVEMENT STRIPE . ANY WIDTH. PAINTED OR PLASTIC. COMPL.	LF LF	150 260	\$7.00 \$3.00	\$1,050.00 \$780.00
450.010	ALUMINUM PANEL SIGN	SF	135	\$3.00	\$780.00
450.010	SQUARE TUBE STEEL POSTS & BASE POSTS FOR ALUMINUM PANEL SIGN, CIP	LF	250	\$15.00	\$2,025.00
450.101	SIGN, POST & BASE POST, REMOVE AND SALVAGE, COMPL	EA	250 1	\$12.00	\$3,000.00 \$52.00
621.4.1	MOBILIZATION, COMPL	LS	1	\$52.00	\$52.00
920.410	EXISTING MANHOLE FRAME AND COVER, ADJUST TO GRADE WITH MASONRY, OVER 2", CIP SD	LO	I	φ 13,∠70.24	φ14,000.0
520.410	2111	EACH	4	\$1,500.00	\$6,000.00
				ALBUQUERQUE	\$324,704.7
		00010			ψομτ, ι υτ. Ι τ
			<u> </u>	SUBTOTAL	\$324,704.7

CONSTRUCTION SUBTOTAL	\$324,704.75
CONTINGENCY, 30%	\$97,411.43
SUBTOTAL	\$422,116.18
NMGRT, 7.875%	\$33,241.65
SUBTOTAL	\$455,357.82
CITY/ENGINEERING FEES/CM, 6%	\$27,321.47
INSPECTION, SURVEY, TESTING, 2%	\$9,107.16
TOTAL	\$491,786.45

UNIT UNIT UNIT PR S), CIP. EA 2 5,5 DN EA 2 5,5 DN EA 2 5,15 CKFILL PATCHING, LF 1,800 \$ LF 1,800 \$ 3,0 VT, CIP. EA 3 \$ CKFILL PATCHING, LF 1,800 \$ LF 1,800 \$ 3,0 VT, CIP. EA 3 \$ LF 150 \$ 3,0 LF 2,000 \$ \$ LF 2,000 \$ \$ EA 3 \$ \$,7 SUBTOTAL BID I SUBTOTAL BID I I SUBTOTAL BID I SUBTOTAL BID I \$ SUBTOTAL BID I SUBTOTAL BID I SUBTOTAL BID I SUBTOTAL BID I SUBTOTAL BID I SUBTOTAL BID I SUBTOTAL BID I I SUBTOTAL BID I SUBTOTAL BID I SUBTOTAL BID I SUBTOTAL BID I					FSTIMATED					
TYPE IV STEEL ITS 40' POLE (FOR PTZ CAMERAS), CIP. EA 2 INSTALL NEW TRAFFIC SIGNAL POLE EXTENSION EA 1 FOUNDATION FOR 40' TYPE IV ITS POLE ECNIDATION FOR 40' TYPE IV ITS POLE EA 2 FOUNDATION FOR 40' TYPE IV ITS POLE ELECTRICAL CONDUIT, 4" INCL TRENCHING, BACKFILL PATCHING, LF 1,800 2 PUSHING, BORING & JACKING, CIP ELECTRICAL CONDUIT, 4" INCLUDING MOUNT, CIP. EA 3 INSTALL NEW TYPE C SIGNAL PULLBOX EA 5 3 INSTALL CCTV (PTZ) CAMERA INCLUDING MOUNT, CIP. EA 3 3 INSTALL CCTV (PTZ) CAMERA INCLUDING MOUNT, CIP. EA 3 3 INSTALL CCTV (PTZ) CAMERA INCLUDING MOUNT, CIP. EA 3 3 INSTALL CCTV (PTZ) CAMERA INCLUDING MOUNT, CIP. EA 3 3 INSTALL CCTV (PTZ) CAMERA INCLUDING MOUNT, CIP. EA 3 3 SINGLE MODE FIBER OPTIC CABLE (34) SINGL EA EA 3 SINGLE MODE FIBER OPTIC CABLE SPLICE SINGL EA 3 3 SINGLE MODE FIBER OPTIC CAURE RESPLICE EA 3 3 EXISTING SPLICE CLOSURE, WITH CABLE SPLICE SINGL EA 3 3 </th <th>#</th> <th>ITEM ID NO.</th> <th>ITEM DESCRIPTION</th> <th>UNIT</th> <th>QUANTITY</th> <th>UNIT PRI</th> <th>ж</th> <th>O L</th> <th>TOTAL</th>	#	ITEM ID NO.	ITEM DESCRIPTION	UNIT	QUANTITY	UNIT PRI	ж	O L	TOTAL	
INSTALL NEW TRAFFIC SIGNAL POLE EXTENSION EA 1 FOUNDATION FOR 40' TYPE IV ITS POLE EA 2 FOUNDATION FOR 40' TYPE IV ITS POLE ELECTRICAL CONDUIT, 4" INCL TRENCHING, BACKFILL PATCHING, EA 2 PUSHING, BORING & JACKING, CIP INSTALL NEW TYPE C SIGNAL PULLBOX EA 5 3 INSTALL NEW TYPE C SIGNAL PULLBOX EA 5 3 3 INSTALL NEW TYPE C SIGNAL PULLBOX EA 3 3 INSTALL NEW TYPE C SIGNAL PULLBOX EA 3 3 INSTALL NEW TYPE C SIGNAL PULLBOX EA 3 3 INSTALL NEW TYPE C SIGNAL PULLBOX EA 3 3 INSTALL NEW TYPE C SIGNAL PULLBOX EA 3 3 INSTALL NEW TYPE C SIGNAL PULLBOX EA 3 3 INSTALL CCTV (PTZ) CAMERA INCLUDING MOUNT, CIP. EA 3 3 INSTALL CCTV (PTZ) CAMERA INCLUDING MOUNT, CIP. EA 3 3 SINGLE MODE FIBER OPTIC CABLE SPLICE EA 3 3 SPLICE CLOSURE RESPLICE EXISTING SPLICE CLOSURE RESPLICE EA 3 3 MANAGED FIELD ETHERNET SWITCH (FS) <td< td=""><td></td><td>422.341</td><td></td><td>EA</td><td>2</td><td></td><td>0.00</td><td>\$</td><td>10,500.00</td></td<>		422.341		EA	2		0.00	\$	10,500.00	
FOUNDATION FOR 40' TYPE IN ITS POLE EA 2 ELECTRICAL CONDUIT, 4" INCL TRENCHING, BACKFILL PATCHING, EA 2 PUSHING, BORING & JACKING, CIP ELECTRICAL CONDUIT, 4" INCL TRENCHING, BACKFILL PATCHING, EA 5 NISTALL NEW TYPE C SIGNAL PULLBOX EA 3 3 3 INSTALL NEW TYPE C SIGNAL PULLBOX EA 3 3 INSTALL NEW TYPE C SIGNAL PULLBOX EA 3 3 INSTALL NEW TYPE C SIGNAL PULLBOX EA 3 3 INSTALL NEW TYPE C SIGNAL PULLBOX EA 3 3 INSTALL NEW TYPE C SIGNAL PULLBOX EA 3 3 INSTALL NEW TYPE C SIGNAL PULLBOX EA 3 3 INSTALL CCTV (PTZ) CAMERA INCLUDING MOUNT, CIP. EA 3 3 INSTALL CCTV (PTZ) CAMERA INCLUDING MOUNT, CIP. EA 3 3 SINGLE MODE FIBER OPTIC CABLE (e) INSTALL CCTV (PTZ) CAMERA INCLUDING MOUNT, CIP. EA 3 SINGLE MODE FIBER OPTIC CABLE SPLICE SPLICE CLOSURE, WITH CABLE SPLICE EA 3 3 SPLICE CLOSURE, WITH CABLE SPLICE SPLICE CLOSURE RESPLICE EA 3 3 <tr< td=""><td></td><td>422.342</td><td>INSTALL NEW TRAFFIC SIGNAL POLE EXTENSION</td><td>EA</td><td>÷</td><td></td><td>0.00</td><td>Ś</td><td>2,000.00</td></tr<>		422.342	INSTALL NEW TRAFFIC SIGNAL POLE EXTENSION	EA	÷		0.00	Ś	2,000.00	
ELECTRICAL CONDUIT, 4" INCL TRENCHING, BACKFILL PATCHING, LF 1,800 PUSHING, BORING & JACKING, CIP EA 5 PUSHING, BORING & JACKING, CIP EA 5 INSTALL NEW TYPE C SIGNAL PULLBOX EA 3 ITS SPLICE VAULT, CIP EA 3 ITS SPLICE VAULT, CIP EA 3 INSTALL CCTV (PTZ) CAMERA INCLUDING MOUNT, CIP. EA 3 SINGLE MODE FIBER OPTIC CABLE (6) LF 2,000 SINGLE MODE FIBER OPTIC CABLE (24) EA 3 SINGLE MODE FIBER OPTIC CABLE SPLICE EA 3 SINGLE MODE FIBER OPTIC CABLE SPLICE EA 3 SINGLE MODE FIBER OPTIC CABLE SPLICE EA 3 SPLICE CLOSURE, WITH CABLE SPLICE EA 3 MANAGED FIELD ETHERNET SWITCH (FS) EA 1 MANAGED FIELD ETHERNET SWITCH (FS) EA 3 MANAGED FIELD ETHERNET SWITCH (FS) EA 3 MANAGED FIELD ETHERNET SWITCH (FS) EA 1 MANAGED FIELD ETHERNET SWITCH (FS) EA 3 MANAGED FIELD ETHERNET SWITCH (FS) EA 1 FIEL FIEL </td <td></td> <td>423.022</td> <td>FOUNDATION FOR 40' TYPE IV ITS POLE</td> <td>EA</td> <td>2</td> <td></td> <td>5.00</td> <td>ۍ ه</td> <td>3,150.00</td>		423.022	FOUNDATION FOR 40' TYPE IV ITS POLE	EA	2		5.00	ۍ ه	3,150.00	
INSTALL NEW TYPE C SIGNAL PULLBOX EA 5 ITS SPLICE VAULT, CIP EA 3 ITS SPLICE VAULT, CIP EA 3 INSTALL CCTV (PTZ) CAMERA INCLUDING MOUNT, CIP. EA 3 INSTALL CCTV (PTZ) CAMERA INCLUDING MOUNT, CIP. EA 3 SINGLE MODE FIBER OPTIC CABLE (24) LF 2,000 SINGLE MODE FIBER OPTIC CABLE SPLICE EA 3 SPLICE CLOSURE, WITH CABLE SPLICE EA 3 MANAGED FIELD ETHERNET SWITCH (FS) EA 3 MANAGED FIELD ETHERNET SWITCH (FS) EA 3 MANAGED FIELD ETHERNET SWITCH (FS) EA 3 INAGED FIELD ETHERNET SWITCH (FS) EA 3 ICONT EA 3 INAGED FIELD ETHERNET SWITCH (FS) EA 3 INAGED FIELD ETHERNET SWITCH (FS) ICONT ICONT INGRT AIBUQT ICONT ICONT ICONT INGRT AIBUAG ICONT <td></td> <td>424.042</td> <td>ELECTRICAL CONDUIT, 4" INCL TRENCHING, BACKFILL PATCHING, PUSHING, BORING & JACKING, CIP</td> <td>Ч</td> <td>1,800</td> <td></td> <td>17.00</td> <td>30 \$</td> <td>30,600.00</td>		424.042	ELECTRICAL CONDUIT, 4" INCL TRENCHING, BACKFILL PATCHING, PUSHING, BORING & JACKING, CIP	Ч	1,800		17.00	30 \$	30,600.00	
ITS SPLICE VAULT, CIP EA 3 INSTALL CCTV (PTZ) CAMERA INCLUDING MOUNT, CIP. EA 3 INSTALL CCTV (PTZ) CAMERA INCLUDING MOUNT, CIP. EA 3 SINGLE MODE FIBER OPTIC CABLE (6) EA 3 SINGLE MODE FIBER OPTIC CABLE (24) EA 3 SPLICE CLOSURE, WITH CABLE SPLICE EA 3 MANAGED FIELD ETHERNET SWITCH (FS) EA 3 MANAGED FIELD ETHERNET SWITCH (SS) EA 3 INFORMENT EA 3 INGRT AINOR EA		425.004	INSTALL NEW TYPE C SIGNAL PULLBOX	EA	5		0.00	\$ 10	10,000.00	
INSTALL CCTV (PTZ) CAMERA INCLUDING MOUNT, CIP. EA 3 SINGLE MODE FIBER OPTIC CABLE (6) LF 150 SINGLE MODE FIBER OPTIC CABLE (24) LF 2,000 SPLICE CLOSURE RESPLICE EA 3 SPLICE CLOSURE RESPLICE EA 3 MANAGED FIELD ETHERNET SWITCH (FS) EA 3 SUBTO CONTI CONTI		425.021	ITS SPLICE VAULT, CIP	EA	ę		0.00	9, 9	9,000.00	
SINGLE MODE FIBER OPTIC CABLE (6) LF 150 SINGLE MODE FIBER OPTIC CABLE (24) LF 2,000 SPLICE CLOSURE, WITH CABLE SPLICE EA 3 SPLICE CLOSURE RESPLICE EA 3 MANAGED FIELD ETHERNET SWITCH (FS) EA 3 SUBTO CONTI CONTI CONTI EA 3 SUBTO CONTI CONTI SUBTO CONTI CONTI FILENCE EA SUBTO CONTI EA SUBTO		428.210	INSTALL CCTV (PTZ) CAMERA INCLUDING MOUNT, CIP.	EA	°		0.00	\$ 15	15,300.00	
SINGLE MODE FIBER OPTIC CABLE (24) LF 2,000 SPLICE CLOSURE, WITH CABLE SPLICE EA 3 EXISTING SPLICE CLOSURE RESPLICE EA 3 MANAGED FIELD ETHERNET SWITCH (FS) SUBTO SUBTO CONTI EA 3 SUBTO EA 3 MANAGED FIELD ETHERNET SWITCH (FS) EA 3 MANAGED FIELD ETHERNET SWITCH (FS) SUBTO SUBTO CONTI EA 3 SUBTO CONTI EA SUBTO SUBTO CONTI EA SUBTO SUBTO CONTI INSPECTION, SURVEY, SURVEY		435.006	SINGLE MODE FIBER OPTIC CABLE (6)	ГF	150		1.50	\$	225.00	
SPLICE CLOSURE, WITH CABLE SPLICE EA 3 EXISTING SPLICE CLOSURE RESPLICE EA 1 MANAGED FIELD ETHERNET SWITCH (FS) EA 3 MANAGED FIELD ETHERNET SWITCH (FS) EA 3 Image: Split		435.096	SINGLE MODE FIBER OPTIC CABLE (24)	ГF	2,000		2.00	۲ \$	4,000.00	
EXISTING SPLICE CLOSURE RESPLICE EA 1 MANAGED FIELD ETHERNET SWITCH (FS) EA 3 SUBTO CONTI CONTI <td col<="" td=""><td></td><td>435.600</td><td>SPLICE CLOSURE, WITH CABLE SPLICE</td><td>EA</td><td>8</td><td></td><td>0.00</td><td>\$</td><td>9,000.00</td></td>	<td></td> <td>435.600</td> <td>SPLICE CLOSURE, WITH CABLE SPLICE</td> <td>EA</td> <td>8</td> <td></td> <td>0.00</td> <td>\$</td> <td>9,000.00</td>		435.600	SPLICE CLOSURE, WITH CABLE SPLICE	EA	8		0.00	\$	9,000.00
MANAGED FIELD ETHERNET SWITCH (FS) 3 3 SUBTO CONTI IMGRI Albuqu CITY/ENGINEERING CITY/ENGINEERING INSPECTION, SURVEY,		435.610	EXISTING SPLICE CLOSURE RESPLICE	EA	Ļ		0.00	ç	3,000.00	
SUBTOTAL BID ITEM SUBTOTAL BID ITEM CONTINGENCY (30) SUBTOTA SUBLOTA SUBLOTA		435.702		EA	8		0.00	\$	14,100.00	
CONTINGENCY (30% SUBTOTA SUBTOTA SUBTOTA SUBTOTA NMGRT Albuquerque (7.8759 SUBTOTA SUBTOTA SUBTOTA SUBTOTA SUBTOTA SUBTOTA SUBTOTA SUBTOTA CITY/ENGINEERING FEES/CM (6% INSPECTION, SURVEY, TESTING, (2% GRAND TOTA					SUBTC	TAL BID ITI		\$ 95	95,225.00	
SUBTOTA SUBTOTA NMGRT Albuquerque (7.875% SUBTOTA SUBTOTA SUBTOTA SUBTOTA SUBTOTA SUBTOTA SUBTOTA GRAND TOTA GRAND TOTA					CONT	INGENCY (3	\$ (%0)		28,567.50	
NMGRT Albuquerque (7.8759 SUBTOTA CITY/ENGINEERING FEES/CM (6 ⁵ INSPECTION, SURVEY, TESTING, (2 ⁵ GRAND TOTA						SUBTO		\$ 123	123,792.50	
SUBTOTA CITY/ENGINEERING FEES/CM (69 INSPECTION, SURVEY, TESTING, (29 GRAND TOTA					NMGRT Albuq	uerque (7.87	5%) \$		9,748.66	
CITY/ENGINEERING FEES/CM (69 INSPECTION, SURVEY, TESTING, (29 GRAND TOTA						SUBTO	TAL \$		133,541.16	
INSPECTION, SURVEY, TESTING, (29) GRAND TOTA				CIT	Y/ENGINEERING	G FEES/CM	(%9) \$		8,012.47	
GRAND TOTA				INSPEC	CTION, SURVEY	, TESTING,	(2%) \$		2,670.82	
						GRAND TO	TAL §	5 144,	,224.45	

UPTOWN INTERSECTION IMPROVEMENTS PRELIMINARY ITS COST ESTIMATE 4/20/2022

LEE ENGINEERING

Appendix D

Bicycle and Trail Crossings Guide Memo

City of Albuquerque

Department of Municipal Development Patrick Montoya, Director

Timothy M. Keller, Mayor

Interoffice Memorandum

April 11, 2022

To: Patrick Montoya, Department Director, Department of Municipal Development

 From: Paula Dodge-Kwan, Engineering Division Manager, Department of Municipal Development, Engineering Division
 $\mathcal{PDK} 4/13/22$

 Tim Brown, Traffic Engineering Manager, Department of Municipal Development, Traffic Engineering Division
 $\mathcal{T}_{17}\mathcal{B}$

Subject: City of Albuquerque Bicycle and Trail Crossing Guide Recommendations

Purpose

As part of the City of Albuquerque's commitment to safety for all roadway users and Vision Zero efforts, the City worked with Bohannon Huston to take national guidance and best practices for bicycle and pedestrian crossings and adapt it locally to consider Albuquerque's roadways – particularly wide, multi-lane arterials and locations with long block lengths between signalized crossings that create challenges for pedestrians to cross the street.

The result of this effort is the Bicycle and Trail Crossing Guide, which provides clear and consistent guidance for the prioritization, design, and application of bicycle and pedestrian crossings within the City of Albuquerque. It is also an easy-to-use tool to help determine appropriate crossing treatments while also allowing for some flexibility and engineering judgment depending on the context and location of the crossing.

The Guide will serve as a useful tool for staff to prioritize, evaluate, and implement consistent bicycle and pedestrian crossing infrastructure and also work toward achieving Vision Zero improvements. It is organized in two sections:

- Crossing Design Elements identifies safety countermeasures to improve safety at crossing locations. It's organized from least comprehensive to most comprehensive and includes visibility treatments, signal treatments, and infrastructure treatments.
- Three-Step Decision-Making Tool:
 - 1. Site Selection : Determine if site is a desired location for a crossing
 - 2. Site Feasibility: Determine if crossing is technically feasible at selected location
 - 3. Crossing Design: Determine appropriate treatments and designs

Background

New Mexico regularly has the highest (or among the highest) rate of pedestrian fatalities per capita in the nation, and Albuquerque crashes account for 42% of the state's fatal pedestrian-involved crashes. In 2019, 13% of pedestrians involved in a crash died as a result (NMDOT, 2019). Additionally, New Mexico ranks as the fifth worst state for bicyclist fatalities per capita and bicycle fatalities per bicycle miles traveled (Streetlight Data, 2021).

At least 52% of pedestrian fatal crashes in New Mexico occurred at locations without traffic signals or stop signs (the actual percentage is likely much higher, as over a quarter of police reports did not include crash location). Given the high rates of pedestrian and bicyclist fatalities, especially fatalities where no traffic control exists, creating safe pedestrian and bicyclist crossing opportunities throughout the City of Albuquerque is of high importance.

Albuquerque has hundreds of miles of off-street multi-use paths, providing excellent opportunities for walking and biking within the city. However, with the exception of the Bosque Trail and North Diversion Channel Trail (which have grade-separated crossings along their entire lengths), multi-use trails frequently intersect with wide, high-speed arterial roadways. Long block lengths in many parts of the city also create challenges for pedestrians trying to cross, as signalized pedestrian crossings are often placed over a half mile apart. More frequent and safer designated crossing locations are a means of addressing these safety issues and enhancing conditions for pedestrians, bicyclists, and trail users across Albuquerque.

Consistency with FHWA, Adopted Plans, and Policies

The Bicycle and Trail Crossing Guide recommendations are adapted from the Federal Highway Administration (FHWA) Guide for Improving Pedestrian Safety at Uncontrolled Crossing Locations, which compiled recommendations based on the Manual of Uniform Traffic Control Devices (MUTCD) and studies of safety and driver compliance at crossing locations. The Guide takes national best practices and provides nuance and adapts them to consider Albuquerque's wide, multi-lane arterials.

The Guide is also consistent with and supports the implementation of the following plans and policies:

- Comprehensive Plan
- Development Process Manual
- Complete Streets Ordinance
- Vision Zero Action Plan and Executive Order

Staff Recommendation

Staff recommend formalizing the Bicycle and Trail Crossing Guide, so that staff and/or consultants that work on City of Albuquerque projects will work from a consistent framework.

This Guide will also help to prioritize bicycle and pedestrian, and Vision Zero projects.