# VOLUNTARY REMEDIATION COMPLETION REPORT FOR THE CITY OF ALBUQUERQUE RAIL YARDS NORTH

VRP Site No. 53161007

Albuquerque, Bernalillo County, New Mexico

Prepared for:

City of Albuquerque Environmental Health Department Environmental Services Division One Civic Plaza Room 300 Albuquerque, New Mexico 87102



# Prepared by:



6000 Uptown Blvd NE, Suite 220 Albuquerque, New Mexico 87110

October 16, 2020



#### **EXECUTIVE SUMMARY**

This Voluntary Remediation Completion Report (VRCR) summarizes the current environmental site conditions as assessed for the City of Albuquerque (COA) Rail Yards North (Site) located in Albuquerque, New Mexico. This VRCR (New Mexico Environment Department [NMED] Voluntary Remediation Program [VRP] Site No. 53161007) has been prepared in support of Site redevelopment activities and documents the investigation and remediation work that has been completed to date within the COA Rail Yards North portion of the Site under the *New Mexico Environmental Department Voluntary Remediation Program Final Work Plan* (INTERA, 2019). The COA has also prepared and submitted a revised Final VRP Work Plan for the COA Rail Yards South, dated July 28, 2020 (INTERA, 2020b), and approved by the NMED VRP on August 13, 2020.

Situated between 2<sup>nd</sup> Street and Commercial Street in downtown Albuquerque, New Mexico, the Site consists of approximately 27 acres located within the former Atchison, Topeka and Santa Fe (ATSF)/Burlington Northern Santa Fe (BNSF) Central Works Equipment (CWE) Facility Railyard that operated from the 1880s to the early 1990s. As a result of previous operations, the Site sustained environmental impacts from both petroleum hydrocarbon and metals contamination. Contamination is present in both the Site vadose zone (Site soils and soil vapor) and in the saturated zone (Site groundwater) and includes metals adsorbed to soil particles, organic vapors, and organic and inorganic solutes dissolved in groundwater. In addition, both asbestos-containing building materials (ACBM) and lead-based paint (LBP) were used in many of the remaining Site buildings; contamination related to these building materials.

The COA believes that the environmental characterization work has been completed within the COA Rail Yards North and that a Conditional Certificate of Completion (CCOC) is requested from the VRP at this time. Any future remediation work will be limited to isolated excavations of soil for the installation of subsurface utilities and the abatement of asbestos and LBP from the remaining buildings with the COA Rail Yards North portion of the Site. Any future soil excavation(s) within the COA Rail Yards North will be conducted in accordance with the Soil Management Plan (SMP), dated July 16, 2020, and approved by the NMED VRP on August 13, 2020.

Per the Voluntary Remediation Agreement (VRA) signed by VRP on June 5, 2019, the COA may request a Certificate of Completion (COC) be issued for a specific portion of the Site, provided that the COC only pertain to that specific portion of the Site and that the COA include a legal description for that area. The legal description for the COA Rail Yards North is included in **Appendix A.** 



The COA understands that the COA Rail Yards South portion of the Site requires additional environmental characterization work before a request for a COC can be made.

The intent of this VRCR is to present enough information to NMED VRP regarding the current environmental status of the Site so that NMED VRP may grant the COA a CCOC for the COA Rail Yards North portion of the Site. As of September 8, 2020, the following activities, as proposed in the approved VRP Work Plan for the Site were completed by the COA or their appointed subcontractors:

- Removal and disposal of lead-contaminated soil (approximately 900 cubic yards) from two excavation areas within the COA Rail Yards North portion of the Site;
- The abatement of asbestos and LBP at three buildings within the COA Rail Yards North portion of the Site: the Sheet Metal House, the North Washroom Building, and the north end of the Flue Shop. These buildings were demolished, and the construction and demolition debris removed from the Site;
- Excavation in an attempt to locate monitoring well MW-09 (This monitoring well was not found and assumed to have been destroyed);
- A soil vapor sampling event in July 2018, in which 14 soil vapor samples were collected and submitted for laboratory analysis; and,
- A ground water sampling event in which all Site monitoring wells (MW-02 through MW-08 and MW-10 and MW-11) were sampled in April 2020.

A review of the soil vapor sample analytical results from the soil vapor samples collected from the COA Rail Yards North area indicate the following:

• All soil vapor results were below NMED-established Vapor Intrusion Screening Levels (VISLs), with the exception of a soil vapor sample collected from a sub-slab location at the north end of the Blacksmith Shop. Trichloroethene (TCE) was identified at a concentration of 360 micrograms per cubic meter (μg/m³) in soil vapor sample RYSV0703. The NMED residential VISL for TCE is 69.5 μg/m³ and the NMED Industrial VISL for TCE is 328 μg/m³. The Blacksmith Shop is currently used as an open-air market during the Spring and Summer months and the propensity for soil vapor to enter through the concrete slab and concentrate in the building during its current use is believed to be minimal. It should be noted that TCE was not identified at the Site in any of the soil vapor monitoring points within the COA Rail Yards North during the initial round of sampling in 2016.



A review of the fluid level gauging data and the analytical results associated with the groundwater samples collected from Site monitoring wells in April 2020 identified the following:

- Light non-aqueous phase liquid (LNAPL) was not observed at any of the monitoring wells at the Site.
- Monitoring well RAILMW01 is damaged, requires repair if possible, and was not gauged or sampled.
- The potentiometric surface elevations (PSE) ranged from 4928.00 feet (ft) above mean sea level (amsl) at monitoring well RAILMW06 to 4931.80 ft amsl at monitoring well RAILMW02.
- Compared to the previous Site groundwater monitoring event conducted in 2018, groundwater levels appear to have increased across the Site. Water level increases ranged from 1.22 ft at monitoring well RAILMW02 to 4.36 ft at monitoring well RAILMW07 with an average overall increase of 2.18 ft.
- The general direction of groundwater flow is to the east-southeast, and the magnitude of the hydraulic gradient is 0.0224 ft/ft.
- Analytical testing indicated concentrations of regulated dissolved-phase volatile organic compounds (VOCs) above the laboratory reporting detection limit (RL) in two of the nine groundwater samples collected. Total naphthalenes were detected above the New Mexico Water Quality Control Commission (NMWQCC) Standard of 30 micrograms per liter (μg/L) in groundwater at monitoring well RAILMW03 (174 micrograms per liter [μg/L]). Total naphthalenes was also detected above the RL in monitoring well RAILMW11 (2.5 μg/L) but at a concentration below the corresponding NMWQCC Standard. Benzene was detected above the RL in RAILMW03 (1.0 μg/L) but at a concentration below its NMWQCC Standard.
- Ethylene dibromide (EDB) (a.k.a. 1,2-dibromoethane) was not detected above the laboratory reporting limit of 0.010 µg/L in any Site monitoring wells.
- Total petroleum hydrocarbons (TPH) gasoline range organics (TPH-GRO), diesel-range organics (TPH-DRO), and motor oil range-organics (TPH-MRO) concentrations were not detected in Site monitoring wells above their respective laboratory RLs with the exception of monitoring wells RAILMW03 and RAILMW11. TPH-GRO was detected at concentrations of 0.20 milligrams per liter (mg/L) in monitoring well RAILMW03 and 0.11 mg/L in monitoring well RAILMW11. Currently, there are no TPH-GRO/DRO/MRO NMWQCC Standards.



- Iron was detected in monitoring wells RAILMW02 (0.18 mg/L), RAILMW04 (0.090 mg/L), and RAILMW11 (0.087 mg/L) but below its NMWQCC Standard of 1.0 mg/L. Iron was detected in monitoring well RAILMW03 (3.7 mg/L) above its NMWQCC Standard.
- Manganese was detected in all nine monitoring wells and above its NMWQCC Standard of 0.2 mg/L in monitoring wells RAILMW02 (0.31 mg/L), RAILMW03 (0.39 mg/L), RAILMW05 (0.47 mg/L), RAILMW06 (0.59 mg/L), and RAILMW07 (0.72 mg/L).

Based on these observations, it appears that Site contamination is minimal. Though minimal the COA still recommends exercising caution when completing Site redevelopment activities due to the potential presence of relict soil contamination, potentially impacted soil vapor, and continued monitoring of groundwater quality at the Site.

To ensure proper handling and disposition of impacted soils is executed during Site redevelopment, the Site SMP will be implemented. Additionally, soil vapor and groundwater monitoring will continue at the Site on an annual basis. Any building renovation or demolition work will continue to follow the NMED VRP approved Work Plans for the COA Rail Yards North and South (INTERA 2019, INTERA 2020b).

Site soil vapor issues will be mitigated using vapor intrusion liner(s) below any new buildings if warranted. Vapor venting systems may need to be installed around existing structures depending on sample results and future redevelopment scenarios. Any potential subsurface parking garages will be further vented by air exchange rates typically used by below-grade parking structures (INTERA, 2019). Existing concrete slabs will be coated with a material that is designed to mitigate vapor intrusion risk.

Based on the COA's current understanding of both the environmental conditions at the Site and the COA's commitment to continue to implement institutional controls and continue with long-term monitoring of both groundwater and soil vapor, the COA requests that a CCOC be issued for the COA Rail Yards North portion of the Site.

#### **Activities to be Completed in the Next 12 Months**

A soil vapor monitoring event will be conducted at both the COA Rail Yards North and South areas as outlined in the NMED VRP Final Work Plans (INTERA, 2019, INTERA, 2020b). Drilling and monitoring well installation will begin at five off-Site locations, as outlined in the COA Rail Yards North and South NMED VRP Final Work Plans during the fourth quarter of 2020 (INTERA, 2019, INTERA, 2020b).



To continue monitoring groundwater quality at the Site, the COA will implement the groundwater monitoring program for the Site over the course of at least a two (2)-year period following the installation of the additional monitoring wells. The COA shall perform annual groundwater sampling events in 2021 and 2022. If this timeframe proves to be inadequate in terms of characterization of the groundwater plume, the COA may extend the long-term monitoring period if directed by the VRP.



# **TABLE OF CONTENTS**

| <b>EXE</b> | CUTIVE SUMMARY                                                                    | ES-i |
|------------|-----------------------------------------------------------------------------------|------|
| LIST       | T OF FIGURES                                                                      | ii   |
| LIST       | T OF TABLES                                                                       | ii   |
| LIST       | OF APPENDICES                                                                     | ii   |
|            | ONYMS AND ABBREVIATIONS                                                           |      |
| 1.0        | INTRODUCTION                                                                      | 1    |
|            | 1.1 General Project Background                                                    |      |
|            | 1.2 Site History                                                                  |      |
|            | 1.3 Contaminants of Potential Concern                                             | 3    |
|            | 1.4 Conceptual Site Model                                                         | 4    |
| 2.0        | SUMMARY OF SITE SAMPLING AND ANALYSIS ACTIVITIES                                  | 5    |
|            | 2.1 Soil Characterization and Disposal During Construction                        | 5    |
|            | 2.2 Groundwater Investigation and Annual Groundwater Monitoring                   |      |
|            | 2.3 Subsurface Soil Gas Characterization                                          |      |
|            | 2.4 ACBM and LBP Survey of Site Buildings and Structures Prior to Construction    |      |
|            | 2.5 Project Health and Safety, Quality Assurance, and Investigation-Derived Waste | . 10 |
| 3.0        | COMPLETED VRP REMEDIATION ACTIVITIES                                              | . 11 |
| 4.0        | HOW COMPLETED VRP ACTIVITIES MEET THE PERFORMANCE                                 |      |
|            | STANDARD                                                                          | . 12 |
|            | 4.1 VRP Performance Standard Objective 1                                          | . 13 |
|            | 4.2 VRP Performance Standard Objective 2                                          |      |
|            | 4.3 VRP Performance Standard Objective 3                                          | . 13 |
|            | 4.4 VRP Performance Standard Objective 4                                          | . 14 |
| 5.0        | SUMMARY AND RECOMMENDATIONS                                                       | . 15 |
| 6.0        | REFERENCES                                                                        | . 18 |



# **LIST OF FIGURES**

| Figure 1 | Site Location                                 |
|----------|-----------------------------------------------|
| Figure 2 | Site Plan                                     |
| Figure 3 | Potentiometric Surface Map, January 7, 2016   |
| Figure 4 | Distribution of Contaminants, January 7, 2016 |
| Figure 5 | Residential VISL Exceedances, TCE             |

# **LIST OF TABLES**

| Table 1 | Site Characterization and Investigation Activities |
|---------|----------------------------------------------------|
| Table 2 | Site Excavation Activities                         |
| Table 3 | Fluid Level Measurements                           |
| Table 4 | Groundwater Quality Parameters                     |
| Table 5 | Laboratory Analytical Results – Groundwater        |
| Table 6 | Laboratory Analytical Results – Soil Vapor         |

# **LIST OF APPENDICES**

| Appendix A | COA Rail Yards North – Legal Description    |
|------------|---------------------------------------------|
| Appendix B | Field Notes and Field Forms                 |
| Appendix C | Laboratory Analytical Reports – Groundwater |
| Appendix D | Laboratory Analytical Reports – Soil Vapor  |



#### **ACRONYMS AND ABBREVIATIONS**

°C degrees Celsius
°F degrees Fahrenheit
µg/L micrograms per liter

 $\mu$ s/cm microSiemens per centimeter  $\mu$ g/m<sup>3</sup> micrograms per cubic meter

ACBM asbestos containing building material

amsl above mean sea level

ATSF Atchison, Topeka, and Santa Fe

BNSF Burlington Northern Santa Fe

BTEX benzene, toluene, ethylbenzene, and total xylenes

btoc below top of casing

CCOC Conditional Certificate of Completion

COA City of Albuquerque COC Certificate of Completion

COPC contaminant of potential concern

CSM Conceptual Site Model CWE Central Works Equipment

CY cubic yards

DRO diesel range organics

DTW depth to water

EDB 1,2-dibromoethane/ethylene dibromide EHD Environmental Health Department EPA U.S. Environmental Protection Agency

ft feet or foot

HEAL Hall Environmental Analysis Laboratory

INTERA INTERA Incorporated

LNAPL light, non-aqueous phase liquid

LBP lead-based paint

mg/L milligrams per liter

NMAC New Mexico Administrative Code NMED New Mexico Environment Department NM-GS New Mexico Groundwater Standard



### **ACRONYMS AND ABBREVIATIONS (Continued)**

NMWQCC New Mexico Water Quality Control Commission

PAH polycyclic aromatic hydrocarbon PPE personal protective equipment

ppm parts per million

PSE potentiometric surface elevation

RL reporting limit

S&A Sampling and Analysis

Site City of Albuquerque Rail Yards North

SMP Soil Management Plan

SSHASP Site-Specific Health and Safety Plan

SSL Soil Screening Level

SVOC semi-volatile organic compound

TCE trichloroethene

TPH total petroleum hydrocarbons

TPH-DRO total petroleum hydrocarbons diesel range organics
TPH-GRO total petroleum hydrocarbons gasoline range organics
TPH-MRO total petroleum hydrocarbons motor oil range organics

TSCA Toxic Substances Control Act

UST underground storage tank

VISL Vapor Intrusion Screening Level VOC volatile organic compound

VRA Voluntary Remediation Agreement VRP Voluntary Remediation Program

VRCR Voluntary Remediation Completion Report



#### 1.0 INTRODUCTION

INTERA Incorporated (INTERA) was retained by the City of Albuquerque (COA) Environmental Health Department (EHD) on February 10, 2020, to execute New Mexico Environment Department (NMED) Voluntary Remediation Program (VRP) activities, including the drafting of this Voluntary Remediation Completion Report (VRCR) for the COA Rail Yards North, situated between 2<sup>nd</sup> Street and Commercial Street in Albuquerque, New Mexico (Site). The location of the Site is illustrated on **Figure 1.** 

The COA contracted with INTERA to perform the VRP work documented herein under COA Services Contract No. 202000724. The COA and INTERA have conducted the VRP activities in accordance with New Mexico Environment Department, Voluntary Remediation Program Final Work Plan; City of Albuquerque Rail Yards, Albuquerque, Bernalillo County, New Mexico, dated June 28, 2019 (INTERA, 2019); Soil Management Plan, City of Albuquerque Rail Yards, Albuquerque, Bernalillo County, New Mexico, dated July 16, 2020 (INTERA, 2020a); and New Mexico Environment Department, Voluntary Remediation Program Final Work Plan; City of Albuquerque Rail Yards - South, Albuquerque, Bernalillo County, New Mexico, dated July 28, 2020 (INTERA, 2020b).

#### 1.1 General Project Background

The Site operated as a railroad Central Works Equipment (CWE) facility from the 1880s to the early 1990s. Activities conducted at the facility included servicing locomotives (blacksmithing, welding, and painting) within the Machine Shop, Boiler Shop, Roundhouse, and other areas; and general servicing and maintenance activities of the facility. The Site also was a central location for the Atchison, Topeka, and Santa Fe (ATSF) and Burlington Northern Santa Fe (BNSF) railways to perform required servicing activities in support of other smaller railyards located nearby.

The various types of chemicals used and stored at the Site included solvents and lye used for parts cleaning, paint, heavy oils, diesel fuel and other lubricants, and packaged herbicides (INTERA, 2015; INTERA, 2017). In the 1960s, the roundhouse was closed and subsequently demolished. In 1991, all underground storage tanks [USTs] were removed, and the Site was vacated of further industrial/commercial use. Since that time, the Site has largely been unused, except by the film industry. The COA purchased the Site in 2007 from the Old Locomotive Shops, LLC, through Renaissance Development Company, Inc., and renovated the Blacksmith Shop and Storehouse buildings as interim use/multi-purpose structures in 2013.

As a result of previous operations, the Site sustained environmental impacts from both petroleum hydrocarbon and metals contamination. Contamination is present in both the Site vadose zone



(Site soils and soil vapor) and in the saturated zone (Site groundwater) and includes metals adsorbed to soil particles, organic vapors, and organic and inorganic solutes dissolved in groundwater. In addition, both asbestos-containing building material (ACBM) and lead-based paint (LBP) were used in many of the remaining Site buildings; contamination related to these building materials will also need to be mitigated during any building demolition or building renovation activity.

The Site, also referred to as the Albuquerque Locomotive Shops and the former ATSF/BNSF CWE facility, is located approximately 1 mile south of the center of downtown Albuquerque in Bernalillo County, New Mexico (**Figure 1**).

The COA believes that the environmental characterization work has been completed within the COA Rail Yards North and that a Conditional Certificate of Completion (CCOC) is requested from the VRP at this time. Any future remediation work will be limited to isolated excavations of soil for the installation of subsurface utilities and the abatement of asbestos and LBP from the remaining buildings with the COA Rail Yards North portion of the Site. Any future soil excavation(s) within the COA Rail Yards North will be conducted in accordance with the Soil Management Plan (SMP), dated July 16, 2020 (INTERA, 2020a), and approved by the NMED VRP on August 13, 2020.

Per the Voluntary Remediation Agreement (VRA) signed by VRP on June 5, 2019, the COA may request a Certificate of Completion (COC) be issued for a specific portion of the Site, provided that the COC only pertain to that specific portion of the Site and that the COA include a legal description for that area. The legal description for the COA Rail Yards North is included in **Appendix A.** 

The COA understands that the COA Rail Yards South portion of the Site requires additional environmental characterization work before a request for a COC can be made. The intent of this VRCR is to present sufficient information to NMED VRP regarding the current environmental status of the Site so that NMED VRP may grant the COA a CCOC for the COA Rail Yards North portion of the Site.

#### 1.2 Site History

Investigations into the nature and extent of petroleum hydrocarbon and metal contamination at the Site have been ongoing since 1988 and have primarily focused on the extent of the soil contamination and the dissolved-phase groundwater plume (INTERA, 2015; INTERA, 2017). NMED conducted a limited site investigation at the Site in 1988. Characterization activities completed during this investigation included the sampling and analysis (S&A) of surface soils and the installation of two off-site monitoring wells.



Results of this investigation indicated the presence of polynuclear aromatic hydrocarbons (PAHs) and metal in soils and trace toluene in groundwater (DBS&A, 1996). These results initiated a series of additional characterization efforts and some remedial action for one or more portions of the Site; however, remedial actions were limited to small excavation areas. A summary of investigation activities completed for the Site since 1988 is provided in **Table 1.** A summary of remedial actions completed for the Site since 1988 is provided in **Table 2.** 

#### 1.3 Contaminants of Potential Concern

The following constituents are identified as Site soil contaminants of potential concern (COPCs) (INTERA, 2015; INTERA, 2017):

- Metals: antimony, arsenic, chromium, iron, lead, manganese, and thallium;
- PAHs: benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, dibenzo(a,h)anthracene, and indeno(1,2,3-cd)pyrene; and,
- total petroleum hydrocarbons (TPH) diesel range organics (TPH-DRO) and motor oil range organics (TPH-MRO).

The following constituents are identified as Site groundwater COPCs (INTERA, 2015; INTERA, 2017):

- PAHs including benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, dibenzo(a,h)anthracene, and indeno(1,2,3-cd)pyrene;
- Volatile organic compounds (VOCs) including benzene, toluene, ethyl benzene, and total xylenes (BTEX), total naphthalenes, and 1,2-dibromoethane (EDB);
- TPH-DRO and TPH-MRO; and,
- Metals: barium, benzene, chromium, copper, iron, lead, manganese, and zinc.

The following constituents are identified as Site soil vapor COPCs (COA, 2018):

• VOCs including trichloroethene (TCE).

These COPCs were derived from evaluating historical Site analytical data with the applicable New Mexico state regulatory standards, including NMED soil screening levels (SSLs) (NMED, 2019) and the New Mexico Water Quality Control Commission (NMWQCC) Human Health Standards defined in New Mexico Administrative Code (NMAC) 20.6.2.3.3103 (New Mexico Ground Water Standards [NM-GS]) (NMED, 2018). Petroleum contamination was present in both the finer-grained and coarser-grained soil units.

Other Site COPCs established for Site redevelopment activities include:



• ACBM and LBP in Site buildings and structures.

#### 1.4 Conceptual Site Model

The foundation for a conceptual site model (CSM) is based on known and reasonably ascertainable information regarding current Site conditions, known and potential contaminant sources and distribution, potential release mechanisms, contaminant exposure pathways and migration routes, and potential receptors (EPA, 1996). Information of this type, specific to the Site, are summarized as follows:

- **Current Site Conditions** summarized in Sections 1.1, 1.2 and 1.3.
- **Potential Nature of Contamination** TPH, VOCs, PAHs, and dissolved metals (iron, manganese).
- **Potential Contaminant Source(s)** Former repair and servicing of locomotives at the Site.
- Extent of Contamination Both surface and subsurface soils, soil vapor, and ground water beneath the Site have been impacted. Remediation efforts have resolved much of the soil contamination and the ground water contamination is limited to the COA Rail Yards South area of the Site. Relict soil contamination may exist that will be handled under the Site SMP (INTERA, 2020a).
- **Migration Pathways** leaching; particulate suspension in air and/or storm water/surface water, soil vapor migration into Site buildings.
- Fate and Transport of Contaminated Media Dermal contact, ingestion, and inhalation for both soil and ground water pathways.



#### 2.0 SUMMARY OF SITE SAMPLING AND ANALYSIS ACTIVITIES

VRP sampling and analysis field activities were conducted from June 29, 2019, through April 22, 2020. The Site-Specific Health and Safety Plan (SSHASP) was reviewed in detail by COA and INTERA field staff, followed during all Site activities, and used as a guide for the daily health and safety meetings. Work was performed in Occupational Safety and Health Administration Level D personal protective equipment (PPE). Copies of the field notes and field forms are included in **Appendix B.** 

#### 2.1 Soil Characterization and Disposal During Construction

The Sheet Metal House and the North Wash Room buildings were demolished in February and March 2019. Following the demolition of the two buildings, the COA decided to redevelop the Site by constructing a parking lot and a courtyard where the buildings were located (between the Flue Shop Building and Tender Repair Shop Building). Prior to redevelopment, the City decided to excavate two known soil contamination areas, identified as the former sand blasting area and the former batter storage area.

The COA conducted soil excavation activities from the second week of May until the end of July 2019. Approximately 900 cubic yards (CY) of lead-impacted soil was removed from the Site. The excavation work followed the methods outlined in Sections 5.5 and 6.1 of the Final VRP Work Plan (INTERA, 2019). The excavation work is also documented by the COA in the *Voluntary Remediation Program Status Report*, dated July 2019 (COA, 2019).

No further excavation activities for the Site are planned at this time, with the exception of a utility corridor excavation as outlined in the Site SMP (INTERA, 2020a). Any future redevelopment activities that require soil excavation work will follow the Site SMP. To ensure proper handling and disposition of impacted soils is executed during Site redevelopment, the Site SMP will be implemented.

#### 2.2 Groundwater Investigation and Annual Groundwater Monitoring

On April 22 and 23, 2020, fluid levels at monitoring wells RAILMW02, RAILMW03, RAILMW04, RAILMW05, RAILMW06, RAILMW07, RAILMW08, RAILMW10, and RAILMW11 (**Figure 2**) were measured using a properly decontaminated oil/water interface probe.

Monitoring well RAILMW01 was found leaning over with its concrete pad partially in the air. There was a dirt blockage at approximately 6 feet (ft) below top of casing (btoc) and a total blockage at approximately 16 ft btoc; thus, neither a water level measurement nor a groundwater



sample were possible to collect. Monitoring well RAILMW01 will be repaired as outlined in the Final VRP Work Plan for the COA Rail Yards South (INTERA, 2020b).

Prior to measuring fluid levels, the monitoring well caps were removed from all monitoring wells in order to relieve any pressure caused by a fluctuating water table. Fluid level measurements are documented in **Table 3.** A potentiometric surface elevation (PSE) map is provided in **Figure 3.** 

Groundwater samples were collected from the following nine Site monitoring wells: RAILMW02, RAILMW03, RAILMW04, RAILMW05, RAILMW06, RAILMW07, RAILMW08, RAILMW10, and RAILMW11 on April 22 through April 24, 2020. At each monitoring well, a groundwater sample was collected once three well casing volumes were removed from the respective monitoring well using a dedicated bailer and water quality parameters (temperature, specific conductivity, and pH) stabilized for three consecutive readings. A record of all water quality parameters recorded during purging and sampling of each well is documented in the field forms presented in **Appendix B**.

Petroleum hydrocarbon odors were noted in monitoring wells RAILMW02, RAILMW04, and RAILMW11 during groundwater sampling activities. The groundwater purge water at monitoring well RAILMW11 exhibited a light sheen. It is important to note that monitoring wells RAILMW02, RAILMW04, and RAILMW11 are located within the COA Rail Yards South.

After collection, the samples were labeled and immediately packed in an ice-chilled cooler for transport to Hall Environmental Analysis Laboratory (HEAL) for the following analysis:

- VOCs via United States Environmental Protection Agency (EPA) Method 8260B;
- EDB (1,2-dibromoethene) via EPA Method 504.1;
- TPH-DRO/MRO via EPA 8015B;
- Dissolved Metals (barium, chromium, copper, iron, lead, manganese, and zinc) via EPA Method 6010C/200.7/6020/200.8; and,
- PAHs via EPA Method 8310.

Proper chain-of-custody procedures were adhered to during sample collection, transportation, and delivery to HEAL. A copy of the groundwater laboratory analytical report is included in **Appendix C.** 

All gauging equipment was decontaminated by washing with a Liquinox® solution and double rinsing with de-ionized water between gauging and groundwater sampling activities at each



monitoring well. Purge water produced during groundwater sampling activities was applied to an impermeable (asphalt and/or concrete) surface and allowed to evaporate.

Consistent with documented historical sampling events, light, non-aqueous phase liquid (LNAPL) of measurable thickness (greater than 0.01 ft) was not observed in the monitoring wells. Recorded depth to water (DTW) measurements ranged from 17.50 ft btoc at monitoring well RAILMW02 to 25.72 ft btoc at monitoring well RAILMW06 (**Table 3**). The PSE ranged from 4928.00 ft above mean sea level (amsl) at monitoring well RAILMW06 to 4931.80 ft amsl at monitoring well RAILMW02 (**Table 3**). The monitoring wells were resurveyed in May 2020.

Compared to the previous Site groundwater monitoring event conducted in 2018, groundwater levels appear to have increased across the Site. Water level increases ranged from 1.22 ft at monitoring well RAILMW02 to 4.36 ft at monitoring well RAILMW07 with an average overall increase of 2.18 ft. The observed increase in Site water levels are consistent with historical trends observed for the area since the 1990's (**Table 3**).

The screened intervals for every monitoring well, with the exception of RAILMW04, is submerged. As mentioned above, groundwater levels have historically been increasing since the COA switched from using groundwater as main source of drinking water to surface water. Any new monitoring well proposed to be installed as part of this Site wide monitoring program will take this water table increase into consideration.

The estimated groundwater flow direction is to the east-southeast, and the estimated magnitude of the calculated hydraulic gradient is approximately 0.0224 ft/ft (**Figure 3**).

Groundwater quality parameters were measured and recorded during monitoring well purging until the water quality parameters stabilized. Stabilized temperatures ranged from 18.1 degrees Celsius (°C) or 64.6 degrees Fahrenheit (°F) (monitoring well RAILMW02) to 19.8°C or 67.6°F (at monitoring well RAILMW06). Stabilized specific conductivity values ranged from 561 microSiemens per centimeter (μS/cm) (monitoring well RAILMW04) to 1,215 μS/cm (monitoring well RAILMW06). Stabilized pH values ranged from 6.69 (monitoring wells RAILMW04 and RAILMW07) to 7.21 (monitoring well RAILMW08). Groundwater quality parameter values are provided in the groundwater sampling forms presented in **Appendix B**; stabilized groundwater quality parameters are summarized in **Table 4**.

A summary of the laboratory analytical results for groundwater is provided in **Table 5** and on **Figure 4.** A copy of the groundwater sample laboratory analytical report is included in **Appendix C.** 



Analytical testing indicated concentrations of regulated dissolved-phase VOCs above the laboratory reporting limit (RL) in two of the nine groundwater samples collected. Total naphthalenes were detected above the NMWQCC Standard of 30 micrograms per liter ( $\mu$ g/L) in groundwater at monitoring well RAILMW03 (174  $\mu$ g/L). Total naphthalenes was also detected above the RL in monitoring well RAILMW11 (2.5  $\mu$ g/L) but at a concentration below the corresponding NMWQCC Standard. Benzene was detected above the RL in RAILMW03 (1.0  $\mu$ g/L) but at a concentration below its respective NMWQCC Standard.

Dissolved metals were detected in all nine monitoring wells.

- Copper was detected in monitoring well RAILMW06 (0.0011 milligrams per liter [mg/L]) but at a concentration below its NMWCC Standard of 1.0 mg/L.
- Lead was detected in monitoring well RAILMW11 (0.00053 mg/L) but at a concentration below its NMWQCC Standard of 0.015 mg/L.
- Barium was detected in all nine monitoring wells but at concentrations below its NMWQCC Standard of 2 mg/L.
- Iron was detected in monitoring wells RAILMW02 (0.18 mg/L), RAILMW04 (0.090 mg/L), and RAILMW11 (0.087 mg/L) but below its NMWQCC Standard of 1.0 mg/L.
- Iron was detected in monitoring well RAILMW03 (3.7 mg/L) above its NMWQCC Standard of 1.0 mg/L.
- Manganese was detected in all nine monitoring wells and above its NMWQCC Standard of 0.2 mg/L in monitoring wells RAILMW02 (0.31 mg/L), RAILMW03 (0.39 mg/L), RAILMW05 (0.47 mg/L), RAILMW06 (0.59 mg/L), and RAILMW07 (0.72 mg/L).
- Zinc was detected in all nine monitoring wells but below its NMWQCC Standard of 10.0 mg/L.

EDB was not detected above the laboratory reporting limit of  $0.010\,\mu\text{g/L}$  in any Site monitoring wells. Additionally, TPH gasoline range organics (TPH-GRO), TPH-DRO, and TPH-MRO concentrations were not detected in Site monitoring wells above their respective laboratory RLs with the exception of monitoring wells RAILMW03 and RAILMW11. TPH-GRO was detected with concentrations of  $0.20\,\text{mg/L}$  and  $0.11\,\text{mg/L}$ , respectively, and currently there is no NMWQCC Standard for this constituent.

The COA will continue to conduct long-term groundwater monitoring at the Site on an annual basis as outlined in the approved NMED VRP Final Work Plan (INTERA, 2019).



#### 2.3 Subsurface Soil Gas Characterization

Active soil vapor characterization S&A activities were last performed at the Site in 2018 to help delineate the lateral and vertical extent of vapor-phase contamination in the vadose zone. 14 soil vapor samples were collected and submitted for laboratory analysis. In particular, sub-slab soil vapor samples were collected in the vapor points from historic buildings located within the COA Rail Yards - North. Previous sampling results did not indicate soil vapor concerns, but additional sampling was conducted to confirm that the soil vapor levels remain below NMED Vapor Intrusion Screening Level (VISLs) (INTERA, 2019).

A review of the soil vapor sample analytical results from the soil vapor samples collected from the COA Rail Yards North area indicated that all soil vapor results were below NMED VISLs with the exception of a soil vapor sample collected from a sub-slab location at the north end of the Blacksmith Shop. TCE was identified at a concentration of 360 micrograms per cubic meter ( $\mu g/m^3$ ) in soil vapor sample RYSV0703. The NMED residential VISL for TCE is 69.5  $\mu g/m^3$  and the NMED Industrial VISL for TCE is 328  $\mu g/m^3$ . The Blacksmith Shop is currently used as an open-air market during the Spring and Summer months and the propensity for soil vapor to enter through the concrete slab and concentrate in the building during its current use is believed to be minimal. It should be noted that TCE was not identified at the Site in any of the soil vapor monitoring points within the COA Rail Yards North during the initial round of sampling in 2016.

A summary of the laboratory analytical results for soil vapor is provided in **Table 6** and on **Figure 5.** A copy of the soil vapor sample laboratory analytical report is included in **Appendix D.** 

Site soil vapor will continue to be sampled for as outlined in the approved NMED VRP Final Work Plan for the COA Rail Yards North and South as part of the long-term monitoring program (INTERA, 2019; INTERA, 2020b).

Site soil vapor issues will be mitigated using vapor intrusion liner(s) below any new buildings if warranted. Vapor venting systems may need to be installed around existing structures depending on sample results and future redevelopment scenarios. Any potential subsurface parking garages will be further vented by air exchange rates typically used by below-grade parking structures (INTERA, 2019). Existing concrete slabs will be coated with a material that is designed to mitigate vapor intrusion risk.

# 2.4 ACBM and LBP Survey of Site Buildings and Structures Prior to Construction

The COA conducted asbestos abatement and LBP at three buildings within the COA Rail Yards North portion of the Site: the Sheet Metal House, the North Washroom Building, and the north end of the Flue Shop. These buildings were also demolished, and the construction debris



removed from the Site. The asbestos and LBP abatement of these buildings and the solid waste disposal issues were previously discussed in the last VRP Status Report (COA, 2019).

Any future building renovation or demolition work will continue to follow the NMED VRP approved Work Plans for those remaining buildings at the Site. The COA will develop removal specification documents for each building renovation as redevelopment plans are finalized. The abatement plans, as well as final removal and disposal documentation, will be sent to NMED VRP as part of NMED VRP Status Report(s).

# 2.5 Project Health and Safety, Quality Assurance, and Investigation-Derived Waste

The INTERA-prepared SSHASP was strictly followed during all Site activities. All field activities were conducted using modified Level D PPE, including hard hat, safety glasses, and steel-toed boots. Nitrile gloves were used to handle all soil and groundwater samples. A safety meeting was conducted prior to the initiation of work, and chemical and physical hazards of the work were reviewed and discussed.

Quality assurance practices, which were strictly adhered to, included decontaminating the fluid gauging equipment with a Liquinox<sup>®</sup> solution and double-rinsing with de-ionized water between sampling activities at each monitoring well and soil vapor monitoring point.



# 3.0 COMPLETED VRP REMEDIATION ACTIVITIES

The completed VRP remediation activities (soil removal and building demolition) were conducted at the Site in 2019. These activities are documented in the COA VRP Periodic Status Report submitted to the NMED VRP in July 2019 (COA, 2019).



# 4.0 HOW COMPLETED VRP ACTIVITIES MEET THE PERFORMANCE STANDARD

The contaminants to be covered under the Voluntary Remediation Agreement (VRA) are described as follows:

- Soil: VOCs, SVOCs, TPH DRO, TPH MRO, EDB, PAHs, and Metals
- Groundwater: VOCs, SVOCs, TPH DRO, TPH MRO, EDB, PAHs, and Metals
- **Soil Vapor:** VOCs
- **Structures:** ACBM and LBP remediated waste

VRP activities undertaken pursuant to this agreement shall achieve the following standards or risk-based levels:

- Standards for groundwater as set forth in Section 20.6.2.3103 NMAC of the Ground and Surface Water regulations (NMED, 2018).
- New Mexico Environment Department Risk Assessment Guidance for Site Investigations and Remediation (NMED, 2019).
- National Emissions Standards for Hazardous Air Pollutants as set forth in Title 40 CFR, Part 61 Subpart M (EPA, 1994).
- Toxic Substances Control Act (TSCA, 1992), Title IV, P.L. 102-550.
- Solid Waste Management General Requirements as set forth in 20.9.2 NMAC (NMED, 2007).

The NMED *Risk Assessment Guidance for Investigations and Remediation*, Volume 1, February 2019, Rev. 2 (June 19, 2019) allows for the Alternative Evaluation for Lead in soils using the IEUBK Model in Section 2.3.3. The IEUBK Model relates measured lead concentrations in environmental media with an estimated blood-lead level for assessing risks to residential receptors. NMED VRP approved the site-specific soil lead residential level of 550 parts per million (ppm) for the COA Rail Yards based on the results from the bioavailability sampling and modeling (NMED, 2020). The COA IEUBK Modeling work and conclusion is outlined in the NMED VRP Status Report submitted by the COA in July 2019 (COA, 2019).

Performance requirements for projects participating in the VRP program are described NMAC 20.6.3.10 (NMED, 2001). The VRP Performance Standard involves attainment of four specific activity requirements: (1) identify the problem; (2) quantify the risk; (3) verify the need for remedial action; and (4) identify the remedy. Details regarding how the completed Site



assessments provide enough information to support conclusions regarding these activity requirements are discussed further in Section 4.1 through Section 4.4 below.

#### 4.1 VRP Performance Standard Objective 1

VRP Performance Standard Objective 1 can be defined as identification of "the source, nature and extent, migration pathways, and environmental fate and transport of contaminants in all environmental media present at the site (i.e., soil, groundwater, surface water, sediment, and/or air)."

Results of recent characterization S&A efforts performed for Site soil, soil vapor, and groundwater was used to establish the current CSM for the Site. The current CSM for the Site is summarized in Section 1.4.

#### 4.2 VRP Performance Standard Objective 2

VRP Performance Standard Objective 2 can be defined as quantification of "the risk of harm posed by the site to human health, safety, and the environment."

The relative degree of risk posed by soil, soil vapor, and ground water in the immediate vicinity of the Site will be determined by directly comparing Site concentrations to applicable standards. Applicable standards used for this comparison include:

- Standards for Ground Water as defined in NMAC Title 20.6.2.3103 of the Ground and Surface Water Regulations (NMED, 2018);
- SSLs and VISLs as defined by the NMED *Risk Assessment Guidance for Site Investigations and Remediation* (NMED, 2019);
- National Emissions Standards for Hazardous Air Pollutants as set forth in Title 40 CFR, Part 61 Subpart M (EPA, 1994);
- TSCA, Title IV, P.L. 102-550;
- Solid Waste Management General Requirements as set forth in 20.9.2 NMAC (NMED, 2007); and
- Lead concentration in soil (if identified) will be compared to the NMED-approved Site-specific screening level (550 ppm) for residential land use (COA, 2019; NMED, 2020).

#### 4.3 VRP Performance Standard Objective 3

VRP Performance Standard Objective 3 can be defined as verification for "the need to conduct remedial actions at the site to safeguard against such risks."



Analysis of Site soil data collected between 1990 and 2014 indicate that remedial efforts (excavation and removal of soil) previously performed at the Site have effectively reduced overall exposure risk to current and future land users; therefore, the COA does not anticipate the need for additional remedial activities for Site soil at this time. Excavated soil will be evaluated as outlined in the Site SMP (INTERA, 2020a).

The COA understands that soil vapor at the Site may be impacted by either VOCs and/or semi-volatile organic compounds (SVOCs). Soil vapor is included as part of the long-term monitoring activities at the Site.

Analysis of Site groundwater data collected between 1990 and 2020 suggest the presence of limited impact to groundwater beneath the Site. Based on these results, the COA does not anticipate the need for active remedial activities for Site groundwater at this time. Continued long-term monitoring activities for the Site shall establish the need for any additional remedial actions at the Site in the future, as outlined in the NMED VRP Final Work Plan for the COA Rail Yards South (INTERA, 2020b).

#### 4.4 VRP Performance Standard Objective 4

VRP Performance Standard Objective 4 can be defined as identification of "the remedial action selection and design, if appropriate."

Because of the limited impact to Site soil and groundwater, the COA considers further remedial action for the Site not appropriate at this time.

Soil vapor concerns will be mitigated by the installation of vapor intrusion barriers for any new buildings, potential venting systems should the COA feel they are warranted, and coating existing floors with products that are designed to be effective in preventing vapor intrusion into indoor air. The need for a vapor intrusion barrier during a COA-designated "Interim Use" will be evaluated as outlined in the NMED-approved VRP Work Plans for the Site (INTERA, 2020a; INTERA, 2020b). All proposed Interim Uses shall be evaluated to clearly identify what the Interim Uses are, the anticipated duration of operation(s), the associated Site area of impact, and the required protection measures that will be put in place in order for the Interim Uses to be conducted safely.



#### 5.0 SUMMARY AND RECOMMENDATIONS

The intent of this VRCR is to present sufficient information to NMED VRP regarding the current environmental status of the Site so that NMED VRP may grant the COA a CCOC for the COA Rail Yards North portion of the Site. As of September 2020, the following activities, as proposed in the approved VRP Work Plan for the Site were completed by the COA or their appointed subcontractors:

- Removal and disposal of lead-contaminated soil (approximately 900 CY) from two excavation areas within the COA Rail Yards North portion of the Site;
- The abatement of asbestos and LBP at three buildings within the COA Rail Yards North portion of the Site: the Sheet Metal House, the North Washroom Building, and the north end of the Flue Shop. These buildings were also demolished, and the construction debris removed from the Site;
- Excavation completed in an attempt to locate monitoring well MW-09 (This monitoring well was not found and assumed to have been destroyed.);
- Soil vapor sampling event in July 2018, in which 14 soil vapor samples were collected and submitted for laboratory analysis; and,
- A groundwater sampling event in which all Site monitoring wells (MW-02 through MW-08 and MW-10 and MW-11) were sampled in April 2020.

A review of the soil vapor sample analytical results from the soil vapor samples collected from the COA Rail Yards North area indicate the following:

• All soil vapor results were below NMED established VISLs with the exception of a soil vapor sample collected from a sub-slab location at the north end of the Blacksmith Shop. TCE was identified at a concentration of 360 μg/m³ in soil vapor sample RYSV0703. The NMED residential VISL for TCE is 69.5 μg/m³ and the NMED Industrial VISL for TCE is 328 μg/m³. The Blacksmith Shop is currently used as an open-air market during the spring and summer months and the propensity for soil vapor to enter through the concrete slab and concentrate in the building during its current use is believed to be minimal. It should be noted that TCE was not identified at the Site in any of the soil vapor monitoring points within the COA Rail Yards North during the initial round of sampling in 2016.

A review of the fluid level gauging data and the analytical results associated with the groundwater samples collected from Site monitoring wells in April 2020 identified the following:

• LNAPL was not observed at any of the monitoring wells at the Site.

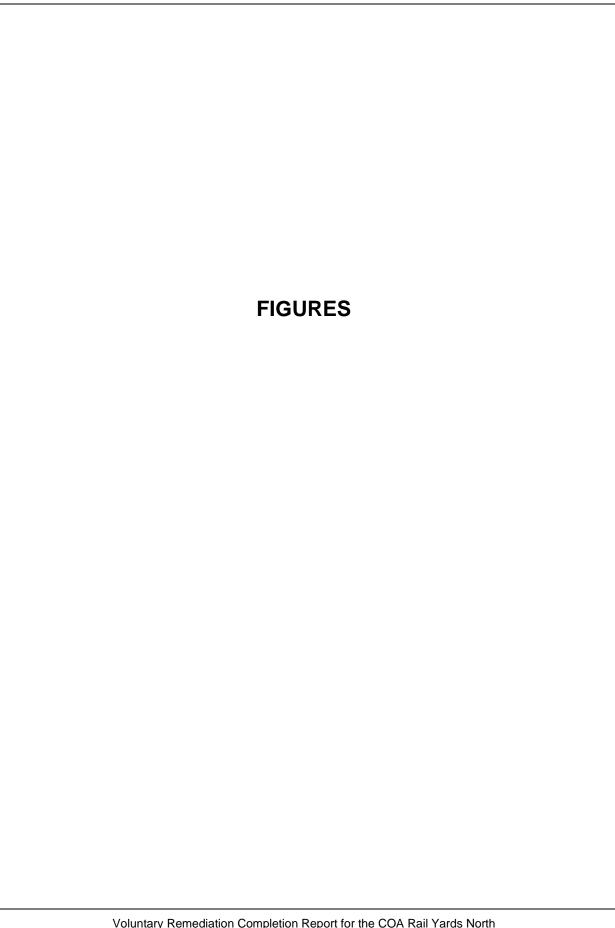


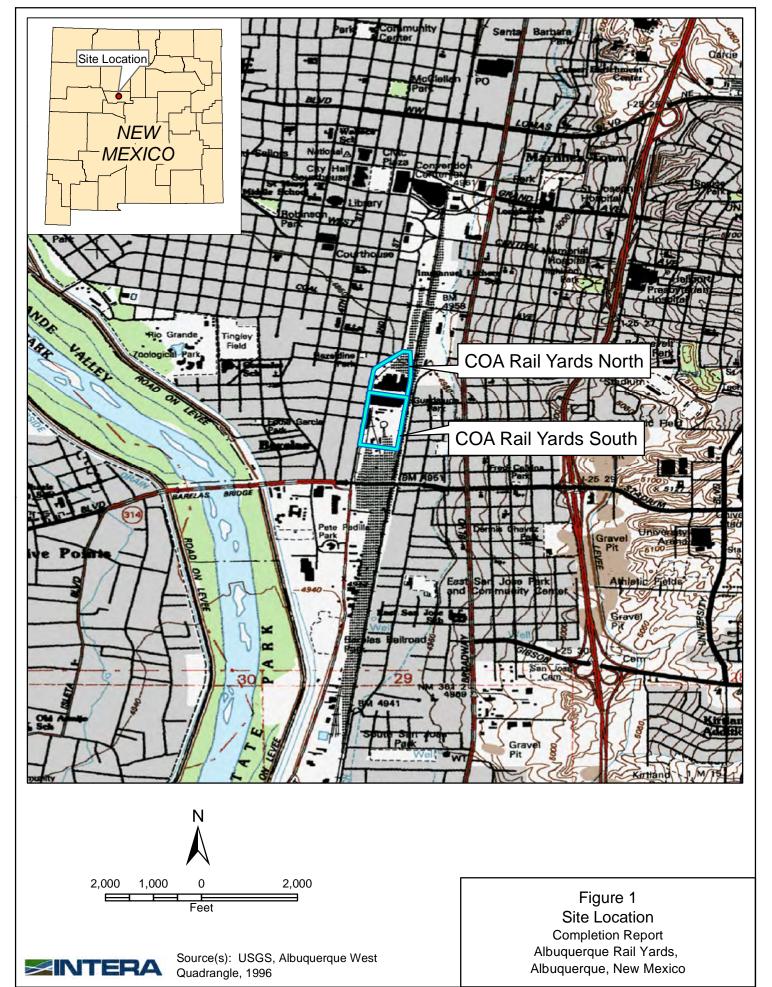
- Monitoring well RAILMW01 is damaged, requires repair if possible, and was not gauged or sampled.
- The Site PSE ranged from 4928.00 ft amsl at monitoring well RAILMW06 to 4931.80 ft amsl at monitoring well RAILMW02.
- Compared to the previous Site groundwater monitoring event conducted in 2018, groundwater levels appear to have increased across the Site. Water level increases ranged from 1.22 ft at monitoring well RAILMW02 to 4.36 ft at monitoring well RAILMW07 with an average overall increase of 2.18 ft.
- The general direction of groundwater flow is to the east-southeast, and the magnitude of the hydraulic gradient is 0.0224 ft/ft.
- Analytical testing indicated concentrations of regulated dissolved-phase VOCs above the laboratory RL in two of the nine groundwater samples collected. Total naphthalenes were detected above the NMWQCC Standard of 30 μg/L in groundwater at monitoring well RAILMW03 (174 μg/L). Total naphthalenes was also detected above the RL in monitoring well RAILMW11 (2.5 μg/L) but at a concentration below the corresponding NMWQCC Standard. Benzene was detected above the RL in RAILMW03 (1.0 μg/L) but at a concentration below its NMWQCC Standard.
- EDB (a.k.a. 1,2-dibromoethane) was not detected above the laboratory reporting limit of 0.010 µg/L in any Site monitoring wells.
- TPH-GRO, TPH-DRO, and TPH-MRO concentrations were not detected in Site
  monitoring wells above their respective laboratory reporting limits with the exception of
  monitoring wells RAILMW03 and RAILMW11. TPH-GRO was detected at
  concentrations of 0.20 mg/L in monitoring well RAILMW03 and 0.11 mg/L in
  monitoring well RAILMW11. Currently, there are no TPH-GRO/DRO/MRO NMWQCC
  Standards.
- Iron was detected in monitoring wells RAILMW02 (0.18 mg/L), RAILMW04 (0.090 mg/L), and RAILMW11 (0.087 mg/L) but below its NMWQCC Standard of 1.0 mg/L.
   Iron was detected in monitoring well RAILMW03 (3.7 mg/L) above its NMWQCC Standard of 1.0 mg/L.
- Manganese was detected in all nine monitoring wells and above its NMWQCC Standard of 0.2 mg/L in monitoring wells RAILMW02 (0.31mg/L), RAILMW03 (0.39 mg/L), RAILMW05 (0.47 mg/L), RAILMW06 (0.59 mg/L), and RAILMW07 (0.72 mg/L).

Based on these observations, it appears that Site contamination is minimal. Though minimal, the COA still recommends exercising caution when completing Site redevelopment activities and continued monitoring of groundwater quality at the Site due to the potential presence of relict



soil contamination and potentially impacted soil vapor. The COA will continue Site work as outlined in the SMP and the NMED VRP Final Work Plans developed for the COA Rail Yards North and South (INTERA, 2019; INTERA, 2020a; INTERA, 2020b).





#### 6.0 REFERENCES

- Daniel B. Stephens & Associates, Inc. 1996. Atchison, Topeka and Santa Fe Railway Company Centralized Work Equipment Facility, Stage 1 Abatement Plan. February 22.
- City of Albuquerque (COA) Environmental Health Department (EHD). 2019. Voluntary Remediation Program Status Report. City of Albuquerque Rail Yards. VRP Site No. 53161007. July.
- ———. 2018. COA Data soil vapor and ground water sampling activities. 2018.
- Environmental Protection Agency (EPA). 1996. *Soil Screening Guidance: User's Guide*. Second Edition. EPA/540/R-96/018. July.
- ——. 1994. National Emissions Standards for Hazardous Air Pollutants (NESHAP). Title 40 Code of Federal Regulations (CFR), Part 61 Subpart M.
- INTERA Incorporated (INTERA). 2020a. Soil Management Plan. City of Albuquerque Rail Yards, Albuquerque, Bernalillo County, New Mexico. Prepared for the City of Albuquerque. July 16.
- ———. 2020b. New Mexico Environmental Department Voluntary Remediation Program Final Work Plan (VRP Site No. 53161007), City of Albuquerque Rail Yards South, Albuquerque, Bernalillo County, New Mexico. Prepared for the City of Albuquerque. July 28.
- ———. 2019. New Mexico Environmental Department Voluntary Remediation Program Final Work Plan (VRP Site No. 53161007), City of Albuquerque Rail Yards, Albuquerque, Bernalillo County, New Mexico. Prepared for the City of Albuquerque. June 28.
- ———. 2017. Additional Groundwater Characterization Report City of Albuquerque Rail Yards, Albuquerque, Bernalillo County, New Mexico. Prepared for the City of Albuquerque. February 3.
- ——. 2015. DRAFT Conceptual Site Model City of Albuquerque Rail Yards, Albuquerque, New Mexico. Prepared for the City of Albuquerque. September 25.
- New Mexico Environment Department (NMED). 2020. Approval of IEUBK Model Outputs for the Albuquerque Rail Yards Site in Albuquerque, New Mexico, VRP Site No. 53161007. Letter to Ms. Carina Munoz-Dyer, Acting Environmental Health Manager from Ms. Michelle Hunter, Chief, NMED Ground Water Quality Bureau. May 6.
- ———. 2019. Risk Assessment Guidance for Site Investigations and Remediation. Volume 1. Revision 2. June.




| Nover | 8. NMAC 20.6.2, Ground and Surface Water Protection. Dec 1, 1995. Amended mber 15, 1996; January 1, 2001, December 1, 2001, September 15, 2002, and mber 21, 2018. |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2007  | 7. NMAC 20.9.2, Solid Waste Management General Requirements. August 2.                                                                                             |
| 2001  | 1. NMAC 20.6.3, Voluntary Remediation Program. November 27.                                                                                                        |
|       | ances Control Act (TSCA). 1992. Title IV, P.L. 102-550. Residential Lead Based Hazard Reduction Act. October 28.                                                   |







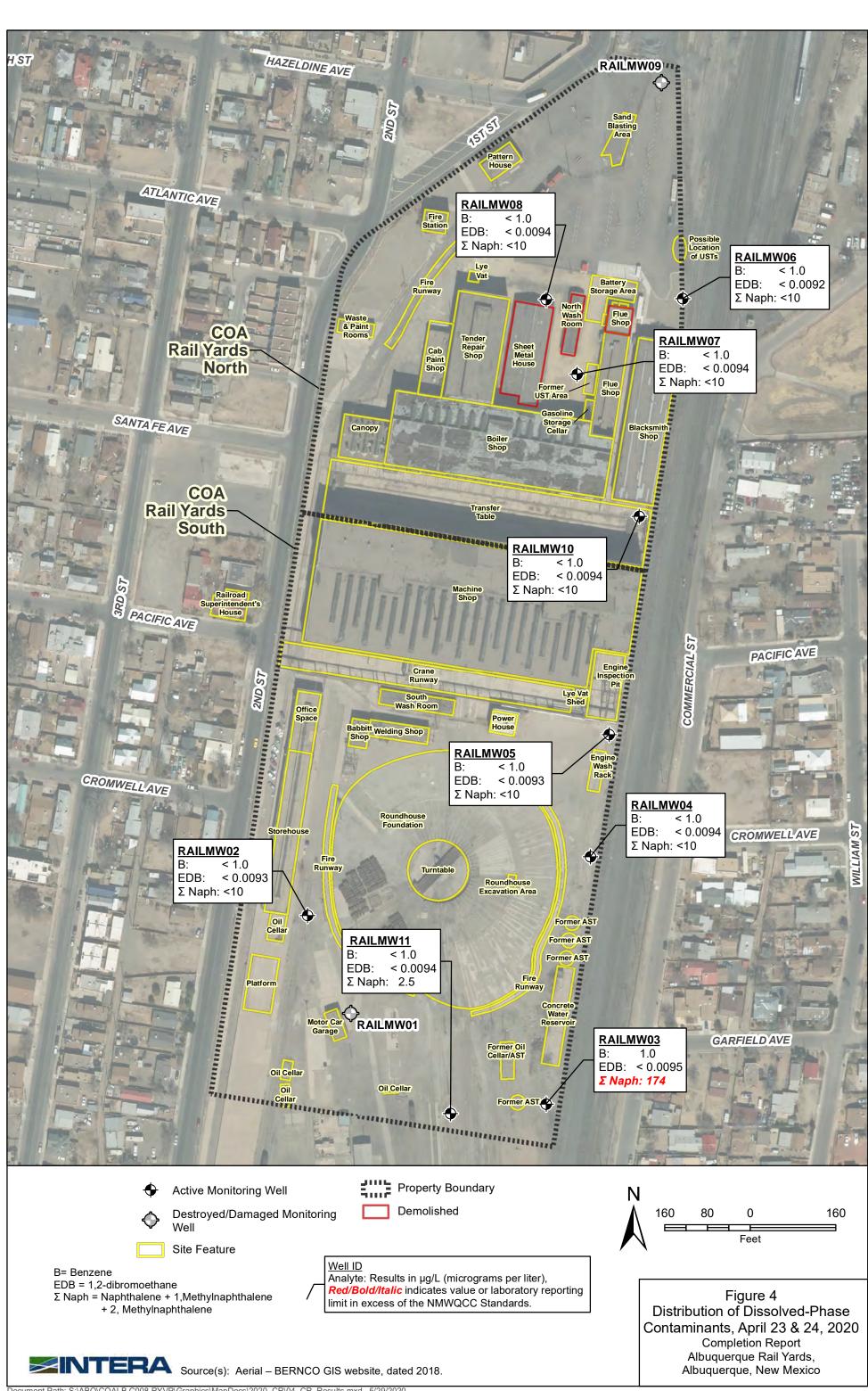




Destroyed/Damaged Monitoring

**Estimated Groundwater Flow** Direction

Property Boundary


where inferred)

Groundwater Contour (dashed

Ν 160 160 80 0 Feet

Well ID Groundwater Elevation in ft (feet relative to local datum set to MW-01 = 100.00 ft).

Figure 3 Potentiometric Surface Elevation Map April 22 & 23, 2020 Completion Report Albuquerque Rail Yards, Albuquerque, New Mexico





KAVE

# **Legend**

TCE Exceedance

TCE Detection

TCE Non-Detect

Parcel Boundary

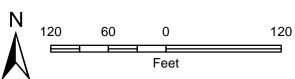
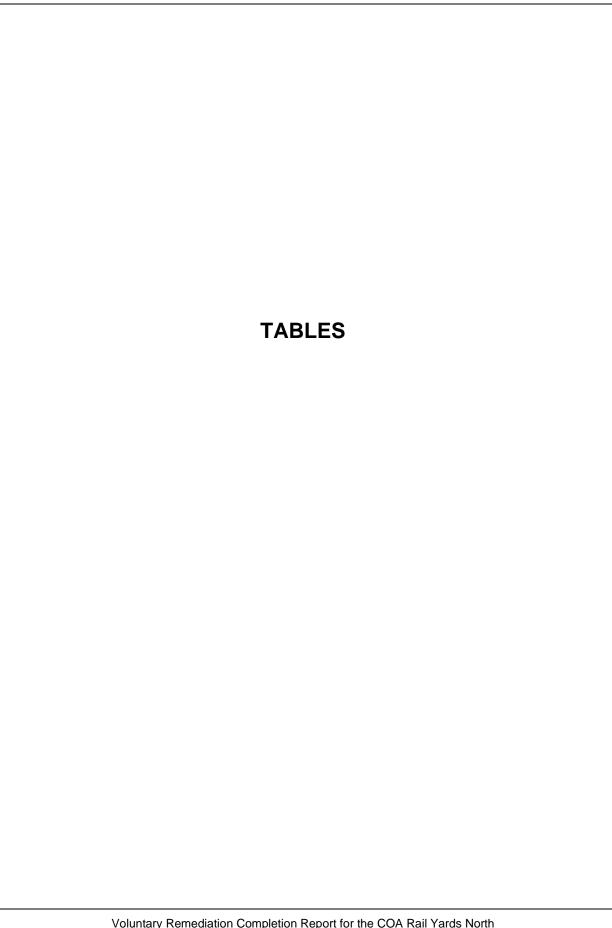




Figure 5 Residential VISL Exceedances Trichloroethene VRP Completion Report, Albuquerque Rail Yards North, Albuquerque, Bernalillo County, New Mexico



Note: VISL: Vapor Intrusion Screening Levels (NMED, 2019)



# TABLE 1

Characterization and Investigation Activities
Voluntary Remediation Completion Report for the COA Rail Yards North, Albuquerque, Bernalillo County, New Mexico

| Date              | Consultant         | Location                                                    | Investigation Activity                                                                                            |
|-------------------|--------------------|-------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|
| December<br>1995  | DBS&A              | CWE Shops                                                   | Phase II Environmental Site Assessment – soil and groundwater sampling                                            |
| June 1996         | DBS&A              | ATSF Railway Company CWE Facility                           | Water well inventory, soil sampling, groundwater sampling, and aquifer test                                       |
| July 1996         | DBS&A              | ATSF Railway Company CWE Facility                           | Quarterly groundwater monitoring –<br>Stage I Abatement Plan                                                      |
| September<br>1996 | DBS&A              | ATSF Railway Company CWE Facility                           | Plugging and abandonment of on-site water supply wells                                                            |
| December<br>1996  | DBS&A              | ATSF Railway Company CWE Facility                           | Quarterly groundwater monitoring –<br>Stage I Abatement Plan                                                      |
| March 1997        | DBS&A              | Former ATSF Railway Company CWE Facility                    | Quarterly groundwater monitoring –<br>Stage I Abatement Plan                                                      |
| January 2000      | DBS&A              | Former ATSF Railway Company CWE Facility                    | Groundwater monitoring event                                                                                      |
| May 2000          | Dames & Moore Inc. | Former ATSF Railway Company CWE Facility                    | Limited Site Investigation – collected soil and groundwater samples, installed wells                              |
| September 2000    | ERM                | CWE Shop Area, Transformer<br>Vandalism Site                | Investigated transformer oil leak from 13 vandalized electrical transformers                                      |
| October 2005      | Terracon           | Albuquerque Locomotive Shops Area B, Area C, and Tract A    | Site characterization and remediation excavation activities                                                       |
| June 2010         | HAI                | Albuquerque Locomotive Shops<br>Area A                      | Phase II Environmental Site Assessment – collected soil and groundwater samples                                   |
| January 2011      | Innovar            | Albuquerque Locomotive Shops Area B,<br>Area C, and Tract A | Phase II Environmental Site Assessment – focused on nine areas of concern                                         |
| July 2012         | INTERA             | Albuquerque Locomotive Shops Area B,<br>Area C, and Tract A | Soil and groundwater sample collection to aid in the delineation of metal and petroleum hydrocarbon contamination |
| September<br>2015 | INTERA             | Conceptual Site Model, COA Rail Yards                       | Consolidate all previous Site data                                                                                |
| February 2017     | INTERA             | Parcel 1 Additional Characterization<br>Report              | Soil, Soil Vapor, ACBM, LBP, and groundwater sampling                                                             |
| February 2017     | INTERA             | Parcel 2 Additional Characterization Report                 | Soil, Soil Vapor, ACBM, LBP, and groundwater sampling                                                             |
| February 2017     | INTERA             | Parcel 3 Additional Characterization Report                 | Soil Vapor, ACBM, and LBP sampling                                                                                |
| February 2017     | INTERA             | Parcel 4 Additional Characterization<br>Report              | Soil, Soil Vapor, ACBM, LBP, and groundwater sampling                                                             |
| February 2017     | INTERA             | Parcel 5 Additional Characterization<br>Report              | Soil Vapor, ACBM and LBP sampling                                                                                 |
| February 2017     | INTERA             | Parcel 7 Additional Characterization<br>Report              | Soil Vapor, ACBM, and LBP sampling                                                                                |
| February 2017     | INTERA             | Parcel 8 Additional Characterization<br>Report              | Soil Vapor, ACBM, and LBP sampling                                                                                |
| February 2017     | INTERA             | Parcel 9 Additional Characterization<br>Report              | Soil, Soil Vapor, ACBM, and LBP sampling                                                                          |



### **TABLE 1**

# **Characterization and Investigation Activities**

Voluntary Remediation Completion Report for the COA Rail Yards North, Albuquerque, Bernalillo County, New Mexico

| Date          | Consultant                           | Location                                       | Investigation Activity                                  |
|---------------|--------------------------------------|------------------------------------------------|---------------------------------------------------------|
| February 2017 | INTERA                               | Parcel 10 Additional Characterization Report   | Soil, Soil Vapor, ACBM, LBP, and groundwater sampling   |
| February 2017 | INTERA                               | Additional Groundwater Characterization Report | Groundwater sampling                                    |
| 2018          | COA<br>Environmental<br>Health Dept. | COA Rail Yards North and South                 | Groundwater and soil vapor sampling                     |
| May 2019      | COA<br>Environmental<br>Health Dept. | COA Rail Yards North                           | Additional Soil Investigation and Impacted Soil Removal |
| April 2020    | INTERA                               | COA Rail Yards North and South                 | Groundwater sampling                                    |

### Notes:

ACBM = asbestos-containing building material

ATSF = Atchison, Topeka, and Santa Fe

COA = City of Albuquerque

CWE = Central Works Equipment

DBS&A = Daniel B. Stephens &Associates, Inc.

ERM = Environmental Resources Management, Inc.

LBP = lead-based paint

HAI = Huang & Associates, Inc.



# TABLE 2 Cumulative Site Excavation Activities

Voluntary Remediation Completion Report for the COA Rail Yards North, Albuquerque, Bernalillo County, New Mexico

| Date | Consultant | Location                                                                                      | Soil Removal<br>Quantity<br>(cubic yards) | Action Driver |
|------|------------|-----------------------------------------------------------------------------------------------|-------------------------------------------|---------------|
| 2005 | Terracon   | Roundhouse excavation area                                                                    | 40                                        | Lead          |
| 2005 | Terracon   | Former oil cellar/AST excavation area (reported to be backfilled with same soil, [HAI, 2010]) | 330                                       | Petroleum     |
| 2005 | Terracon   | Former battery storage excavation area                                                        | 280                                       | Lead          |
| 2005 | Terracon   | Former sand blasting excavation area                                                          | 140                                       | Lead          |
| 2019 | COA EHD    | Former battery storage excavation area and former sand blasting excavation area               | 900                                       | Lead          |

### Notes:

AST= above-ground storage tank COA EHD = City of Albuquerque Environmental Health Department HAI = Huang & Associates, Inc.

### Reference:

Huang & Associates Inc., June 2010. Final Phase II Environmental Site Assessment Report, Targeted Brownfields Assessment, Albuquerque Locomotive Shops (AREA A), Albuquerque, Bernalillo County, New Mexico. Prepared for the U.S. Army Corps of Engineers, Albuquerque District. Available at City of Albuquerque.



# TABLE 3 Fluid Level Measurements and Well Construction Details

Voluntary Remediation Completion Report for the COA Rail Yards North, Albuquerque, Bernalillo County, New Mexico

|                                      |            |          | Screen    | Top of                           | Depth     | Total     | Water          | Potentiometric                      |                            |
|--------------------------------------|------------|----------|-----------|----------------------------------|-----------|-----------|----------------|-------------------------------------|----------------------------|
| Well ID                              | Date       | Diameter | Interval  | Casing                           | to Water  | Depth     | Column         | Surface                             | Comments                   |
|                                      |            | (inches) | (ft bgs)  | Elevation (ft amsl) <sup>1</sup> | (ft btoc) | (ft btoc) | Height<br>(ft) | Elevation<br>(ft amsl) <sup>2</sup> |                            |
|                                      | 4/14/1996  |          | 23.0-43.0 | 4653.31                          | 30.59     | -         | (11)           | 4622.72                             |                            |
| RAILMW01* (MW-01)  RAILMW02* (MW-02) | 7/29/1996  |          | 23.0-43.0 | 4653.31                          | 31.44     | _         |                | 4621.87                             |                            |
|                                      | 11/1/1996  |          | 23.0-43.0 | 4653.31                          | 31.04     | -         |                | 4622.27                             |                            |
|                                      | 2/6/1997   |          | 23.0-43.0 | 4653.31                          | 30.77     |           |                | 4622.54                             |                            |
|                                      | 6/11/1998  |          | 23.0-43.0 | 4653.31                          | 29.98     | -         | -              | 4623.33                             |                            |
|                                      | 9/15/1998  |          |           |                                  | 30.81     | -         | -              |                                     |                            |
| <b></b>                              |            |          | 23.0-43.0 | 4653.31                          |           | -         | -              | 4622.50                             |                            |
| -                                    | 12/21/1998 | 2        | 23.0-43.0 | 4653.31                          | 30.60     | -         | -              | 4622.71                             |                            |
| (10100-01)                           | 4/29/1999  |          | 23.0-43.0 | 4653.31                          | 30.82     | -         | -              | 4622.49                             |                            |
|                                      | 12/2/1999  |          | 23.0-43.0 | 4653.31                          | 31.04     | -         | -              | 4622.27                             |                            |
|                                      | 9/1/2010   |          | 23.0-43.0 | 4653.31                          | 26.74     | 44.15     | 17.41          | 4626.57                             |                            |
|                                      | 3/1/2012   |          | 23.0-43.0 | 4653.31                          | 26.41     | 44.12     | 17.71          | 4626.90                             |                            |
|                                      | 11/4/2016  |          | 23.0-43.0 | 100                              | 22.65     | 44.16     | 21.51          | 77.35                               |                            |
|                                      | 7/20/2018  |          | 23.0-43.0 | 100                              | 21.87     | 44.16     | 22.29          | 78.13                               |                            |
|                                      | 4/23/2020  |          | 23.0-43.0 | 4952.01                          | -         | -         | -              | -                                   | Well blocked; not sampled. |
|                                      | 4/14/1996  |          | 23.0-43.0 | 4652.98                          | 29.60     | -         | -              | 4623.38                             |                            |
|                                      | 7/29/1996  | -        | 23.0-43.0 | 4652.98                          | 30.39     | -         | -              | 4622.59                             |                            |
|                                      | 11/1/1996  |          | 23.0-43.0 | 4652.98                          | 30.04     | -         | -              | 4622.94                             |                            |
|                                      | 2/6/1997   |          | 23.0-43.0 | 4652.98                          | 29.82     | -         | -              | 4623.16                             |                            |
|                                      | 6/11/1998  |          | 23.0-43.0 | 4652.98                          | 29.95     | -         | -              | 4623.03                             |                            |
| D A II MANA/00*                      | 9/15/1998  |          | 23.0-43.0 | 4652.98                          | 29.82     | -         | -              | 4623.16                             |                            |
|                                      | 12/21/1998 | 2        | 23.0-43.0 | 4652.98                          | 29.65     | -         | -              | 4623.33                             |                            |
| ( 02)                                | 4/29/1999  |          | 23.0-43.0 | 4652.98                          | 29.86     | -         | •              | 4623.12                             |                            |
|                                      | 12/2/1999  |          | 23.0-43.0 | 4652.98                          | 30.09     | -         | -              | 4622.89                             |                            |
|                                      | 10/31/2005 |          | 23.0-43.0 | 4652.98                          | 29.40     | -         | -              | 4623.58                             |                            |
|                                      | 11/4/2016  |          | 23.0-43.0 | 97.26                            | 19.10     | 41.34     | 22.24          | 78.16                               | New J-plug installed.      |
|                                      | 7/20/2018  |          | 23.0-43.0 | 97.26                            | 18.72     | 41.34     | 22.62          | 78.54                               |                            |
|                                      | 4/23/2020  |          | 23.0-43.0 | 4949.30                          | 17.50     | 41.34     | 23.84          | 4931.80                             |                            |
|                                      | 4/14/1996  |          | 22.2-42.2 | 4653.66                          | 32.48     | -         | -              | 4621.18                             |                            |
|                                      | 7/29/1996  |          | 22.2-42.2 | 4653.66                          | 34.26     | -         | -              | 4619.40                             |                            |
|                                      | 11/1/1996  |          | 22.2-42.2 | 4653.66                          | 33.84     | -         | -              | 4619.82                             |                            |
|                                      | 2/6/1997   |          | 22.2-42.2 | 4653.66                          | 33.39     | -         | -              | 4620.27                             |                            |
|                                      | 6/11/1998  |          | 22.2-42.2 | 4653.66                          | 32.54     | -         | -              | 4621.12                             |                            |
|                                      | 9/15/1998  |          | 22.2-42.2 | 4653.66                          | 33.59     | -         | -              | 4620.07                             |                            |
| RAILMW03*                            | 12/21/1998 |          | 22.2-42.2 | 4653.66                          | 33.28     | -         | -              | 4620.38                             |                            |
|                                      | 4/29/1999  | 2        | 22.2-42.2 | 4653.66                          | 33.49     | -         | -              | 4620.17                             |                            |
|                                      | 12/2/1999  |          | 22.2-42.2 | 4653.66                          | 33.76     | -         | -              | 4619.90                             |                            |
|                                      | 9/3/2010   |          | 22.2-42.2 | 4653.66                          | 29.04     | 44.75     | 15.71          | 4624.62                             |                            |
|                                      | 3/1/2012   |          | 22.2-42.2 | 4653.66                          | 28.41     | 44.78     | 16.37          | 4625.25                             |                            |
|                                      | 11/4/2016  |          | 22.2-42.2 | 100.29                           | 24.33     | 44.75     | 20.42          | 75.96                               |                            |
|                                      | 7/20/2018  |          | 22.2-42.2 | 100.29                           | 23.35     | 44.75     | 21.40          | 76.94                               |                            |
|                                      |            |          |           |                                  |           |           |                |                                     |                            |
|                                      | 4/23/2020  |          | 22.2-42.2 | 4952.34                          | 22.01     | 44.75     | 22.74          | 4930.33                             |                            |



# TABLE 3 Fluid Level Measurements and Well Construction Details

Voluntary Remediation Completion Report for the COA Rail Yards North, Albuquerque, Bernalillo County, New Mexico

| Well ID              | Date       | Diameter (inches) | Screen<br>Interval<br>(ft bgs) | Top of<br>Casing<br>Elevation<br>(ft amsl) <sup>1</sup> | Depth<br>to Water<br>(ft btoc) | Total<br>Depth<br>(ft btoc) | Water<br>Column<br>Height<br>(ft) | Potentiometric<br>Surface<br>Elevation<br>(ft amsl) <sup>2</sup> | Comments              |
|----------------------|------------|-------------------|--------------------------------|---------------------------------------------------------|--------------------------------|-----------------------------|-----------------------------------|------------------------------------------------------------------|-----------------------|
|                      | 4/14/1996  |                   | 21.95-41.95                    | 4654.52                                                 | 34.40                          | -                           | -                                 | 4620.12                                                          |                       |
|                      | 7/29/1996  |                   | 21.95-41.95                    | 4654.52                                                 | 35.36                          | -                           | 1                                 | 4619.16                                                          |                       |
|                      | 11/1/1996  |                   | 21.95-41.95                    | 4654.52                                                 | 35.02                          | 1                           | ı                                 | 4619.50                                                          |                       |
|                      | 2/6/1997   |                   | 21.95-41.95                    | 4654.52                                                 | 34.51                          | -                           | ı                                 | 4620.01                                                          |                       |
|                      | 6/11/1998  |                   | 21.95-41.95                    | 4654.52                                                 | 33.72                          | -                           | ı                                 | 4620.80                                                          |                       |
| RAILMW04*            | 9/15/1998  | 2                 | 21.95-41.95                    | 4654.52                                                 | 34.77                          | -                           | 1                                 | 4619.75                                                          |                       |
| (MW-04)              | 12/21/1998 | 2                 | 21.95-41.95                    | 4654.52                                                 | 34.50                          | -                           | -                                 | 4620.02                                                          |                       |
|                      | 4/29/1999  |                   | 21.95-41.95                    | 4654.52                                                 | 34.70                          | -                           | -                                 | 4619.82                                                          |                       |
|                      | 12/2/1999  |                   | 21.95-41.95                    | 4654.52                                                 | 35.01                          | -                           | -                                 | 4619.51                                                          |                       |
|                      | 9/4/2010   |                   | 21.95-41.95                    | 4654.52                                                 | 30.32                          | 44.46                       | 14.14                             | 4624.20                                                          |                       |
|                      | 11/4/2016  |                   | 21.95-41.95                    | 101.12                                                  | 25.37                          | 44.48                       | 19.11                             | 75.75                                                            |                       |
|                      | 4/23/2020  |                   | 21.95-41.95                    | 4953.21                                                 | 22.92                          | 44.48                       | 21.56                             | 4930.29                                                          |                       |
|                      | 4/14/1996  |                   | 24.7-44.7                      | 4655.39                                                 | 36.17                          | -                           | -                                 | 4619.22                                                          |                       |
|                      | 7/29/1996  |                   | 24.7-44.7                      | 4655.39                                                 | 36.65                          | -                           | -                                 | 4618.74                                                          |                       |
|                      | 11/1/1996  |                   | 24.7-44.7                      | 4655.39                                                 | 36.34                          | -                           | -                                 | 4619.05                                                          |                       |
|                      | 2/6/1997   |                   | 24.7-44.7                      | 4655.39                                                 | 35.81                          | -                           | -                                 | 4619.58                                                          |                       |
|                      | 6/11/1998  | 1                 | 24.7-44.7                      | 4655.39                                                 | 35.02                          | -                           | -                                 | 4620.37                                                          |                       |
|                      | 9/15/1998  |                   | 24.7-44.7                      | 4655.39                                                 | 36.04                          | -                           | -                                 | 4619.35                                                          |                       |
| RAILMW05*<br>(MW-05) | 12/21/1998 | 2                 | 24.7-44.7                      | 4655.39                                                 | 35.78                          | -                           | -                                 | 4619.61                                                          |                       |
| (10100-00)           | 4/29/1999  |                   | 24.7-44.7                      | 4655.39                                                 | 35.97                          | -                           | -                                 | 4619.42                                                          |                       |
|                      | 12/2/1999  |                   | 24.7-44.7                      | 4655.39                                                 | 36.33                          | -                           | -                                 | 4619.06                                                          |                       |
|                      | 9/4/2010   |                   | 24.7-44.7                      | 4655.39                                                 | 31.61                          | 46.17                       | 14.56                             | 4623.78                                                          |                       |
|                      | 11/4/2016  |                   | 24.7-44.7                      | 101.99                                                  | 26.52                          | 46.16                       | 19.64                             | 75.47                                                            | New J-plug installed. |
|                      | 7/20/2018  |                   | 24.7-44.7                      | 101.99                                                  | 25.39                          | 46.16                       | 20.77                             | 76.60                                                            |                       |
|                      | 4/23/2020  |                   | 24.7-44.7                      | 4954.07                                                 | 24.00                          | 46.16                       | 22.16                             | 4930.07                                                          |                       |
|                      | 4/14/1996  |                   | 27.1-47.1                      | 4653.11                                                 | 37.79                          | -                           | -                                 | 4615.32                                                          |                       |
|                      | 7/29/1996  |                   | 27.1-47.1                      | 4653.11                                                 | 38.76                          | -                           | -                                 | 4614.35                                                          |                       |
|                      | 11/1/1996  |                   | 27.1-47.1                      | 4653.11                                                 | 38.52                          | -                           | -                                 | 4614.59                                                          |                       |
|                      | 2/6/1997   |                   | 27.1-47.1                      | 4653.11                                                 | 37.93                          | -                           | -                                 | 4615.18                                                          |                       |
|                      | 6/11/1998  |                   | 27.1-47.1                      | 4653.11                                                 | 37.40                          | -                           | -                                 | 4615.71                                                          |                       |
|                      | 9/15/1998  |                   | 27.1-47.1                      | 4653.11                                                 | 38.19                          | -                           | -                                 | 4614.92                                                          |                       |
| RAILMW06*            | 12/21/1998 | _                 | 27.1-47.1                      | 4653.11                                                 | 37.92                          | -                           | -                                 | 4615.19                                                          |                       |
| (MW-06)              | 4/29/1999  | 2                 | 27.1-47.1                      | 4653.11                                                 | 38.10                          | -                           | -                                 | 4615.01                                                          |                       |
|                      | 12/2/1999  |                   | 27.1-47.1                      | 4653.11                                                 | 38.55                          | -                           | -                                 | 4614.56                                                          |                       |
|                      | 10/31/2005 |                   | 27.1-47.1                      | 4653.11                                                 | 37.60                          | -                           | -                                 | 4615.51                                                          |                       |
|                      | 2/10/2010  |                   | 27.1-47.1                      | 4955.86                                                 | 35.86                          | -                           | -                                 | 4920.00                                                          |                       |
|                      | 11/4/2016  |                   | 27.1-47.1                      | 103.73                                                  | 29.44                          | 49.28                       | 19.84                             | 74.29                                                            |                       |
|                      | 7/5/2018   |                   | 27.1-47.1                      | 103.73                                                  | 27.15                          | 49.28                       | 22.13                             | 76.58                                                            |                       |
|                      | 4/23/2020  |                   | 27.1-47.1                      | 4953.72                                                 | 25.72                          | 49.28                       | 23.56                             | 4928.00                                                          |                       |



# TABLE 3 Fluid Level Measurements and Well Construction Details

Voluntary Remediation Completion Report for the COA Rail Yards North, Albuquerque, Bernalillo County, New Mexico

| Well ID              | Date       | Diameter (inches) | Screen<br>Interval<br>(ft bgs) | Top of<br>Casing<br>Elevation<br>(ft amsl) <sup>1</sup> | Depth<br>to Water<br>(ft btoc) | Total<br>Depth<br>(ft btoc) | Water<br>Column<br>Height<br>(ft) | Potentiometric<br>Surface<br>Elevation<br>(ft amsl) <sup>2</sup> | Comments |
|----------------------|------------|-------------------|--------------------------------|---------------------------------------------------------|--------------------------------|-----------------------------|-----------------------------------|------------------------------------------------------------------|----------|
|                      | 4/14/1996  |                   | 22.7-42.7                      | 4651.94                                                 | 35.25                          | -                           | -                                 | 4616.69                                                          |          |
|                      | 7/29/1996  |                   | 22.7-42.7                      | 4651.94                                                 | 36.09                          | -                           | -                                 | 4615.85                                                          |          |
|                      | 11/1/1996  |                   | 22.7-42.7                      | 4651.94                                                 | 35.88                          | -                           | -                                 | 4616.06                                                          |          |
|                      | 2/6/1997   |                   | 22.7-42.7                      | 4651.94                                                 | 35.40                          | -                           | -                                 | 4616.54                                                          |          |
|                      | 6/11/1998  |                   | 22.7-42.7                      | 4651.94                                                 | 34.66                          | -                           | -                                 | 4617.28                                                          |          |
|                      | 9/15/1998  |                   | 22.7-42.7                      | 4651.94                                                 | 35.57                          | -                           | -                                 | 4616.37                                                          |          |
| RAILMW07*<br>(MW-07) | 12/21/1998 | 2                 | 22.7-42.7                      | 4651.94                                                 | 35.37                          | -                           | -                                 | 4616.57                                                          |          |
| (10100 01)           | 4/29/1999  |                   | 22.7-42.7                      | 4651.94                                                 | 35.54                          | -                           | -                                 | 4616.40                                                          |          |
|                      | 12/2/1999  |                   | 22.7-42.7                      | 4651.94                                                 | 35.90                          | -                           | -                                 | 4616.04                                                          |          |
|                      | 9/4/2010   |                   | 22.7-42.7                      | 4651.94                                                 | 31.60                          | 44.78                       | 13.18                             | 4620.34                                                          |          |
|                      | 11/4/2016  |                   | 22.7-42.7                      | 102.65                                                  | 26.74                          | 44.85                       | 18.11                             | 75.91                                                            |          |
|                      | 7/5/2018   |                   | 22.7-42.7                      | 102.65                                                  | 25.60                          | 44.85                       | 19.25                             | 77.05                                                            |          |
|                      | 4/22/2020  |                   | 22.7-42.7                      | 4951.83                                                 | 21.24                          | 44.85                       | 23.61                             | 4930.59                                                          |          |
|                      | 4/14/1996  |                   | 24.5-44.5                      | 4651.68                                                 | 34.64                          | -                           | -                                 | 4617.04                                                          |          |
|                      | 7/29/1996  |                   | 24.5-44.5                      | 4651.68                                                 | 35.48                          | -                           | -                                 | 4616.20                                                          |          |
|                      | 11/1/1996  |                   | 24.5-44.5                      | 4651.68                                                 | 35.27                          | -                           | 1                                 | 4616.41                                                          |          |
|                      | 2/6/1997   |                   | 24.5-44.5                      | 4651.68                                                 | 34.80                          | -                           | -                                 | 4616.88                                                          |          |
|                      | 6/11/1998  |                   | 24.5-44.5                      | 4651.68                                                 | 34.07                          | -                           | -                                 | 4617.61                                                          |          |
| D 4 11 4 4 4 4 6 6 4 | 9/15/1998  | 4                 | 24.5-44.5                      | 4651.68                                                 | 34.97                          | -                           | -                                 | 4616.71                                                          |          |
| RAILMW08*<br>(MW-08) | 12/21/1998 |                   | 24.5-44.5                      | 4651.68                                                 | 34.78                          | -                           | 1                                 | 4616.90                                                          |          |
| (11111 00)           | 4/29/1999  |                   | 24.5-44.5                      | 4651.68                                                 | 34.95                          | -                           | 1                                 | 4616.73                                                          |          |
|                      | 12/2/1999  |                   | 24.5-44.5                      | 4651.68                                                 | 35.31                          | -                           | -                                 | 4616.37                                                          |          |
|                      | 2/11/2010  |                   | 24.5-44.5                      | 4954.38                                                 | 31.98                          | -                           | 1                                 | 4922.40                                                          |          |
|                      | 11/4/2016  |                   | 24.5-44.5                      | 102.30                                                  | 26.16                          | 46.11                       | 19.95                             | 76.14                                                            |          |
|                      | 7/5/2018   |                   | 24.5-44.5                      | 102.30                                                  | 24.96                          | 46.11                       | 21.15                             | 77.34                                                            |          |
|                      | 4/22/2020  |                   | 24.5-44.5                      | 4951.97                                                 | 21.16                          | 46.11                       | 24.95                             | 4930.81                                                          |          |
|                      | 2/10/2010  |                   | 33.0-43.0                      | 4953.43                                                 | 32.52                          | -                           | 1                                 | 4920.91                                                          |          |
| RAILMW09*            | 11/4/2016  |                   |                                |                                                         | Well no                        | t located.                  |                                   |                                                                  |          |
| (MW-09)              | 7/5/2018   |                   |                                |                                                         | Well no                        | t located.                  |                                   |                                                                  |          |
|                      | 4/22/2020  |                   |                                |                                                         |                                |                             |                                   |                                                                  |          |
| RAILMW10*            | 7/5/2018   | 2                 | 31.2-41.2                      | -                                                       | 23.04                          | 38.38                       | 15.34                             | -                                                                |          |
| (MW-10)              | 4/23/2020  | 2                 | 31.2-41.2                      | 4951.82                                                 | 21.60                          | 38.38                       | 16.78                             | 4930.22                                                          |          |
| RAILMW11*<br>(MW-11) | 4/23/2020  | 2                 | -                              | 4949.92                                                 | 18.85                          | 39.85                       | 21.00                             | 4931.07                                                          |          |

### Notes:

bgs = below ground surface

btoc = below top of casing



<sup>\*=</sup> Well name changed by client; (previous name)

<sup>- =</sup> data not available, present, or not applicable

<sup>&</sup>lt;sup>1</sup> = Top of casing elevation resurveyed in December 2016 using MW-01 as base station, elevtation set at 100 ft

<sup>&</sup>lt;sup>2</sup> = Value calculated from: Potentiometric Surface Elevation = (Top of Casing Elevation - Depth to Water) amsl = above mean sea level

TABLE 4
Groundwater Quality Parameters

Voluntary Remediation Completion Report for the COA Rail Yards North, Albuquerque, Bernalillo County, New Mexico

| Well ID  | Date      | Tempo | erature           | Specific<br>Conductivity | рН   |
|----------|-----------|-------|-------------------|--------------------------|------|
|          |           | °C    | °F                | (μS/cm)                  |      |
| RAILMW01 | 11/4/2016 | 18.7  | 65.66             | 996.0                    | 7.42 |
| RAILMW01 | 7/26/2018 | 22    | 71.6              | 824                      | 7.49 |
| RAILMW01 | 4/23/2020 |       | Well damaged; no  | sample collected.        |      |
| RAILMW02 | 11/4/2016 | 18.5  | 65.3              | 667.2                    | 7.74 |
| RAILMW02 | 7/25/2018 | 20.06 | 68.1              | 699                      | 7.30 |
| RAILMW02 | 4/23/2020 | 18.1  | 64.6              | 744                      | 7.03 |
| RAILMW03 | 11/4/2016 | 19.0  | 66.2              | 671.2                    | 7.31 |
| RAILMW03 | 7/26/2018 | 20.7  | 69.3              | 651                      | 7.51 |
| RAILMW03 | 4/23/2020 | 19.7  | 67.5              | 753                      | 6.72 |
| RAILMW04 | 11/4/2016 | 18.7  | 65.7              | 929.8                    | 7.18 |
| RAILMW04 | 7/24/2018 | 19.7  | 67.5              | 651                      | 7.25 |
| RAILMW04 | 4/23/2020 | 19.4  | 66.9              | 561                      | 6.69 |
| RAILMW05 | 11/4/2016 | 18.6  | 65.5              | 819.5                    | 7.05 |
| RAILMW05 | 7/24/2018 | 20.1  | 68.2              | 651                      | 7.25 |
| RAILMW05 | 4/23/2020 | 19.0  | 66.2              | 856                      | 6.88 |
| RAILMW06 | 11/4/2016 | 17.9  | 64.2              | 803.2                    | 7.28 |
| RAILMW06 | 7/24/2018 | 20.5  | 68.9              | 903                      | 7.04 |
| RAILMW06 | 4/24/2020 | 19.8  | 67.6              | 1,215                    | 7.01 |
| RAILMW07 | 11/4/2016 | 18.6  | 65.5              | 829.2                    | 7.18 |
| RAILMW07 | 7/25/2018 | 21.5  | 70.7              | 784                      | 7.54 |
| RAILMW07 | 4/23/2020 | 18.8  | 65.8              | 875                      | 6.69 |
| RAILMW08 | 11/4/2016 | 18.8  | 65.8              | 951.9                    | 7.17 |
| RAILMW08 | 7/20/2018 | 20.2  | 68.4              | 720                      | 7.09 |
| RAILMW08 | 4/22/2020 | 18.8  | 65.8              | 1,073                    | 7.21 |
| RAILMW09 | 11/4/2016 |       | Not located; no s | sample collected.        |      |
| RAILMW09 | 7/20/2018 |       | Not located; no s | sample collected.        |      |
| RAILMW09 | 4/22/2020 |       | Not located; no s | sample collected.        |      |
| RAILMW10 | 7/24/2018 | 20.3  | 68.5              | 876.0                    | 7.04 |
| RAILMW10 | 4/23/2020 | 19.2  | 66.6              | 907                      | 6.69 |
| RAILMW11 | 4/23/2020 | 19.3  | 66.7              | 699                      | 7.04 |

# Notes:

°C = degrees Celsius

°F = degrees Fahrenheit

 $\mu$ S/cm = microSiemens per centimeter



# TABLE 5

Laboratory Analytical Results - Groundwater
Voluntary Remediation Completion Report for the COA Rail Yards North, Albuquerque, Bernalillo County, New Mexico

|             |                                                                        |      | 5         1000         700         620         0.05         30         30           20         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         - |                           |      |                  |                                       |                                       |  |  |  |  |  |  |
|-------------|------------------------------------------------------------------------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|------|------------------|---------------------------------------|---------------------------------------|--|--|--|--|--|--|
| Sample ID   | Date                                                                   |      | Toluene <sup>1</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Ethylbenzene <sup>1</sup> |      | EDB <sup>2</sup> | Total<br>Naphthalenes <sup>3, 4</sup> | Total<br>Naphthalenes <sup>1, 4</sup> |  |  |  |  |  |  |
| NMWQCC Stan |                                                                        |      | 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 700                       | 620  | 0.05             | 30                                    | 30                                    |  |  |  |  |  |  |
|             | 6/11/1998                                                              |      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                         | -    | -                | -                                     | -                                     |  |  |  |  |  |  |
|             | 9/15/1998                                                              |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                           | -    |                  | -                                     | -                                     |  |  |  |  |  |  |
|             | 12/21/1998                                                             |      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                         | -    | -                | -                                     | -                                     |  |  |  |  |  |  |
|             | 4/29/1999                                                              |      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                         | -    | -                |                                       | -                                     |  |  |  |  |  |  |
| RAILMW01    | 10/22/2005                                                             |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                           |      | -                |                                       | -                                     |  |  |  |  |  |  |
| (MW-1)      | 9/1/2010                                                               |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                           |      |                  | 26                                    | -                                     |  |  |  |  |  |  |
|             | 3/2/2012                                                               |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                           |      |                  | -                                     | 2                                     |  |  |  |  |  |  |
|             | 11/4/2016                                                              |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                           |      |                  | -                                     | 56                                    |  |  |  |  |  |  |
|             | 7/26/2018                                                              | <1.0 | <1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                           |      |                  | -                                     | 272                                   |  |  |  |  |  |  |
|             | 4/23/2020                                                              |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                           |      |                  |                                       |                                       |  |  |  |  |  |  |
|             | 7/29/1996                                                              | <5   | <5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <5                        | <5   | <5               | 0.24                                  | -                                     |  |  |  |  |  |  |
|             | 11/1/1996                                                              | <5   | <5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <5                        | <5   | <5               | <2.5                                  | -                                     |  |  |  |  |  |  |
|             | 2/6/1997                                                               | <5   | <5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <5                        | <5   | <5               | <2.5                                  | -                                     |  |  |  |  |  |  |
|             | 6/11/1998                                                              | 1.8  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                         | -    | -                | -                                     | -                                     |  |  |  |  |  |  |
| RAILMW02    | 2/6/1997 <5 <5<br>6/11/1998 1.8 -<br>9/15/1998 <1 -<br>12/21/1998 <1 - | -    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                         | -    | -                |                                       |                                       |  |  |  |  |  |  |
| (MW-2)      | 12/21/1998                                                             | <1   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                         | -    | -                | -                                     | -                                     |  |  |  |  |  |  |
| (11111 2)   | 4/29/1999                                                              | 1.1  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                         | -    | -                | -                                     | -                                     |  |  |  |  |  |  |
|             | 12/2/1999                                                              | <1   | <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <1                        | <1   | <1               | <2.5                                  | -                                     |  |  |  |  |  |  |
|             | 11/4/2016                                                              | <1.0 | <1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <1.0                      | <1.5 | <0.010           | -                                     | <4.0                                  |  |  |  |  |  |  |
|             | 7/25/2018                                                              | <1.0 | <1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <1.0                      | <1.5 | <1.0             | -                                     | <10                                   |  |  |  |  |  |  |
|             | 4/23/2020                                                              | <1.0 | <1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <1.0                      | <1.5 | <0.0093          | <9.0                                  | <10                                   |  |  |  |  |  |  |
|             | 7/29/1996                                                              | 5.2  | <5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <5                        | <5   | <5               | <2.5                                  | -                                     |  |  |  |  |  |  |
|             | 11/1/1996                                                              | 13   | <5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <5                        | <5   | <5               | 11                                    | -                                     |  |  |  |  |  |  |
|             | 2/6/1997                                                               | 34   | <5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <5                        | <5   | <5               | 18                                    | -                                     |  |  |  |  |  |  |
|             | 6/11/1998                                                              | 150  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                         | -    | -                | -                                     | -                                     |  |  |  |  |  |  |
|             | 9/15/1998                                                              | 41   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                         | -    | -                | -                                     | -                                     |  |  |  |  |  |  |
|             | 12/21/1998                                                             | 17   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                         | -    | -                | -                                     | -                                     |  |  |  |  |  |  |
| RAILMW03    | 4/29/1999                                                              | 29   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                         | -    | -                | -                                     | -                                     |  |  |  |  |  |  |
| (MW-3)      | 12/2/1999                                                              | 18   | <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <1                        | <1   | <1               | <2.5                                  | -                                     |  |  |  |  |  |  |
|             | 10/22/2005                                                             | 13   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                         | -    | -                | 43                                    | -                                     |  |  |  |  |  |  |
|             | 9/3/2010                                                               | 55.8 | 0.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.39                      | 0.73 | -                | 124                                   | -                                     |  |  |  |  |  |  |
|             | 3/2/2012                                                               | 34   | 0.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.27                      | 0.46 | <1               | -                                     | 250                                   |  |  |  |  |  |  |
|             | 11/4/2016                                                              | 8.8  | <1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <1.0                      | <1.5 | <0.010           | -                                     | 220                                   |  |  |  |  |  |  |
|             | 7/26/2018                                                              | 1.6  | <1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <1.0                      | <1.5 | <1.0             | -                                     | 185                                   |  |  |  |  |  |  |
|             | 4/23/2020                                                              | 1.0  | <1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <1.0                      | <1.5 | <0.0095          | 75                                    | 174                                   |  |  |  |  |  |  |



# **TABLE 5**

Laboratory Analytical Results - Groundwater
Voluntary Remediation Completion Report for the COA Rail Yards North, Albuquerque, Bernalillo County, New Mexico

|             |            |                      |                      | Or                        | ganics (µg                 | /L)              |                                       |                                       |
|-------------|------------|----------------------|----------------------|---------------------------|----------------------------|------------------|---------------------------------------|---------------------------------------|
| Sample ID   | Date       | Benzene <sup>1</sup> | Toluene <sup>1</sup> | Ethylbenzene <sup>1</sup> | Total Xylenes <sup>1</sup> | EDB <sup>2</sup> | Total<br>Naphthalenes <sup>3, 4</sup> | Total<br>Naphthalenes <sup>1, 4</sup> |
| NMWQCC Stan | dard       | 5                    | 1000                 | 700                       | 620                        | 0.05             | 30                                    | 30                                    |
|             | 7/29/1996  | <5                   | <5                   | <5                        | <5                         | <5               | <2.5                                  | -                                     |
|             | 11/1/1996  | <5                   | <5                   | <5                        | <5                         | <5               | <2.5                                  | -                                     |
|             | 2/6/1997   | <5                   | <5                   | <5                        | <5                         | <5               | <2.5                                  | -                                     |
|             | 6/11/1998  | <1                   | -                    | -                         | -                          | -                | -                                     | -                                     |
|             | 9/15/1998  | <1                   | -                    | -                         | -                          | -                | -                                     | -                                     |
| RAILMW04    | 12/21/1998 | <1                   | -                    | -                         | -                          | -                | -                                     | -                                     |
| (MW-4)      | 4/29/1999  | <1                   | -                    | -                         | -                          | -                | -                                     | -                                     |
| ()          | 12/2/1999  | <1                   | <1                   | <1                        | <1                         | <1               | <2.5                                  | -                                     |
|             | 10/22/2005 | <1                   | -                    | -                         | -                          | -                | 0.29                                  | -                                     |
|             | 9/4/2010   | <0.21                | 1.1                  | <0.2                      | <0.54                      | -                | -                                     | 0.56                                  |
|             | 11/4/2016  | <1.0                 | <1.0                 | <1.0                      | <1.5                       | <0.010           | -                                     | 8.8                                   |
|             | 7/24/2018  | <1.0                 | <1.0                 | <1.0                      | <1.5                       | <1.0             | -                                     | <10                                   |
|             | 4/23/2020  | <1.0                 | <1.0                 | <1.0                      | <1.5                       | <0.0094          | <9.0                                  | <10                                   |
|             | 7/29/1996  | <1.0                 | <1.0                 | <1.0                      | <5                         | <5               | <2.5                                  | -                                     |
|             | 11/1/1996  | <1.0                 | <1.0                 | <1.0                      | <5                         | <5               | <2.5                                  | -                                     |
|             | 2/6/1997   | <1.0                 | <1.0                 | <1.0                      | <5                         | <5               | <2.5                                  | -                                     |
|             | 6/11/1998  | <1.0                 | <1.0                 | <1.0                      | -                          | -                | -                                     | -                                     |
| RAILMW05    | 12/2/1999  | <1.0                 | <1.0                 | <1.0                      | <1                         | <1               | <2.5                                  | -                                     |
| (MW-5)      | 10/22/2005 | <1.0                 | <1.0                 | <1.0                      | -                          | -                | <0.1                                  | -                                     |
|             | 9/4/2010   | <1.0                 | <1.0                 | <1.0                      | <0.54                      | -                | <0.97                                 | -                                     |
|             | 11/4/2016  | <1.0                 | <1.0                 | <1.0                      | <1.5                       | <0.010           | -                                     | <4.0                                  |
|             | 7/24/2018  | <1.0                 | <1.0                 | <1.0                      | <1.5                       | <1.0             | -                                     | <10                                   |
|             | 4/23/2020  | 1.0                  | <1.0                 | <1.0                      | <1.5                       | <0.0093          | <9.0                                  | <10                                   |
|             | 7/29/1996  | <1.0                 | <1.0                 | <1.0                      | <5                         | <5               | <2.5                                  | <4.0                                  |
|             | 11/1/1996  | <1.0                 | <1.0                 | <1.0                      | <5                         | <5               | <2.5                                  | <4.0                                  |
|             | 2/6/1997   | <1.0                 | <1.0                 | <1.0                      | <5                         | <5               | <2.5                                  | <4.0                                  |
|             | 6/11/1998  | <1.0                 | <1.0                 | <1.0                      | -                          | -                | -                                     | <4.0                                  |
|             | 9/15/1998  | <1.0                 | <1.0                 | <1.0                      | -                          | -                | -                                     | <4.0                                  |
| RAILMW06    | 12/21/1998 | <1.0                 | <1.0                 | <1.0                      | -                          | -                | -                                     | <4.0                                  |
| (MW-6)      | 4/29/1999  | <1.0                 | <1.0                 | <1.0                      | -                          | -                | -                                     | <4.0                                  |
| (           | 12/2/1999  | <1.0                 | <1.0                 | <1.0                      | <1                         | <1               | <2.5                                  | <4.0                                  |
|             | 10/16/2005 | <1.0                 | <1.0                 | <1.0                      | <1.5                       | -                | 0.30                                  | <4.0                                  |
|             | 2/10/2010  | <1.0                 | <1.0                 | <1.0                      | -                          | <0.18            | -                                     | <4.0                                  |
|             | 11/4/2016  | <1.0                 | <1.0                 | <1.0                      | <1.5                       | <0.010           | -                                     | <4.0                                  |
|             | 7/24/2018  | <1.0                 | <1.0                 | <1.0                      | <1.5                       | <1.0             | -                                     | <10                                   |
|             | 4/24/2020  | <1.0                 | <1.0                 | <1.0                      | <1.5                       | <0.0092          | <9.0                                  | <10                                   |



# TABLE 5 Laboratory Analytical Results - Groundwater

Voluntary Remediation Completion Report for the COA Rail Yards North, Albuquerque, Bernalillo County, New Mexico

|              |            |       | 5         1000         700         620         0.05         30         3           <1.0         <1.0         <1.0         -         -         -         <4           <1.0         <1.0         <1.5         -         0.32         <4           <1.0         <1.0         <1.0         <0.54         -         <0.95         <4           <1.0         <1.0         <1.0         <1.5         <0.010         -         <4           <1.0         <1.0         <1.0         <1.5         <0.0094         <9.0         <7           <1.0         <1.0         <1.0         <1.5         <0.0094         <9.0         <7           <1.0         <1.0         <1.0         <1.5         -         0.3         <4           <1.0         <1.0         <1.0         <1.5         <0.018         -         <4           <1.0         <1.0         <1.0         <1.5         <0.010         -         <4 |              |                            |                  |                                       |                                       |  |  |  |  |  |  |
|--------------|------------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|----------------------------|------------------|---------------------------------------|---------------------------------------|--|--|--|--|--|--|
| Sample ID    | Date       |       | Toluene <sup>1</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              | Total Xylenes <sup>1</sup> | EDB <sup>2</sup> | Total<br>Naphthalenes <sup>3, 4</sup> | Total<br>Naphthalenes <sup>1, 4</sup> |  |  |  |  |  |  |
| NMWQCC Stan  | dard       | 5     | 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 700          | 620                        | 0.05             | 30                                    | 30                                    |  |  |  |  |  |  |
|              | 6/11/1998  | <1.0  | <1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <1.0         | -                          | -                | -                                     | <4.0                                  |  |  |  |  |  |  |
|              | 10/16/2005 | <1.0  | <1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <1.0         | <1.5                       | -                | 0.32                                  | <4.0                                  |  |  |  |  |  |  |
| RAILMW07     | 9/4/2010   | <1.0  | <1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <1.0         | <0.54                      | 1                | <0.95                                 | <4.0                                  |  |  |  |  |  |  |
| (MW-7)       | 11/4/2016  | <1.0  | <1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <1.0         | <1.5                       | <0.010           | -                                     | <4.0                                  |  |  |  |  |  |  |
|              | 7/25/2018  | <1.0  | <1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <1.0         | <1.5                       | <1.0             | -                                     | <10                                   |  |  |  |  |  |  |
|              | 4/23/2020  | 1.0   | <1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <1.0         | <1.5                       | <0.0094          | <9.0                                  | <10                                   |  |  |  |  |  |  |
|              | 6/11/1998  | <1.0  | <1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <1.0         | -                          | -                | -                                     | <4.0                                  |  |  |  |  |  |  |
|              | 10/16/2005 | <1.0  | <1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <1.0         | <1.5                       | -                | 0.3                                   | <4.0                                  |  |  |  |  |  |  |
| RAILMW08     | 2/11/2010  | <1.0  | <1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <1.0         | -                          | <0.18            | -                                     | <4.0                                  |  |  |  |  |  |  |
| (MW-8)       | 11/4/2016  | <1.0  | <1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <1.0         | <1.5                       | <0.010           | -                                     | <4.0                                  |  |  |  |  |  |  |
|              | 7/20/2018  | <1.0  | <1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <1.0         | <1.5                       | <1.0             | -                                     | <10                                   |  |  |  |  |  |  |
|              | 4/22/2020  | <1.0  | <1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <1.0         | <1.5                       | <0.0094          | <9.0                                  | <10                                   |  |  |  |  |  |  |
|              | 4/19/2000  | <1    | <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <1           | <1                         | <1               | -                                     | -                                     |  |  |  |  |  |  |
|              | 10/22/2005 | <1    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -            | -                          | -                | -                                     | -                                     |  |  |  |  |  |  |
| RAILMW09     | 2/10/2010  | <0.16 | <0.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <0.16        | -                          | <0.18            | -                                     | -                                     |  |  |  |  |  |  |
| (MW-9)       | 11/4/2016  |       | No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | sample colle | ected. Could               | not locate v     | vell.                                 |                                       |  |  |  |  |  |  |
|              | 7/25/2018  |       | No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | sample colle | ected. Could               | not locate v     | vell.                                 |                                       |  |  |  |  |  |  |
|              | 4/22/2020  |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              |                            |                  |                                       |                                       |  |  |  |  |  |  |
| RAILMW10     | 7/24/2018  | <1.0  | <1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <1.0         | <1.5                       | <1.0             | -                                     | <10                                   |  |  |  |  |  |  |
| INAILIVIVVIU | 4/23/2020  | <1.0  | <1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <1.0         | <1.5                       | <0.0094          | <9.0                                  | <10                                   |  |  |  |  |  |  |
| RAILMW11     | 4/23/2020  | 1.0   | <1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <1.0         | <1.5                       | <0.0094          | <9.0                                  | 2.5                                   |  |  |  |  |  |  |

### Notes:

Bold, red font indicates values or RLs in excess of the NMWQCC Standard.

 $\mu$ g/L = microgram(s) per liter.

BTEX = benzene, toluene, ethylbenzene, and total xylenes.

EDB = 1,2-dibromoethane.

NMWQCC = New Mexico Water Quality Control Commission.

NMWQCC Standard = Groundwater Standards as defined by the State of New Mexico Water Quality Control Commission (NMWQCC, 2002). Standard were updated Dec 2018; results reported after that date reflect the latest Standards.

RL = laboratory reporting limit.



<sup>&</sup>lt;sup>1</sup> = Analyzed by EPA Method 8260B.

<sup>&</sup>lt;sup>2</sup> = Analyzed by EPA Method 504.1 or Method 8260B.

<sup>&</sup>lt;sup>3</sup> = Analyzed by EPA Method 8230.

<sup>&</sup>lt;sup>4</sup> = Total naphthalenes includes the sum of naphthalene, 1-methylnaphthalene, and 2-methylnaphthalene. RL for total naphthalenes = highest RL for individual compounds; when summing detections, values listed as "<" RL in the laboratory report are assumed to be 0.</p>

TABLE 6
Laboratory Analytical Results - Soil Vapor

Voluntary Remediation Completion Report for the COA Rail Yards North, Albuquerque, Bernalillo County, New Mexico

|              |           |            |                       |                        |                        |                     |             | Co                  | ncentra | ation (µ             | g/m³ )       |             |          |            |                   |         |                 |
|--------------|-----------|------------|-----------------------|------------------------|------------------------|---------------------|-------------|---------------------|---------|----------------------|--------------|-------------|----------|------------|-------------------|---------|-----------------|
| Location     | Sample ID | Date       | 1,1,1-Trichloroethane | 1,2,4-Trimethylbenzene | 1,3,5-Trimethylbenzene | 1,3-Dichlorobenzene | 1,4-Dioxane | 2-Methylnaphthalene | Benzene | Carbon Tetrachloride | Ethylbenzene | Naphthalene | o-Xylene | p&m-Xylene | Tetrachloroethene | Toluene | Trichloroethene |
| NMED Reside  |           |            | 173810                | -                      | -                      | -                   | 187.2       | -                   | 120     | 156                  | 374.4        | 27.53       | 3476     | 3476       | 1390              | 173810  | 69.5            |
| NMED Industr | ial VISL  |            | 819304                | -                      | -                      | -                   | 917.6       | -                   | 588.2   | 764.7                | 1835         | 134.9       | 16386    | 16386      | 6554              | 819304  | 328             |
| SV-07-01     | SV-07-01  | 11/2/2016  | <10                   | <10                    | <10                    | <10                 | <10         | <10                 | <10     | <10                  | <10          | 2.5         | <10      | <10        | <10               | <10     | <10             |
| 0, 0, 0,     | RYSV0701  | 7/19/2018  | 4.8                   | <2                     | <2                     | <2.4                | <1.4        | -                   | <1.3    | <2.5                 | <1.7         | <6.6        | -        | <3.5       | 11                | 2.4     | <2.1            |
| SV-07-02     | SV-07-02  | 11/2/2016  | 17.4                  | <10                    | <10                    | 1013.24             | <10         | <10                 | 11.89   | <10                  | 14.41        | 2.5         | <10      | 39.65      | <10               | 126.72  | <10             |
| 3V-07-02     | RYSV0702  | 7/19/2018  | 62                    | <2                     | <2                     | <2.4                | <1.4        | -                   | <1.3    | <2.5                 | <1.7         | <6.6        | -        | <3.5       | 3.3               | <1.5    | <2.1            |
| SV-07-03     | SV-07-03  | 11/2/2016  | <10                   | <10                    | <10                    | 1127.89             | 12.68       | <10                 | 10.85   | <10                  | 14.04        | 2.5         | <10      | 37.35      | <10               | 93.8    | <10             |
| 0 0 0 00     | RYSV0703  | 7/19/2018  | 3.5                   | 11                     | <2                     | <2.4                | <1.4        | -                   | <1.3    | <2.5                 | <1.7         | <6.6        | -        | 6.1        | 30                | 2.2     | 360             |
| SV-07-04     | SV-07-04  | 11/2/2016  | <10                   | <10                    | <10                    | 1109.66             | <10         | <10                 | <10     | <10                  | 16.45        | 2.5         | 10.91    | 43.8       | <10               | 121.69  | <10             |
| 0 0 0 0 0 0  | RYSV0704  | 7/19/2018  | <2.2                  | <2                     | <2                     | <2.4                | <1.4        | -                   | <1.3    | <2.5                 | <1.7         | <6.6        | -        | <3.5       | 4.8               | <1.5    | <2.1            |
| SV-08-01     | SV-08-01  | 11/3/2016  | <10                   | <10                    | <10                    | 130.6               | <10         | <10                 | <10     | <10                  | <10          | 2.5         | <10      | <10        | <10               | 29.05   | <10             |
| (SV-08-01R)  | RYSV0801R | 7/19/2018  | <2.2                  | 6.2                    | 2.4                    | <2.4                | <1.4        | -                   | <1.3    | <2.5                 | <1.7         | <6.6        | -        | <3.5       | 11                | <1.5    | <2.1            |
| SV-08-02     | SV-08-02  | 11/2/2016  | <10                   | <10                    | <10                    | 113.95              | <10         | <10                 | <10     | <10                  | <10          | 2.5         | <10      | <10        | <10               | 21.02   | <10             |
| (SV-08-02R)  | RYSV0802R | 7/19/2018  | <2.2                  | 9.6                    | 2.7                    | <2.4                | <1.4        | -                   | <1.3    | <2.5                 | <1.7         | 27          | -        | <3.5       | <2.7              | 2       | <2.1            |
| SV-08-03     | SV-08-03  | 10/31/2016 | 16.02                 | <10                    | <10                    | 1207.58             | 12.82       | <10                 | 10.18   | <10                  | <10          | 2.5         | <10      | <10        | <10               | 52.86   | <10             |
|              | RYSV0803  | 7/19/2018  | 86                    | <2                     | <2                     | <2.4                | <1.4        | -                   | <1.3    | <2.5                 | <1.7         | <6.6        | -        | 3.8        | 9.8               | 17      | <2.1            |
| SV-08-04     | SV-08-04  | 10/31/2016 | 13.15                 | <10                    | <10                    | 108.32              | 15.33       | <10                 | 10.57   | <10                  | <10          | 2.5         | <10      | 11.15      | <10               | 57.07   | <10             |
|              | RYSV0804  | 7/19/2018  | <2.2                  | 3.1                    | <2                     | <2.4                | <1.4        | -                   | 2.6     | <2.5                 | 4.1          | <6.6        | -        | 5.3        | 84                | 6       | 3.7             |
| SV-08-05     | SV-08-05  | 11/2/2016  | <10                   | <10                    | <10                    | 904.26              | <10         | 16.43               | <10     | <10                  | 11.07        | 59.69       | <10      | 30.27      | <10               | 65.96   | <10             |
|              | RYSV0805  | 7/19/2018  | 21                    | 5.8                    | <2                     | <2.4                | 3.8         | -                   | <1.3    | <2.5                 | <1.7         | <6.6        | -        | <3.5       | 5.6               | <1.5    | <2.1            |
| SV-08-06     | SV-08-06  | 11/2/2016  | 18.38                 | <10                    | <10                    | 974.36              | <10         | <10                 | <10     | <10                  | 12.02        | 12.95       | <10      | 33.56      | <10               | 70.62   | <10             |
| SV-08-06 ►   | RYSV0806  | 7/19/2018  | 64                    | <2                     | <2                     | <2.4                | <1.4        | -                   | <1.3    | <2.5                 | <1.7         | 12          | -        | <3.5       | 6.5               | 2       | <2.1            |



TABLE 6
Laboratory Analytical Results - Soil Vapor

Voluntary Remediation Completion Report for the COA Rail Yards North, Albuquerque, Bernalillo County, New Mexico

|              |            |           |                       |                        |                        |                     |             | Co                  | ncentra | ation (μ             | g/m³ )       |             |          |            |                   |        | <b>819304 328</b> 106.17 <10 |  |
|--------------|------------|-----------|-----------------------|------------------------|------------------------|---------------------|-------------|---------------------|---------|----------------------|--------------|-------------|----------|------------|-------------------|--------|------------------------------|--|
| Location     | Sample ID  | Date      | 1,1,1-Trichloroethane | 1,2,4-Trimethylbenzene | 1,3,5-Trimethylbenzene | 1,3-Dichlorobenzene | 1,4-Dioxane | 2-Methylnaphthalene | Benzene | Carbon Tetrachloride | Ethylbenzene | Naphthalene | o-Xylene | p&m-Xylene | Tetrachloroethene | eυ     | roethen                      |  |
| NMED Reside  | ntial VISL |           | 173810                | -                      | -                      | -                   | 187.2       | -                   | 120     | 156                  | 374.4        | 27.53       | 3476     | 3476       | 1390              | 173810 | 69.5                         |  |
| NMED Industr | ial VISL   |           | 819304                | -                      | -                      | -                   | 917.6       | -                   | 588.2   | 764.7                | 1835         | 134.9       | 16386    | 16386      | 6554              | 819304 | 328                          |  |
| SV-08-07     | SV-08-07   | 11/3/2016 | 10.17                 | <10                    | <10                    | 470.72              | <10         | 21.28               | <10     | <10                  | 18.63        | 89.4        | 12.78    | 46.51      | <10               | 106.17 | <10                          |  |
| 37-00-07     | RYSV0807   | 7/19/2018 | 25                    | <2                     | <2                     | <2.4                | <1.4        | -                   | <1.3    | <2.5                 | <1.7         | <6.6        | -        | <3.5       | <2.7              | <1.5   | <2.1                         |  |
| SV-08-08     | SV-08-08   | 11/3/2016 | <10                   | <10                    | <10                    | 794.56              | <10         | <10                 | <10     | <10                  | 13.59        | 4.22        | <10      | 35.28      | <10               | 94.74  | <10                          |  |
| (SV-08-08R)  | RYSV0808R  | 7/19/2018 | 2.6                   | 2                      | <2                     | <2.4                | <1.4        | -                   | <1.3    | <2.5                 | <1.7         | <6.6        | -        | <3.5       | 3.1               | 1.9    | 4.3                          |  |
| SV-08-09     | SV-08-09   | 11/2/2016 | <10                   | <10                    | <10                    | 834.78              | <10         | <10                 | <10     | <10                  | <10          | 7.38        | <10      | 23.46      | <10               | 45.32  | <10                          |  |
| (SV-08-09R)  | RYSV0809R  | 7/19/2018 | <2.2                  | <2                     | <2                     | <2.4                | <1.4        | -                   | <1.3    | <2.5                 | <1.7         | <6.6        | -        | <3.5       | <2.7              | <1.5   | <2.1                         |  |
| SV-08-10     | SV-08-10   | 11/2/2016 | <10                   | 46.07                  | 17.41                  | 626.19              | <10         | 13.25               | <10     | 11.31                | 10.95        | 55          | <10      | 27.47      | <10               | 47.67  | <10                          |  |
| (SV-08-10R)  | RYSV0810R  | 7/19/2018 | 17                    | 5.5                    | 3.6                    | <2.4                | <1.4        | -                   | <1.3    | 46                   | <1.7         | 18          | -        | <3.5       | <2.7              | 26     | 43                           |  |

### Notes:

**Bold,** red font indicates values or RLs in excess of the NMED VISL (NMED, 2019).

Analyzed by EPA Method TO-15 or TO-17.

- = none established or not analyzed.

 $\mu$ g/m<sup>3</sup> = micrograms per cubic meters.

NMED = New Mexico Environment Department.

VISL = vapor instrusion screening level.



| APPENDIX A                               |  |
|------------------------------------------|--|
| ΑΓ Γ ΕΝΝΙΛ Α                             |  |
| COA RAIL YARDS NORTH – LEGAL DESCRIPTION |  |
| COA RAIL TARDS NORTH - LEGAL DESCRIPTION |  |
|                                          |  |
|                                          |  |
|                                          |  |
|                                          |  |
|                                          |  |
|                                          |  |
|                                          |  |
|                                          |  |
|                                          |  |
|                                          |  |
|                                          |  |
|                                          |  |
|                                          |  |
|                                          |  |
|                                          |  |
|                                          |  |
|                                          |  |
|                                          |  |
|                                          |  |
|                                          |  |
|                                          |  |
|                                          |  |
|                                          |  |
|                                          |  |
|                                          |  |
|                                          |  |
|                                          |  |
|                                          |  |
|                                          |  |
|                                          |  |
|                                          |  |
|                                          |  |
|                                          |  |
|                                          |  |
|                                          |  |
|                                          |  |
|                                          |  |

### **LEGAL DESCRIPTION**

COMMENCING AT THE ACS MONUMENT STAMPED "18-KI4", HAYING NEW MEXICO STATE PLANE COORDINATE VALUES (CENTRAL ZONE) (NAD83(1 I)) OF N-1486053.605 AND E-1521576.548:

THENCE S. 11' 28' 27" W. A DISTANCE OF 2,381.68 FEET TO A POINT ON A LINE LYING 15 FEET WESTERLY OF, NORMALLY DISTANT FROM AND PARALLEL WITH THE CENTERLINE OF THE THAT CERTAIN LINE OF RAILROAD DESIGNATED IN THE RECORDS OF THE ATCHISON, TOPEKA AND SANTA FE RAILWAY COMPANY AS THE ALBUQUERQUE STATION SIDE TRACT NUMBER 343, ALSO BEING THE TRUE POINT OF BEGINNING AND THE NORTHEAST CORNER OF THE TRACT OF LAND HEREIN DESCRIBED:

THENCE SOUTHERLY ON THE LAST DESCRIBED PARALLEL LINE, S.01' 02' 27" E., A DISTANCE OF 404.99 FEET TO A POINT OF CURVATURE:

THENCE CONTINUING SOUTHERLY, CONCENTRIC WITH AND 15 FEET WESTERLY FROM THE CENTER LINE OF SAID SIDE TRACT NUMBER 343, ON A TANGENT CURVE TO THE RIGHT, HAYING A RADIUS OF 1,150.74 FEET AND A CENTRAL ANGLE OF 05' 34' 23" FOR AN ARC DISTANCE OF 111.93 FEET;

THENCE EASTERLY ON A BEARING OF S. 80' 51' 38" E., BEING ONE FOOT, MORE OR LESS, NORTHERLY OF THE NORTHERLY FACE OF A BUILDING, A DISTANCE OF 3.72 FEET TO THE INTERSECTION WITH A LINE LYING 9 FEET WESTERLY OF, NORMALLY DISTANT FROM AND PARALLEL WITH THE CENTER LINE OF THAT CERTAIN LINE OF RAILROAD DESIGNATED IN THE RECORDS OF THE ATCHISON, TOPEKA AND SANTA FE RAILWAY COMPANY AS THE ALBUQUERQUE STATION SIDE TRACT NUMBER 113;

THENCE SOUTHERLY ON THE LAST DESCRIBED PARALLEL LINE, BEARINGS. 09' 08' 22" W., AND BEING 0.4 FEET, MORE OR LESS, EASTERLY OF THE EASTERLY FACE OF SAID BUILDING, FOR A DISTANCE OF 308.09 FEET;

THENCE WESTERLY ON A BEARING OF N. 80' 51' 38" W., BEING ONE FOOT, MORE OR LESS, SOUTHERLY OF THE SOUTHERLY FACE OF SAID BUILDING, A DISTANCE OF 1.00 FOOT TO THE INTERSECTION WITH A LINE LYING IO.O FEET WESTERLY OF, NORMALLY DISTANT FROM AND PARALLEL WITH THE CENTER LINE OF SAID SIDE TRACT NUMBER 113;

THENCE SOUTHERLY ON THE LAST DESCRIBED PARALLEL LINE, BEARINGS. 09' 08' 22" W., A DISTANCE OF 87.55 FEET TO THE SOUTHEAST CORNER OF THE HEREIN DESCRIBED TRACT;

THENCE WESTERLY ON A BEARING OF N. 80' 53' 58" W., FOR A DISTANCE OF 649.27 FEET TO THE INTERSECTION WITH THE EASTERLY RIGHT OF WAY LINE OF SECOND STREET SW, ALSO BEING THE WESTERLY PROPERTY LINE OF SAID RAILWAY COMPANY AND THE SOUTHEAST CORNER OF THE HEREIN DESCRIBED TRACT;

THENCE NORTHERLY ON THE EASTERLY RIGHT OF WAY LINE OF SAID SECOND STREET SW AND THE WESTERLY PROPERTY LINE OF SAID RAILWAY COMPANY, BEARING N. 09' 00' 16" E., A DISTANCE OF 409.31 FEET TO A POINT OF CURVATURE AND THE INTERSECTION WITH THE SOUTHEASTERLY RIGHT OF WAY LINE OF FIRST/SECOND STREET SW CONNECTION;

THENCE CONTINUING NORTHEAS TERLY, ON A TANGENT CURVE TO THE RIGHT, HAYING A RADIUS OF 137 FEET AND A CENTRAL ANGLE OF 45' 11' 32" FORAN ARC DISTANCE OF !08.06 FEET;

THENCE NORTHEASTERLY ON THE SOUTHEASTERLY RIGHT OF WAY LINE OF SAID FIRST/SECOND STREET SW CONNECTION AND THE NORTHWESTERLY PROPERTY LINE OF SAID RAILWAY COMPANY, BEARING N. 54' 11' 40" E., A DISTANCE OF 564.50 FEET TO THE NORTHWEST CORNER OF THE HEREIN DESCRIBED TRACT;

THENCE ON A BEARING OF S. 80' 59' 32" E., A DISTANCE OF 121.78 FEET TO THE TRUE POINT OF BEGINNING.

# **APPENDIX B Field Notes and Field Forms**



| Well      | Date    | Time  | Depth to<br>PSH<br>(ft bmp) | Depth to<br>Water<br>(ft bmp) | Total<br>Depth<br>(ft bmp) | Description<br>of<br>Measuring<br>Point | GPS<br>Coordinate<br>Northing | GPS<br>Coordinate<br>Easting | Gauger<br>Initials | Comments         |
|-----------|---------|-------|-----------------------------|-------------------------------|----------------------------|-----------------------------------------|-------------------------------|------------------------------|--------------------|------------------|
| ILMW8     | 4/22/20 | 0917  |                             | 21.16                         | 46.11                      | North Toc                               |                               |                              | KLC                |                  |
| RAILMW6   | 4/22/20 | 0823  |                             | 25,72                         | 49.28                      | North TOC                               |                               |                              | KLC                |                  |
| RAIL MWO7 | 4/22/20 |       |                             | 21.24                         | 44.85                      | North TOC                               |                               |                              | KLC                |                  |
| RAILMWOZ  | 4/23/20 | 0905  |                             | 17.50                         | 41.34                      | North TOC                               |                               |                              | KLC                |                  |
| RAILMW03  | 4/23/20 |       |                             | 22,01                         | 44.75                      | Northtoc                                | r                             |                              | KLE                |                  |
| RATLMWOI  | 4/23/20 | 0910  |                             | (6,10                         | Well                       | Blocke,                                 | Casil                         | 15/Riser                     | have               | been hit - Broke |
| RAILANNOY | 4/23/20 | 0924  |                             | 22,92                         | 44,48                      | North TOC                               | #                             |                              | KLC                |                  |
| RATLIMWOS | 4/23/20 | 0927  |                             | 24,00                         | 46.16                      | North Toc                               | 18                            |                              | KLC                |                  |
| RAILMWII  | 4/23/20 | 1334  |                             | 18,85                         | 39.85                      | North TOC                               |                               |                              | FLC                |                  |
| RAILMUIO  | 4/23/20 | 1.454 |                             | 21,60                         | 38,38                      | North Toc                               |                               |                              | KIC                |                  |
|           |         |       |                             |                               |                            |                                         |                               |                              |                    |                  |
|           |         |       |                             |                               |                            |                                         |                               |                              |                    |                  |
|           |         |       |                             |                               |                            |                                         |                               |                              |                    |                  |
|           |         |       |                             |                               |                            |                                         |                               |                              | 6                  |                  |
|           |         |       |                             |                               |                            |                                         |                               |                              |                    |                  |
|           |         |       |                             |                               |                            |                                         |                               |                              |                    |                  |
|           |         |       |                             |                               |                            |                                         |                               |                              |                    | -                |
|           |         |       |                             |                               |                            |                                         |                               |                              |                    |                  |
|           |         |       |                             |                               |                            |                                         |                               |                              |                    |                  |
|           |         |       |                             |                               |                            |                                         |                               |                              |                    |                  |
|           |         |       |                             |                               |                            | 36                                      |                               |                              |                    |                  |
|           |         | 1     | 1                           |                               |                            |                                         |                               |                              |                    |                  |

(28.4)



| PROJECT NAME: | Rail Ya |         |               | WELL NO             | DATE MILLORD        |   |
|---------------|---------|---------|---------------|---------------------|---------------------|---|
| PROJECT NO.:  | DATE:   | 4/22/20 | _ FIELD CREW: | WELL NO .: _<br>Kom | RAJLMWEE rad Classe | _ |

# WATER LEVEL AND WATER COLUMN HEIGHT

|            | DEPTH TO POTTOM OF WELL                     | THE PARTY OF THE P |                      |
|------------|---------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| TIME       | DEPTH TO BOTTOM OF WELL (DTB) (ft btoc)     | DEPTH TO WATER (DTW) (ft btoc)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Tracer Corumn neight |
|            | 46.11                                       | 21/4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (DTB-DTW) (ft)       |
| btoc: feet | below top of casing from designated measure | 21.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 24.95                |

ft btoc: feet below top of casing from designated measuring point

# PURGE VOLUME

| Well Casing Diameter<br>(inches) | Volume/Linear Foot (see |              | 2 Well        | 3 Well       |
|----------------------------------|-------------------------|--------------|---------------|--------------|
| -/                               | conversion table below) | Volume (gal) | Volumes (gal) | Volumes (gal |
| ZR 3                             | 4.24                    |              | (301)         | volumes (gai |
| LKC 3                            | 4,24                    |              |               | 12           |

VOLUME/LINEAR FOOT (gal/ft) (Use well casing ID)

1" = 0.04 | 1.5" = 0.09 | 2" = 0.17 | 3" = 0.38 | 4" = 0.66 8" = 2.6 10" = 4.1

1 well casing volume = Volume/Linear Foot x Water Column Height

METHOD OF PURGING: Disposable bailer METHOD OF SAMPLING:

# WATER LEVEL/WATER QUALITY INSTRUMENTS USED

| INSTRUMENT | SERIAL<br>NO. | TIME CALIBRATION PERFORMED | TECH | COMMENTS |
|------------|---------------|----------------------------|------|----------|
| 471        | 4             | 0855                       | KLC. |          |
|            |               |                            |      |          |
|            |               |                            |      |          |

# WATER QUALITY READINGS DURING PURGING

| TIME | TEMP<br>(°C) | рН   | SP.<br>COND.<br>(µS/cm) | TURB.<br>(NTU)* | DO<br>(mg/L) | ORP<br>(mV) | Total Purge<br>Volume<br>(gal) | Comments<br>(color/odor) |
|------|--------------|------|-------------------------|-----------------|--------------|-------------|--------------------------------|--------------------------|
| 0907 | 19.0         | 6.90 | 112.3                   |                 |              |             |                                |                          |
| 0918 | 197          | 7.4  | 1.2                     |                 |              |             | 0.6                            | Start                    |
| 0926 | 18.8         | 7.17 | 259,6                   |                 |              |             | 2.6                            | turbid/Non               |
| 0938 | 18.3         | 7.10 | 954                     |                 |              |             | 5.2                            | il il                    |
| 0951 | 18.8         | 7.05 | 1                       |                 |              |             | 9.6                            | u u                      |
| 1010 | 18.8         | 7-14 | 1063                    |                 | -            |             | 14.8                           | Littorbid None           |
| 1051 | 18.6         | 7,20 | 1050                    | -               |              |             | 19,6                           | cc iv                    |
| 1107 | 18.8         |      |                         |                 |              |             | 25.0                           | 11                       |
| 1101 | 1010         | 7.21 | 1073                    |                 |              |             | 29.0                           | 4 61                     |
|      |              |      |                         |                 |              |             |                                |                          |
|      |              |      |                         |                 |              |             |                                |                          |
|      |              |      |                         |                 |              |             |                                |                          |
|      |              | -    |                         |                 |              |             |                                |                          |
|      |              |      |                         |                 |              |             |                                |                          |
|      |              |      |                         |                 |              |             |                                | - 1                      |

\*If measured.

Stabilization = Temp ±1°C; pH ±0.2 units; Sp. Cond. ±10%; Turb. ±10%



| TIME | TEMP<br>(°C) | рН | SP.<br>COND.<br>(µS/cm) | TURB.<br>(NTU)* | DO<br>(mg/L) | ORP<br>(mV) | Total<br>Volume<br>Purged<br>(gal) | Comments<br>(color/odor) |
|------|--------------|----|-------------------------|-----------------|--------------|-------------|------------------------------------|--------------------------|
|      |              |    |                         |                 |              |             |                                    |                          |
|      |              |    |                         |                 |              |             |                                    |                          |
|      |              |    |                         |                 |              |             |                                    |                          |
|      |              |    |                         |                 |              |             |                                    |                          |
|      |              |    |                         |                 |              |             |                                    |                          |
|      |              |    |                         |                 |              |             |                                    |                          |
|      |              |    |                         |                 |              |             |                                    |                          |
|      |              |    |                         |                 |              |             |                                    |                          |
|      |              |    |                         |                 |              | -           |                                    |                          |
|      |              |    |                         |                 |              |             |                                    |                          |
|      |              |    |                         |                 |              |             | - 3                                |                          |
|      |              |    |                         |                 |              |             |                                    |                          |
|      |              |    |                         |                 |              |             |                                    |                          |
|      |              |    |                         |                 |              |             |                                    |                          |
|      |              |    |                         |                 |              |             |                                    |                          |
|      |              |    |                         |                 |              |             |                                    |                          |

<sup>\*</sup>If measured.

Stabilization = Temp ±1°C; pH ±0.2 units; Sp. Cond. ±10%; Turb. ±10%

# **GROUNDWATER SAMPLING DATA**

GROUNDWATER SAMPLE ID: \_\_\_\_\_\_ DUPLICATE SAMPLE ID: \_\_\_\_\_

| Time | Bottle<br>Type | Analytical Method | # of<br>Bottles | Volume | Preservative              |
|------|----------------|-------------------|-----------------|--------|---------------------------|
| 126  | VOA            | 8260              | 6               | Homl   | HCL                       |
| 126  | VOA            | 504.1             | Ź               | 40ml   | HCL<br>Sodium Thiosulfale |
| 126  | Amber          | 8310              | l               | 16     | Nove                      |
| .26  | Amber          | TPH DRO GRO       |                 | Zsoml  | HZSO4                     |
| ,26  | HOPE           | DESSOLUE SMetals  | 1               | 125ml  | HZ504                     |
|      |                |                   |                 |        |                           |
|      |                |                   |                 |        |                           |
|      |                |                   |                 |        |                           |
|      |                |                   |                 | 1      |                           |
|      |                |                   |                 |        |                           |
|      |                |                   |                 |        |                           |
|      |                |                   |                 |        |                           |
|      |                |                   |                 |        |                           |
|      |                |                   |                 |        |                           |
|      |                |                   |                 |        |                           |
|      |                | TOTAL:            |                 |        | 11.                       |

| Sampler: | Kourned Clark  | 11.00116    |
|----------|----------------|-------------|
|          | (Printed Name) | (Signature) |



| PROJECT NAME: | COA | RAil  | Yards.  | V             | VELL NO .: RAILMING | 87 |
|---------------|-----|-------|---------|---------------|---------------------|----|
| PROJECT NO.:  |     | DATE: | 4/23/20 | FIELD CREW: _ | Konrad Ciaile       |    |

| TIME | DEPTH TO BOTTOM OF WELL (DTB) (ft btoc) | DEPTH TO WATER (DTW)<br>(ft btoc) | Water Column Height<br>(DTB-DTW) (ft) |
|------|-----------------------------------------|-----------------------------------|---------------------------------------|
|      | 44.85                                   | 21.24                             | 23,61                                 |

ft btoc: feet below top of casing from designated measuring point

# **PURGE VOLUME**

| Well Casing Diameter (inches) | Volume/Linear Foot (see conversion table below) | 1 Well<br>Volume (gal) | 2 Well<br>Volumes (gal) | 3 Well<br>Volumes (gal) |
|-------------------------------|-------------------------------------------------|------------------------|-------------------------|-------------------------|
| 2                             | 4.01                                            |                        |                         | 12.0                    |

VOLUME/LINEAR FOOT (gal/ft) (Use well casing ID)

| 1" = 0.04 | 1.5" = 0.09 | 2" = 0.17 | 3" = 0.38 | 4" = 0.66 | 6" = 1.5 | 8" = 2.6 | 10" = 4.1 |
|-----------|-------------|-----------|-----------|-----------|----------|----------|-----------|
|           |             |           |           |           |          |          |           |

1 well casing volume = Volume/Linear Foot x Water Column Height

METHOD OF PURGING: Disposable bailer

METHOD OF SAMPLING: Disposable bailer

# WATER LEVEL/WATER QUALITY INSTRUMENTS USED

# WATER QUALITY READINGS DURING PURGING

| TIME | TEMP<br>(°C) | рН   | SP.<br>COND.<br>(μS/cm) | TURB.<br>(NTU)* | DO<br>(mg/L) | ORP<br>(mV) | Total Purge<br>Volume<br>(gal) | Comments<br>(color/odor) |
|------|--------------|------|-------------------------|-----------------|--------------|-------------|--------------------------------|--------------------------|
| 0711 |              |      |                         |                 |              |             |                                | Start                    |
| 0714 | 18.3         | 6.54 | 792                     |                 |              |             | 1.1                            | tuiled Brn / Won         |
| 0719 | 18.7         | 6.65 | 769                     |                 |              |             | 3.1                            | Le tubid Drn / Nome      |
| 0723 | 18.7         | 6.69 | 897                     |                 |              |             | 5,6                            | 11 11                    |
| 0728 | 18.8         | 6.68 | 930                     |                 |              |             | 8.9                            | vi ir                    |
| 0732 | 18.7         | 6.71 | 899                     |                 |              |             | UID                            | 11 80                    |
| 0734 | 18.8         | 6.69 | 875                     |                 |              |             | 12.2                           |                          |
|      |              |      |                         |                 |              |             |                                |                          |
|      |              |      |                         |                 |              |             |                                |                          |
|      |              |      |                         |                 |              |             |                                |                          |
| 1    |              |      |                         |                 |              |             |                                |                          |
|      |              |      |                         |                 |              |             |                                |                          |
|      |              |      |                         |                 |              |             |                                |                          |

<sup>\*</sup>If measured.

Stabilization = Temp ±1°C; pH ±0.2 units; Sp. Cond. ±10%; Turb. ±10%



| TIME | TEMP<br>(°C) | рН | SP.<br>COND.<br>(µS/cm) | TURB.<br>(NTU)* | DO<br>(mg/L) | ORP<br>(mV) | Total<br>Volume<br>Purged<br>(gal) | Comments<br>(color/odor) |
|------|--------------|----|-------------------------|-----------------|--------------|-------------|------------------------------------|--------------------------|
|      |              |    |                         |                 |              |             | 10/                                |                          |
| 200  |              |    |                         |                 |              |             |                                    |                          |
|      |              |    |                         |                 |              |             |                                    |                          |
|      |              |    |                         |                 |              |             |                                    |                          |
|      |              |    |                         |                 |              |             |                                    |                          |
|      |              |    |                         |                 |              |             |                                    |                          |
|      |              |    |                         |                 |              |             |                                    |                          |
|      |              |    |                         |                 |              |             |                                    |                          |
|      |              |    |                         |                 |              |             |                                    |                          |
|      |              |    |                         |                 |              |             |                                    |                          |
|      |              |    |                         |                 |              |             |                                    |                          |
|      |              |    |                         |                 |              |             |                                    |                          |
|      |              |    |                         |                 |              |             |                                    |                          |
|      |              |    |                         |                 |              |             |                                    |                          |
|      |              |    |                         |                 |              |             |                                    |                          |

<sup>\*</sup>If measured.

Stabilization = Temp ±1°C; pH ±0.2 units; Sp. Cond. ±10%; Turb. ±10%

# **GROUNDWATER SAMPLING DATA**

GROUNDWATER SAMPLE ID: \_\_\_\_\_\_ DUPLICATE SAMPLE ID: \_\_\_\_\_

| Time | Bottle<br>Type | Analytical Method | # of<br>Bottles | Volume | Preservative       |
|------|----------------|-------------------|-----------------|--------|--------------------|
| 0750 | VOA            | 8260              | 6               | Hom    | HCC.               |
| 0750 | VOA            | 5041              | Z               | 40ml   | Sodium Thiosolfide |
| 0750 | Ambu           | 8310              |                 | 16     | None               |
| 0750 | Amber          | TPH PRO GRO       | 1               | 250ml  | None<br>HZSO4      |
| 0750 | HOPE           | Dissolved Metals  |                 | 125m/  | HZ504              |
| T    |                | 7                 |                 |        |                    |
|      |                |                   |                 | 12     |                    |
|      |                |                   |                 |        |                    |
|      |                |                   |                 |        |                    |
|      |                |                   |                 |        |                    |
|      |                |                   |                 |        |                    |
|      |                |                   |                 |        |                    |
|      |                | 11. 6             |                 |        |                    |
|      |                |                   |                 |        |                    |
|      |                |                   |                 |        |                    |
|      |                | TOTAL:            |                 |        | 6                  |

Sampler: \_\_\_\_\_\_ (Printed Name) (Signature)



| PROJECT NAME: | COA Rail Yards | WELL NO .: _ RAILMWOZ    |
|---------------|----------------|--------------------------|
| PROJECT NO.:  | DATE: 4/23/20  | FIELD CREW: Konrad Clark |
| MATERIEN      |                | Consecution Clark        |

|      | TO BOTTOM OF WELL (DTB) (ft btoc) | DEPTH TO WATER (DTW) (ft btoc) | Water Column Height (DTB-DTW) (ft) |
|------|-----------------------------------|--------------------------------|------------------------------------|
| 0905 | of casing from designated measure | 1750                           | 7 7 (010-01W) (π)                  |

ft btoc: feet below top of casing from designated measuring point

# **PURGE VOLUME**

| Well Casing Diameter | Volume/Linear Foot (see conversion table below) | 1 Well       | 2 Well        | 3 Well       |
|----------------------|-------------------------------------------------|--------------|---------------|--------------|
| (inches)             |                                                 | Volume (gal) | Volumes (gal) | Volumes (gal |
|                      | 7.05                                            |              |               | 12,1         |

# VOLUME/LINEAR FOOT (gal/ft) (Use well casing ID)

| 40 0 0       | TA Laurence  | 10          | 1 1       | Won odon  | ig ib)  |         |           |
|--------------|--------------|-------------|-----------|-----------|---------|---------|-----------|
| 1" = 0.04    | 1.5" = 0.09  | 2" = 0.17   | 3" = 0.38 | 4" = 0.66 | 6" = 15 | 0" - 20 | 100       |
| 1 well casin | a volume = 1 | /olume/Line | F - 1 - 1 | . 0.00    | 0 - 1.5 | 0 - 2.0 | 10" = 4.1 |

1 well casing volume = Volume/Linear Foot x Water Column Height

METHOD OF PURGING: METHOD OF SAMPLING:

# WATER LEVEL/WATER QUALITY INSTRUMENTS USED

| INSTRUMENT | SERIAL<br>NO. | TIME CALIBRATION PERFORMED | TECH | COMMENTS |
|------------|---------------|----------------------------|------|----------|
| YSI        |               | 0685                       | KIC  |          |
|            |               |                            |      |          |
|            |               |                            |      |          |

# WATER QUALITY READINGS DURING PURGING

| TIME     | TEMP<br>(°C) | рН   | SP.<br>COND.<br>(μS/cm) | TURB.<br>(NTU)* | DO<br>(mg/L) | ORP<br>(mV) | Total Purge<br>Volume<br>(gal) | Comments<br>(color/odor) |
|----------|--------------|------|-------------------------|-----------------|--------------|-------------|--------------------------------|--------------------------|
| 6943     |              | 7Ke  |                         |                 |              |             | (gai)                          |                          |
| 0947     | 18,0         | 7.01 | 701                     |                 |              |             | 1.5                            | Start                    |
| 5950     | 18.2         | 6.99 | 736                     |                 |              |             | 3.9                            | mostly Close/6           |
| 9955     | 18.2         | 7.01 | 741                     |                 |              |             |                                | Clear / Hyd              |
| 000      | 18.2         | 7.02 | 742                     |                 |              | _           | 4.5                            | 60 60                    |
| 1005     | 18.1         | 7.04 | 744                     |                 |              |             | 10.0                           | te to                    |
| 1007     | 18.1         | 7.03 | 744                     |                 |              |             | 11.2                           | 11                       |
|          | 1011         | 1:00 | 149                     |                 |              |             | 12.2                           | 20 61                    |
| ~ ~      |              |      |                         |                 |              |             | 37.75                          |                          |
|          |              |      |                         |                 |              |             |                                |                          |
|          | _            |      |                         |                 |              |             |                                |                          |
|          |              |      |                         |                 |              |             |                                |                          |
|          |              |      |                         |                 |              |             |                                |                          |
|          |              |      |                         |                 |              |             |                                | W .                      |
| measured |              |      |                         |                 |              |             | 11                             |                          |

Stabilization = Temp ±1°C; pH ±0.2 units; Sp. Cond. ±10%; Turb. ±10%

August 2019



| IME | TEMP<br>(°C) | рН | SP.<br>COND.<br>(µS/cm) | TURB.<br>(NTU)* | DO<br>(mg/L) | ORP<br>(mV) | Total<br>Volume<br>Purged<br>(gal) | Comments<br>(color/odor) |
|-----|--------------|----|-------------------------|-----------------|--------------|-------------|------------------------------------|--------------------------|
|     |              |    |                         |                 |              |             |                                    |                          |
|     |              |    |                         |                 | 1 === +1     |             |                                    |                          |
|     |              |    |                         |                 |              |             |                                    |                          |
|     |              |    |                         |                 |              |             |                                    |                          |
|     |              |    |                         |                 |              |             |                                    |                          |
|     |              |    |                         |                 |              |             |                                    |                          |
|     |              |    |                         |                 |              |             |                                    |                          |
|     |              |    |                         |                 |              |             |                                    |                          |
|     |              |    |                         |                 |              |             | 44                                 |                          |
|     |              |    |                         |                 |              |             |                                    |                          |
|     |              |    |                         |                 |              |             |                                    |                          |
|     |              |    |                         |                 |              |             |                                    |                          |
|     |              |    |                         |                 |              |             |                                    |                          |
|     |              |    |                         |                 |              |             |                                    |                          |
|     |              | -  |                         |                 |              |             |                                    |                          |

<sup>\*</sup>If measured.

Stabilization = Temp ±1°C; pH ±0.2 units; Sp. Cond. ±10%; Turb. ±10%

# GROUNDWATER SAMPLING DATA

GROUNDWATER SAMPLE ID: RAJLINWOZ \_\_ DUPLICATE SAMPLE ID: \_\_

| ime | Bottle<br>Type | Analytical Method | # of<br>Bottles | Volume    | Preservative              |
|-----|----------------|-------------------|-----------------|-----------|---------------------------|
| 20  | VOA            | 8260              | 6               | 40ml      | HCL<br>Sodium Thiosolfate |
| 20  | VOA            | 5041              | 3               | 40m1      |                           |
| 20  | Amber          | 8310              |                 | 11        | Nove                      |
| 020 | Amber          | TPH DRO GRO       | 1               | 250ml     | H2SOF                     |
| 020 | HOPE           | Dissilved nutals  |                 | 125m      | H2504                     |
|     | W-10           |                   | 1               |           |                           |
|     |                |                   |                 |           |                           |
|     |                |                   |                 |           |                           |
|     |                |                   |                 |           |                           |
|     |                |                   |                 |           |                           |
|     |                |                   |                 | 11 - 11 - |                           |
|     |                |                   |                 |           |                           |
|     |                |                   |                 | 111       |                           |
| _   |                |                   |                 |           |                           |
|     |                |                   |                 |           | /_                        |
| -   |                | TOTAL:            | 0               | 1/        | 116                       |

Sampler: \_ (Signature) (Printed Name)



| PROJECT NAME: | COA Rail Yards | WELL NO .: RATLMWO3      |
|---------------|----------------|--------------------------|
| PROJECT NO.:  | DATE: 4/23/20  | FIELD CREW: Conrad Clark |

| TIME | DEPTH TO BOTTOM OF WELL (DTB) (ft btoc) | DEPTH TO WATER (DTW)<br>(ft btoc) | Water Column Height (DTB-DTW) (ft) |
|------|-----------------------------------------|-----------------------------------|------------------------------------|
| 0919 | 44.75                                   | 22,01                             | 22,74                              |

ft btoc: feet below top of casing from designated measuring point

# **PURGE VOLUME**

| Well Casing Diameter (inches) | Volume/Linear Foot (see conversion table below) | 1 Well<br>Volume (gal) | 2 Well<br>Volumes (gal) | 3 Well<br>Volumes (gal) |
|-------------------------------|-------------------------------------------------|------------------------|-------------------------|-------------------------|
| 2                             | 3,86                                            |                        |                         | 1116                    |

VOLUME/LINEAR FOOT (gal/ft) (Use well casing ID)

| 1" = 0.04 | 1.5" = 0.09 | 2" = 0.17 | 3" = 0.38 | 4" = 0.66 | 6" = 1.5 | 8" = 26 | 10" = 4.1 |
|-----------|-------------|-----------|-----------|-----------|----------|---------|-----------|
| 0.01      | 1.0 - 0.00  | 2 -0.11   | 5 - 0.50  | 4 - 0.00  | 0 - 1.5  | 0 - 2.0 | 10 - 4.1  |

1 well casing volume = Volume/Linear Foot x Water Column Height

METHOD OF PURGING: Disposable bailer
METHOD OF SAMPLING: Disposable bailer

# WATER LEVEL/WATER QUALITY INSTRUMENTS USED

| INSTRUMENT | SERIAL<br>NO. | TIME CALIBRATION PERFORMED | TECH | COMMENTS |
|------------|---------------|----------------------------|------|----------|
|            |               |                            |      |          |
|            |               |                            |      |          |

### WATER QUALITY READINGS DURING PURGING

| TIME | TEMP<br>(°C) | рН   | SP.<br>COND.<br>(µS/cm) | TURB.<br>(NTU)* | DO<br>(mg/L) | ORP<br>(mV) | Total Purge<br>Volume<br>(gal) | Comments<br>(color/odor) |
|------|--------------|------|-------------------------|-----------------|--------------|-------------|--------------------------------|--------------------------|
| 1047 | 19.9         | 6.70 | 7156                    | C               |              |             |                                | Start                    |
| 1650 | 19.9         | 6.70 | 715                     |                 |              |             | 1.5                            | Char/None                |
| 1053 | 19.7         | 6.70 | 734                     |                 |              |             | 4.2                            | er tr                    |
| 1058 | 19.7         | 6.71 | 745                     |                 |              |             | 6.8                            | 16 61                    |
| 102  | 19,6         | 6.71 | 751                     |                 |              |             | 9.2                            | 11 11                    |
| 1107 | 19,7         | 6.72 | 753                     |                 |              |             | 11.6                           | i, et                    |
|      |              |      |                         |                 |              |             |                                |                          |
|      |              |      |                         |                 |              |             |                                |                          |
|      |              |      |                         |                 |              |             |                                |                          |
|      |              |      |                         |                 |              |             |                                |                          |
|      |              |      |                         |                 |              |             |                                |                          |

<sup>\*</sup>If measured.

Stabilization = Temp ±1°C; pH ±0.2 units; Sp. Cond. ±10%; Turb. ±10%



| TIME | TEMP<br>(°C) | рН | SP.<br>COND.<br>(µS/cm) | TURB.<br>(NTU)* | DO<br>(mg/L) | ORP<br>(mV) | Total<br>Volume<br>Purged<br>(gal) | Comments<br>(color/odor) |
|------|--------------|----|-------------------------|-----------------|--------------|-------------|------------------------------------|--------------------------|
|      |              |    |                         |                 |              |             |                                    |                          |
|      |              |    |                         |                 |              |             |                                    |                          |
|      |              |    | 1                       |                 |              |             |                                    |                          |
|      |              |    | +                       |                 |              |             |                                    |                          |
|      |              |    |                         |                 |              |             |                                    |                          |
|      |              |    |                         |                 |              |             |                                    |                          |
|      |              |    |                         |                 |              |             |                                    |                          |
|      |              |    |                         |                 |              |             |                                    |                          |
|      |              |    |                         |                 |              | _           |                                    |                          |
| _    |              |    |                         |                 |              |             |                                    |                          |
|      |              |    |                         |                 |              |             |                                    |                          |
|      |              |    |                         |                 |              |             |                                    |                          |
|      |              |    |                         |                 |              |             |                                    |                          |
|      |              |    |                         |                 |              |             |                                    |                          |
|      |              |    | 1                       | -               |              |             |                                    |                          |
|      |              |    |                         |                 |              |             |                                    |                          |
|      |              |    |                         |                 | 11           |             |                                    |                          |
|      |              |    |                         |                 |              |             |                                    |                          |

<sup>\*</sup>If measured.

Stabilization = Temp ±1°C; pH ±0.2 units; Sp. Cond. ±10%; Turb. ±10%

# **GROUNDWATER SAMPLING DATA**

GROUNDWATER SAMPLE ID: \_\_\_\_\_\_ DUPLICATE SAMPLE ID: \_\_\_\_\_

| Time | Bottle<br>Type | Analytical Method | # of<br>Bottles | Volume | Preservative             |
|------|----------------|-------------------|-----------------|--------|--------------------------|
| 119  | U04            | 8260              | 6               | Youl   | HCL<br>Socium Thiosolfak |
| 119  | VOA            | 5041              | 2               | 40m    | Sodium Thiosolfak        |
| 49   | Amber          | 8310              | 1               | (L     | Nove                     |
| 119  | Amber          | TPH DRO GRO       | 1               | 250ml  | None                     |
| 119  | HOPE           | Dissolved mutals  | 1               | 125M/  | H2504                    |
|      |                |                   |                 |        |                          |
|      |                |                   |                 |        |                          |
|      |                |                   |                 |        |                          |
|      |                | TOTAL:            |                 |        | <i>D</i> :               |

| Sampler: | Konrad Clark   | lul (       |  |
|----------|----------------|-------------|--|
|          | (Printed Name) | (Signature) |  |



METHOD OF PURGING: \_\_ METHOD OF SAMPLING: \_

| GEOSCIENCE             | & ENGINEERING           |          | 0.1                            |                        | ieid Form s    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                      | IG and SAMPLI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|------------------------|-------------------------|----------|--------------------------------|------------------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PROJECT N<br>PROJECT N |                         |          | Rail                           | 4/23/20                |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | WELL                                  | NO .: R              | 4ILMW04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| PROJECTI               | vo                      |          | DATE:                          | 1/63/60                | FIELD C        | REW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                       | Konra                | d Clark                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| WATER                  | LEVEL AN                | D WATE   | R COLUI                        | IN HEIGH               | -T             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| TIME                   | DEPTH TO                | B) DEPT  | DEPTH TO WATER (DTW) (ft btoc) |                        |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Water Column Height<br>(DTB-DTW) (ft) |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0924                   |                         |          | 22,90                          | 2                      |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 21.56                                 |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                        | OLUME                   |          |                                |                        |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                        | sing Diamete<br>inches) |          | ume/Linear<br>oversion tab     | Foot (see<br>le below) | 1 We<br>Volume | The State of the S |                                       | 2 Well<br>ımes (gal) | 3 Well<br>Volumes (gal)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                        | 2                       |          | 3.66                           |                        |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       | 100                  | 10.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| /OLUME                 | LINEAR F                | OOT (ga  | I/ft) (Use                     | well casir             | na ID)         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                        |                         |          |                                |                        | 6" = 1.5       | 0"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.0                                   | Taran and            | Ti and the same of |
| 1" = 0.04              | 1.5" = 0.09             | 2 = 0.17 | 3 - 0.30                       | 4 - 0.00               | 0 - 1.5        | 8 =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | = 2.6                                 | 10" = 4.1            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

# WATER LEVEL/WATER QUALITY INSTRUMENTS USED

| INSTRUMENT | SERIAL<br>NO. | TIME CALIBRATION PERFORMED | TECH | COMMENTS |
|------------|---------------|----------------------------|------|----------|
| YST        |               | 0655                       | KLC  |          |
|            |               |                            |      |          |
|            |               |                            |      |          |

# WATER QUALITY READINGS DURING PURGING

| TIME | TEMP<br>(°C) | рН   | SP.<br>COND.<br>(μS/cm) | TURB.<br>(NTU)* | DO<br>(mg/L) | ORP<br>(mV) | Total Purge<br>Volume<br>(gal) | Comments<br>(color/odor) |
|------|--------------|------|-------------------------|-----------------|--------------|-------------|--------------------------------|--------------------------|
| 1139 |              |      |                         |                 |              |             |                                | Start                    |
| 1141 | 19.4         | 7.02 | 597                     |                 |              |             | 1                              | Cler / Nove              |
| 1148 | 19.3         | 6.98 | 559                     |                 |              |             | 4.6                            | · let Ho                 |
| 1158 | 19.7         | 6.97 | 555                     |                 |              |             | 6:4                            | el 0/                    |
| 1204 | 19:4         | 6.96 | 561                     |                 |              |             | 9,7                            | te u                     |
|      |              |      |                         |                 |              |             |                                |                          |
|      |              |      |                         |                 |              |             |                                |                          |
|      |              |      |                         |                 |              |             |                                |                          |
|      |              |      |                         |                 |              |             |                                |                          |
|      |              |      |                         |                 |              |             |                                |                          |
|      |              |      |                         |                 |              |             |                                |                          |
|      |              |      |                         |                 |              | _           | -                              |                          |
|      |              |      |                         |                 |              |             |                                |                          |
| _    |              |      |                         |                 |              |             |                                |                          |
|      | -            |      |                         |                 |              |             |                                | V.                       |

\*If measured.

Stabilization = Temp ±1°C; pH ±0.2 units; Sp. Cond. ±10%; Turb. ±10%

August 2019

Page \_\_\_ of \_\_\_



| TIME | TEMP<br>(°C) | рН | SP.<br>COND.<br>(μS/cm) | TURB.<br>(NTU)* | DO<br>(mg/L) | ORP<br>(mV) | Total<br>Volume<br>Purged<br>(gal) | Comments<br>(color/odor) |
|------|--------------|----|-------------------------|-----------------|--------------|-------------|------------------------------------|--------------------------|
|      |              |    |                         |                 |              |             |                                    |                          |
|      |              |    |                         |                 |              |             |                                    |                          |
|      |              |    |                         |                 |              |             |                                    |                          |
|      |              |    |                         |                 |              |             |                                    |                          |
|      |              |    |                         |                 |              |             |                                    |                          |
|      |              |    |                         |                 |              |             |                                    |                          |
|      |              |    |                         |                 |              |             |                                    |                          |
|      |              |    |                         |                 |              |             |                                    |                          |
|      |              |    |                         |                 |              |             |                                    |                          |
|      |              |    |                         | HC I            |              |             |                                    |                          |
|      |              |    |                         | 1               |              |             |                                    |                          |

| * | f | m | ea | SI | ır | 0 | H |  |
|---|---|---|----|----|----|---|---|--|
|   |   |   |    |    |    |   |   |  |

Stabilization = Temp ±1°C; pH ±0.2 units; Sp. Cond. ±10%; Turb. ±10%

# **GROUNDWATER SAMPLING DATA**

GROUNDWATER SAMPLE ID: \_\_\_\_\_\_ DUPLICATE SAMPLE ID: \_\_\_\_\_

| Time | Bottle<br>Type | Analytical Method | # of<br>Bottles | Volume | Preservative      |
|------|----------------|-------------------|-----------------|--------|-------------------|
| 219  | VOA            | 8240              | 6               | 4001   | HCC               |
| 219  | VOA            | 50411             | 2               | 40ml   | Sodium Throsolfak |
| 119  | Aubei          | 8310              | l               | 14     | Nove              |
| -19  | Amber          | THE DRO GRO       |                 | 250m/  | None              |
| 19   | HOPE           | Dissoldedinatals  | l               | 125ml  | HZ504             |
|      |                |                   |                 |        |                   |
|      |                |                   |                 |        |                   |
|      |                |                   |                 |        |                   |
|      |                |                   |                 |        |                   |
|      |                | TOTAL:            |                 |        | 1 M               |

Sampler: Conrad Claric flui Ule (Signature)

August 2019

Page \_\_\_ of \_\_\_



| PROJECT NAME: | COA | Rail 4 | ards    |             | WELL NO.: | RATLMWOS  |
|---------------|-----|--------|---------|-------------|-----------|-----------|
| PROJECT NO.:  |     | DATE:  | 4/23/20 | FIELD CREW: |           | and Clark |

| TIME | DEPTH TO BOTTOM OF WELL (DTB) (ft btoc) | DEPTH TO WATER (DTW)<br>(ft btoc) | Water Column Height<br>(DTB-DTW) (ft) |
|------|-----------------------------------------|-----------------------------------|---------------------------------------|
| 0927 | 46.16                                   | 24,00                             | 22,16                                 |

ft btoc: feet below top of casing from designated measuring point

# **PURGE VOLUME**

| Well Casing Diameter | Volume/Linear Foot (see conversion table below) | 1 Well       | 2 Well        | 3 Well        |
|----------------------|-------------------------------------------------|--------------|---------------|---------------|
| (inches)             |                                                 | Volume (gal) | Volumes (gal) | Volumes (gal) |
| 2                    | 3:76                                            |              |               | 11.7          |

VOLUME/LINEAR FOOT (gal/ft) (Use well casing ID)

| 1" = 0.04 | 1.5" = 0.09        | 2" = 0.17 | 3" = 0.38 | 4" = 0.66 | 6" = 1.5 | 8" = 2.6 | 10" = 4.1 |
|-----------|--------------------|-----------|-----------|-----------|----------|----------|-----------|
|           | Charles Workship . |           |           |           |          | -        | - 102     |

1 well casing volume = Volume/Linear Foot x Water Column Height

METHOD OF PURGING: Disposable bailes

METHOD OF SAMPLING: Disposable Bailes

# WATER LEVEL/WATER QUALITY INSTRUMENTS USED

# WATER QUALITY READINGS DURING PURGING

| TIME | TEMP<br>(°C) | рН   | SP.<br>COND.<br>(µS/cm) | TURB.<br>(NTU)* | DO<br>(mg/L) | ORP<br>(mV) | Total Purge<br>Volume<br>(gal) | Comments<br>(color/odor) |
|------|--------------|------|-------------------------|-----------------|--------------|-------------|--------------------------------|--------------------------|
| 1246 | ~            |      |                         |                 |              |             |                                | Start                    |
| 1242 | 19.4         | 7.18 | 488                     |                 |              |             | 0.8                            | Cler/ Nou                |
| 1247 | 19.1         | 6.76 | 622                     |                 | *            |             | 3,9                            | Clay Work                |
| 1253 | 19.3         | 6.65 | 772                     |                 |              |             | 6.5                            | ** ×                     |
| 1259 | (8.9         | 6.59 | 430                     | 833             |              |             | 9.7                            | 1 16                     |
| 1303 | 19.0         | 6.58 | 856                     |                 |              |             | 11.5                           | d of                     |
|      |              |      | 1 2 2                   |                 |              |             |                                |                          |
|      |              |      |                         | 1 1             |              |             |                                |                          |
|      |              |      |                         |                 |              |             | 4                              |                          |
|      |              |      |                         |                 | 11           |             |                                |                          |
|      |              |      |                         |                 |              |             |                                |                          |
|      |              |      |                         |                 |              |             | 1                              |                          |
|      |              |      |                         |                 | 11           |             | 10                             |                          |
|      |              |      |                         |                 |              |             |                                |                          |

\*If measured.

Stabilization = Temp ±1°C; pH ±0.2 units; Sp. Cond. ±10%; Turb. ±10%



| TIME | TEMP<br>(°C) | рН | SP.<br>COND.<br>(µS/cm) | TURB.<br>(NTU)* | DO<br>(mg/L) | ORP<br>(mV) | Total<br>Volume<br>Purged<br>(gal)      | Comments<br>(color/odor) |
|------|--------------|----|-------------------------|-----------------|--------------|-------------|-----------------------------------------|--------------------------|
|      |              |    |                         |                 |              |             | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |                          |
|      |              |    | -                       |                 |              |             |                                         |                          |
|      |              |    |                         |                 |              |             |                                         |                          |
|      |              |    |                         |                 |              |             |                                         |                          |
|      |              |    |                         |                 |              |             |                                         |                          |
|      |              |    |                         |                 |              |             |                                         |                          |
|      |              | -  | -                       |                 |              |             |                                         |                          |
|      |              |    | /                       |                 | 1            |             |                                         |                          |
|      |              |    |                         |                 |              |             |                                         |                          |
|      |              |    |                         |                 |              |             |                                         |                          |
|      |              |    |                         |                 |              |             |                                         |                          |
|      |              |    |                         |                 |              |             |                                         |                          |
|      |              | 1  |                         |                 |              |             |                                         |                          |
|      |              |    |                         |                 |              |             |                                         |                          |
|      |              |    |                         |                 | - J.         |             |                                         |                          |
|      |              |    |                         | _               |              |             |                                         |                          |
|      |              |    |                         |                 |              |             |                                         |                          |
|      |              |    |                         |                 |              |             |                                         |                          |
|      |              |    |                         |                 |              |             |                                         |                          |

<sup>\*</sup>If measured.

Stabilization = Temp ±1°C; pH ±0.2 units; Sp. Cond. ±10%; Turb. ±10%

# **GROUNDWATER SAMPLING DATA**

GROUNDWATER SAMPLE ID: \_\_\_\_\_\_ DUPLICATE SAMPLE ID: \_\_\_\_\_

| Time | Bottle<br>Type | Analytical Method | # of<br>Bottles | Volume | Preservative       |
|------|----------------|-------------------|-----------------|--------|--------------------|
| 13(7 | UOA            | 8260              | 6               | 4011   | HCL                |
| 1317 | U019           | 5041              | 2               | 40ml   | Sodium Thiosulfate |
| 1317 | Amber          | 8310              |                 | 14     | Nove               |
| 1317 | Amber          | PESSOLVED May     |                 | 250ml  | None               |
| 1317 | HOPE           | Pissolved Mala    | j               | 125ml  | H2504              |
|      |                |                   |                 |        |                    |
|      |                |                   |                 |        |                    |
|      |                |                   |                 |        |                    |
|      |                | TOTAL:            |                 |        |                    |

| Sampler: | Konrad Klark   | 1/11001 ()  |  |
|----------|----------------|-------------|--|
|          | (Printed Name) | (Signature) |  |



| PROJECT NAME: | COA | Rail Y    | alds    | WEL         | LNO .: RATLMU | 111 |
|---------------|-----|-----------|---------|-------------|---------------|-----|
| PROJECT NO.:  |     | _ DATE: _ | 4/23/20 | FIELD CREW: | Conrad Class  | _   |

| TIME | DEPTH TO BOTTOM OF WELL (DTB) (ft btoc) | DEPTH TO WATER (DTW)<br>(ft btoc) | Water Column Height (DTB-DTW) (ft) |  |
|------|-----------------------------------------|-----------------------------------|------------------------------------|--|
| 1334 | 39.55                                   | 18.85                             | 20,7                               |  |

ft btoc: feet below top of casing from designated measuring point

# **PURGE VOLUME**

| Well Casing Diameter (inches) | Volume/Linear Foot (see conversion table below) | 1 Well<br>Volume (gal) | 2 Well<br>Volumes (gal) | 3 Well<br>Volumes (gal) |
|-------------------------------|-------------------------------------------------|------------------------|-------------------------|-------------------------|
| 7.                            | 3.51                                            |                        |                         | 10.5                    |

VOLUME/LINEAR FOOT (gal/ft) (Use well casing ID)

| 1" = 0.04 | 1.5" = 0.09 | 2" = 0.17 | 3" = 0.38 | 4" = 0.66 | 6" = 1.5 | 8" = 2.6 | 10" = 4.1 |
|-----------|-------------|-----------|-----------|-----------|----------|----------|-----------|
|           |             | 1         |           |           |          |          |           |

1 well casing volume = Volume/Linear Foot x Water Column Height

METHOD OF PURGING: disposable bailer

METHOD OF SAMPLING: disposable baller

# WATER LEVEL/WATER QUALITY INSTRUMENTS USED

| INSTRUMENT | SERIAL<br>NO. | TIME CALIBRATION PERFORMED | TECH | COMMENTS |
|------------|---------------|----------------------------|------|----------|
| YSI        |               | 0655                       | KLC  |          |
|            |               |                            |      |          |
|            |               |                            |      |          |

# WATER QUALITY READINGS DURING PURGING

| TIME | TEMP<br>(°C) | рН   | SP.<br>COND.<br>(µS/cm) | TURB.<br>(NTU)* | DO<br>(mg/L) | ORP<br>(mV) | Total Purge<br>Volume<br>(gal) | Comments<br>(color/odor)              |
|------|--------------|------|-------------------------|-----------------|--------------|-------------|--------------------------------|---------------------------------------|
| 1344 | -            |      |                         |                 |              |             |                                | Start,                                |
| 1346 | 19.3         | 7.03 | 309.2                   |                 |              |             | (10                            | clear Non                             |
| 1351 | 19.3         | 7,02 | 708                     |                 |              |             | 4.5                            | de/Hydro/ct.s                         |
| 1356 | 19.2         | 704  | 700                     |                 |              |             | 6.4                            | 11 61                                 |
| 1359 | 19.3         | 7.03 | 699                     |                 |              |             | 8.0                            | i i                                   |
| 1401 | 19,3         | 7.03 | 699                     |                 |              |             | 9.5                            | UL II                                 |
| 1403 | 19,3         | 7.04 | 699                     |                 |              |             | 10.5                           | 10 71                                 |
|      | 1            |      |                         |                 |              |             | 11 11 11 11                    |                                       |
|      |              |      |                         |                 |              |             |                                |                                       |
|      |              |      |                         |                 |              |             |                                |                                       |
|      |              |      |                         |                 |              |             |                                |                                       |
|      |              |      |                         |                 |              |             |                                |                                       |
|      |              |      |                         |                 |              |             |                                | · · · · · · · · · · · · · · · · · · · |

\*If measured.

Stabilization = Temp ±1°C; pH ±0.2 units; Sp. Cond. ±10%; Turb. ±10%



| TIME | TEMP<br>(°C) | рН | SP.<br>COND.<br>(µS/cm) | TURB.<br>(NTU)* | DO<br>(mg/L) | ORP<br>(mV) | Total<br>Volume<br>Purged<br>(gal) | Comments<br>(color/odor) |
|------|--------------|----|-------------------------|-----------------|--------------|-------------|------------------------------------|--------------------------|
|      |              |    |                         |                 |              |             |                                    |                          |
| _    |              |    |                         |                 |              |             | #====                              |                          |
|      |              |    |                         |                 |              |             |                                    |                          |
|      |              |    |                         |                 |              |             |                                    |                          |
|      |              |    |                         |                 |              |             |                                    |                          |
|      |              |    |                         |                 |              |             |                                    |                          |
|      |              |    |                         |                 |              |             |                                    |                          |
|      |              |    |                         |                 |              |             |                                    |                          |
|      |              |    |                         |                 |              |             |                                    |                          |
|      |              |    |                         |                 |              |             |                                    |                          |
|      |              |    |                         |                 |              |             |                                    |                          |
|      |              |    |                         |                 |              |             |                                    |                          |
|      |              |    |                         |                 |              |             |                                    |                          |
|      |              |    |                         |                 |              |             |                                    |                          |
|      |              |    |                         |                 |              |             |                                    |                          |
|      |              |    | -                       |                 |              |             |                                    |                          |
|      |              |    |                         |                 |              |             |                                    |                          |

<sup>\*</sup>If measured.

Stabilization = Temp ±1°C; pH ±0.2 units; Sp. Cond. ±10%; Turb. ±10%

# **GROUNDWATER SAMPLING DATA**

GROUNDWATER SAMPLE ID: \_\_\_\_\_ DUPLICATE SAMPLE ID: \_\_\_\_\_

| Time | Bottle<br>Type | Analytical Method | # of<br>Bottles | Volume | Preservative       |
|------|----------------|-------------------|-----------------|--------|--------------------|
| 1416 | UOA            | 8260              | 6               | 40001  | HCL                |
| 1416 | 404            | 50411             | 2               | 40ml   | Bodium Thiosilfale |
| 1416 | Ambu           | 8310              | 1               | 14     | Nok                |
| 1416 | Amber          | TPH DROGRO        |                 | 250ml  | 19mile             |
| 1466 | HOPE           | Dissolved nietals |                 | 125m(  | None<br>H2504      |
|      |                |                   |                 |        |                    |
|      |                |                   |                 |        |                    |
|      |                |                   |                 |        |                    |
|      |                |                   |                 |        |                    |
|      |                |                   |                 |        |                    |
|      |                | TOTAL:            |                 |        | 1                  |

Sampler: Konrad Clark (Dool )
(Printed Name) (Signature)

August 2019

Page \_\_\_ of \_\_\_



| PROJECT NAME: _ | COA | Rail | Yards |         | V | VELL NO .: RA | FILMWIO |  |
|-----------------|-----|------|-------|---------|---|---------------|---------|--|
| PROJECT NO .:   |     |      | DATE: | 4/23/20 |   | Konrad        |         |  |

| TIME | DEPTH TO BOTTOM OF WELL (DTB) (ft btoc) | DEPTH TO WATER (DTW)<br>(ft btoc) | Water Column Height<br>(DTB-DTW) (ft) |
|------|-----------------------------------------|-----------------------------------|---------------------------------------|
| 1484 | 38,38                                   | 71.60                             | 11. 79                                |

ft btoc: feet below top of casing from designated measuring point

# **PURGE VOLUME**

| Well Casing Diameter (inches) | Volume/Linear Foot (see conversion table below) | 1 Well<br>Volume (gal) | 2 Well<br>Volumes (gal) | 3 Well<br>Volumes (gal) |
|-------------------------------|-------------------------------------------------|------------------------|-------------------------|-------------------------|
| 2                             | 2,85                                            | 10.7                   | (9)                     | 85                      |

VOLUME/LINEAR FOOT (gal/ft) (Use well casing ID)

| 1" = 0.04   1.5" = 0.09   2" = 0.17   3" = 0.38   4" = 0.66   6" = 1.5   8" = 2.6   10" = 4.1 | 1" = 0.04 | 1.5" = 0.09 | 2" = 0.17 | 3" = 0.38 | 4" = 0.66 | 6" = 1.5 | 8" = 2.6 | 10" = 4.1 |
|-----------------------------------------------------------------------------------------------|-----------|-------------|-----------|-----------|-----------|----------|----------|-----------|
|-----------------------------------------------------------------------------------------------|-----------|-------------|-----------|-----------|-----------|----------|----------|-----------|

1 well casing volume = Volume/Linear Foot x Water Column Height

METHOD OF PURGING: Digosable bailer

METHOD OF SAMPLING: Disposable bailer

# WATER LEVEL/WATER QUALITY INSTRUMENTS USED

| INSTRUMENT | SERIAL<br>NO. | TIME CALIBRATION PERFORMED | TECH | COMMENTS |
|------------|---------------|----------------------------|------|----------|
| YSI        | 1             | 0655                       | KIC  |          |
|            |               |                            |      |          |
|            |               |                            |      |          |

# WATER QUALITY READINGS DURING PURGING

| TIME | TEMP<br>(°C) | рН   | SP.<br>COND.<br>(µS/cm) | TURB.<br>(NTU)* | DO<br>(mg/L) | ORP<br>(mV) | Total Purge<br>Volume<br>(gal) | Comments<br>(color/odor) |
|------|--------------|------|-------------------------|-----------------|--------------|-------------|--------------------------------|--------------------------|
| 1508 |              |      |                         |                 |              |             | 10 /                           | Start                    |
| 1510 | 19.7         | 6.61 | 492                     |                 |              |             | 1.0                            | clar (None               |
| 1513 | 19.3         | 6.71 | 823                     |                 |              |             | 2.4                            | turbid/ Nome             |
| 1516 | 19.2         | 6.70 | 894                     |                 |              |             | 4.2                            | il is                    |
| 1521 | 19,1         | 6.71 | 902                     |                 |              |             | 6.0                            | - n4 0                   |
| 1523 | 19.2         | 6.69 | 906                     |                 |              |             | 7.0                            | re u                     |
| 1526 | 1912         | 6.69 | 907                     |                 |              |             | 815                            | 12 11                    |
|      |              |      |                         |                 |              |             | 11                             |                          |
|      |              |      |                         |                 |              |             |                                |                          |
|      |              |      |                         |                 | -            |             |                                |                          |
|      |              |      |                         |                 |              |             |                                |                          |
|      |              |      |                         |                 | 1            |             |                                |                          |
|      |              |      |                         |                 |              |             |                                |                          |

\*If measured.

Stabilization = Temp ±1°C; pH ±0.2 units; Sp. Cond. ±10%; Turb. ±10%



| TIME | TEMP<br>(°C) | рН | SP.<br>COND.<br>(µS/cm) | TURB.<br>(NTU)* | DO<br>(mg/L) | ORP<br>(mV) | Total<br>Volume<br>Purged<br>(gal) | Comments<br>(color/odor) |
|------|--------------|----|-------------------------|-----------------|--------------|-------------|------------------------------------|--------------------------|
|      |              |    |                         |                 |              |             |                                    |                          |
|      |              |    |                         |                 |              |             |                                    |                          |
|      |              |    | -                       |                 |              |             |                                    |                          |
|      |              |    | +                       |                 |              |             |                                    |                          |
|      |              |    | -                       |                 |              |             |                                    |                          |
|      |              |    |                         |                 |              |             |                                    |                          |
|      |              |    |                         |                 |              |             |                                    |                          |
|      |              |    |                         |                 |              |             |                                    |                          |
|      |              |    |                         |                 |              |             |                                    |                          |
|      |              |    |                         |                 |              |             |                                    |                          |
|      |              |    |                         |                 |              |             |                                    |                          |
|      |              |    | -                       |                 |              |             |                                    |                          |
|      |              |    |                         |                 |              |             |                                    |                          |

<sup>\*</sup>If measured.

Stabilization = Temp ±1°C; pH ±0.2 units; Sp. Cond. ±10%; Turb. ±10%

# **GROUNDWATER SAMPLING DATA**

GROUNDWATER SAMPLE ID: \_\_\_\_\_ DUPLICATE SAMPLE ID: \_\_\_\_\_

| Time | Bottle<br>Type | Analytical Method | # of<br>Bottles | Volume | Preservative       |
|------|----------------|-------------------|-----------------|--------|--------------------|
| 540  | VOR            | 8260              |                 | 40 m   | HCC                |
| 540  | VOA            | 5041              |                 | 40ml   | Sodium Thiosulfate |
| 1540 | Amber          | 8310              |                 | 14     | Nove               |
| 540  | Amber          | TPADROGRO         | 1               | 250ml  | WOR                |
| 1540 | HDPLE          | Dissolved notals  |                 | (20an) | 12504              |
|      |                |                   |                 |        |                    |
|      |                |                   |                 |        |                    |
|      |                |                   |                 |        |                    |
|      |                |                   |                 |        |                    |
|      |                |                   |                 |        |                    |
|      |                |                   |                 |        |                    |
|      |                |                   |                 |        |                    |
|      |                |                   |                 |        |                    |
|      |                | TOTAL:            |                 | 1.     | 1) ( )             |

Sampler: \_\_\_\_\_\_\_ (Printed Name) (Signature)



| PROJECT NAME: | COA | Rail Ve | erds    |             | WELL NO.: | RAT    | LMW.06 |   |
|---------------|-----|---------|---------|-------------|-----------|--------|--------|---|
| PROJECT NO.:  |     | DATE:   | 4/24/20 | FIELD CREW: | K         | ontord | Clark  | _ |

| TIME | DEPTH TO BOTTOM OF WELL (DTB) (ft btoc) | DEPTH TO WATER (DTW)<br>(ft btoc) | Water Column Height (DTB-DTW) (ft) |
|------|-----------------------------------------|-----------------------------------|------------------------------------|
| 0823 | 49.28                                   | 25,72                             | 23,56                              |

ft btoc: feet below top of casing from designated measuring point

# **PURGE VOLUME**

| Well Casing Diameter (inches) | Volume/Linear Foot (see conversion table below) | 1 Well<br>Volume (gal) | 2 Well<br>Volumes (gal) | 3 Well<br>Volumes (gal) |
|-------------------------------|-------------------------------------------------|------------------------|-------------------------|-------------------------|
| 2                             | 4.00                                            |                        |                         | 12,0                    |

# VOLUME/LINEAR FOOT (gal/ft) (Use well casing ID)

| 1" = 0.04 | 1.5" = 0.09 | 2" = 0.17 | 3" = 0.38 | 4" = 0.66 | 6" = 1.5 | 8" = 2.6 | 10" = 4.1 |
|-----------|-------------|-----------|-----------|-----------|----------|----------|-----------|
|-----------|-------------|-----------|-----------|-----------|----------|----------|-----------|

1 well casing volume = Volume/Linear Foot x Water Column Height

METHOD OF PURGING: Disposable Dailer
METHOD OF SAMPLING: Disposable Dailer

# WATER LEVEL/WATER QUALITY INSTRUMENTS USED

| INSTRUMENT | SERIAL<br>NO. | TIME CALIBRATION PERFORMED | TECH | COMMENTS |
|------------|---------------|----------------------------|------|----------|
| YSE        |               | 0710                       | KCC  |          |
| 170        |               |                            |      |          |
| 41         |               |                            |      |          |

# WATER QUALITY READINGS DURING PURGING

| TIME | TEMP<br>(°C) | рН   | SP.<br>COND.<br>(µS/cm) | TURB.<br>(NTU)* | DO<br>(mg/L) | ORP<br>(mV) | Total Purge<br>Volume<br>(gal) | Comments<br>(color/odor) |
|------|--------------|------|-------------------------|-----------------|--------------|-------------|--------------------------------|--------------------------|
| 0723 |              |      |                         |                 |              |             | 4                              | Start                    |
| 6725 | 19.7         | 6.97 | 1125                    |                 |              |             | 1.0                            | Cleur/Nove               |
| 0730 | 19.7         | 1.96 | 1242                    |                 |              |             | 4.2                            | W.                       |
| 0735 | 19.6         | 6.98 | 1238                    |                 |              |             | 6.5                            | vi 11                    |
| 0740 | 19.3         | 6.99 | 1720                    |                 |              |             | 8,2                            | 11 "11                   |
| 0746 | 19.9         | 7.02 | 1215                    |                 |              |             | 121                            | LE torbid/None           |
| 0749 | 19.8         | 7,01 | 1215                    |                 |              |             | 13.7                           | it ut                    |
|      |              |      |                         |                 |              |             |                                |                          |
|      |              |      |                         |                 |              |             |                                |                          |
|      |              |      |                         |                 |              |             |                                |                          |
|      |              |      |                         |                 |              |             |                                |                          |
|      | 1            |      |                         | ,               |              |             |                                |                          |
|      |              |      | 14                      |                 |              |             |                                |                          |

<sup>\*</sup>If measured.

Stabilization = Temp ±1°C; pH ±0.2 units; Sp. Cond. ±10%; Turb. ±10%

August 2019 Page \_\_\_ of \_\_\_ 2015.2



| TIME | TEMP<br>(°C) | рН | SP.<br>COND.<br>(µS/cm) | TURB.<br>(NTU)* | DO<br>(mg/L) | ORP<br>(mV) | Total<br>Volume<br>Purged<br>(gal) | Comments<br>(color/odor) |
|------|--------------|----|-------------------------|-----------------|--------------|-------------|------------------------------------|--------------------------|
|      | 44           |    |                         |                 |              |             |                                    |                          |
|      |              |    |                         |                 |              |             |                                    |                          |
|      |              |    |                         |                 |              |             |                                    |                          |
|      |              |    |                         |                 |              |             |                                    |                          |
|      |              |    |                         |                 |              |             |                                    |                          |
|      |              |    |                         |                 |              |             |                                    |                          |
|      |              |    |                         |                 |              |             |                                    |                          |
|      |              |    |                         |                 |              |             |                                    |                          |
|      |              |    |                         |                 |              |             |                                    |                          |
|      |              |    |                         |                 |              |             |                                    |                          |
|      |              |    |                         |                 |              |             |                                    |                          |
|      |              |    |                         |                 |              |             |                                    |                          |
|      |              |    |                         |                 |              |             |                                    |                          |
|      |              |    |                         |                 |              |             |                                    |                          |
|      |              |    |                         |                 |              |             |                                    |                          |
|      |              |    |                         |                 |              |             |                                    |                          |
|      |              |    |                         |                 |              |             |                                    |                          |
|      |              |    |                         |                 |              |             |                                    |                          |

<sup>\*</sup>If measured.

Stabilization = Temp ±1°C; pH ±0.2 units; Sp. Cond. ±10%; Turb. ±10%

# **GROUNDWATER SAMPLING DATA**

| GROUNDWATER SAMPLE ID | : RATLANDER | DUPLICATE SAMPLE ID: |  |
|-----------------------|-------------|----------------------|--|
|-----------------------|-------------|----------------------|--|

| DA ber t | 8260<br>504,1<br>8310        | 62     | Youl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | HCL                |
|----------|------------------------------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| bet      | 504,1                        | 2      | via I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                    |
|          | 0310                         |        | 40m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Sodium Thiosulfate |
| land 1   |                              |        | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Nove               |
| ver T    | PH DRO GRO                   | (      | 250m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Nove               |
| PE 60    | PH DRO GRO<br>100/200,7/6020 | 1      | 120ml                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | H 2504             |
|          |                              |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |
|          |                              |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |
|          |                              |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |
|          |                              |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |
|          |                              |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |
|          |                              |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |
|          |                              |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |
|          |                              |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |
|          |                              |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |
|          | TOTAL                        |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 1                |
| _        |                              | TOTAL: | The state of the s |                    |

| Sampler: | Courad Clark   | 1/110       |  |  |
|----------|----------------|-------------|--|--|
| A        | (Printed Name) | (Signature) |  |  |

O735 Koniad onsite by Wheels"
Weather: Partly Cloudy & Cool
Objective; Conduct well Gayin
& Sampling

Go to open gate but find that The "86" Lock is on a link but is not daisy Chained into locks so cant access The south Side, go to other side and look for wells

0758 have found all 3 wells on North Portion, will open up Vablts Peror to Gausing

Calibrate 15 I and Set up to Sample RAILMINGS Time temp pH. Spend Vol 1107 18.8 7.21 1073 29.0 126 Sample Collected 1210 Konrad offsite

Cull Of

| Water | Levels    |       |       |
|-------|-----------|-------|-------|
| Date  | WellID    | DTW   | TD    |
| 4/22  | RATLMWES  | 21.16 |       |
| 4/22  | RAILMW66  | 25,72 | 46,11 |
| 4/22  | RAILMW&7  | 21.24 | 44,85 |
| 4/23  | RAILMWUZ  | 17.50 | 41,34 |
| 4/23  | RAIL MWG3 | 22,01 | 44.75 |
| 4/23  | RATLMWQ4  | 22,92 | 44.48 |
| 4/23  | RAILMINES | 24,00 | 46.16 |
| 4/23  | RAILMW11  | 18.85 | 39,55 |
| 4/23  | RAILMWIC  | 21.60 | 38,38 |

RAIL MW & 1 is leaning over at angle with Concrek pad partially up In the Air Had dirt blockage 26' and totally blocked @ 16'

| 0640 | Konn   | ed onsit | · .      |         |         |
|------|--------|----------|----------|---------|---------|
|      | Star   | + Sett   | ins Up . | to S    | auple   |
| F    | AILM   | WET in   | the (    | 2.10.55 | Gree .  |
| l    | petore | Sprinkle | es turn  | con     | ct 0800 |
| -    | till   | 0830     |          |         |         |

| 0655 | Salibrat 45 | I for  | USE       |
|------|-------------|--------|-----------|
| ,    | Sample Log  | 7      | 4         |
| 0750 | RATLMWOOT   | Sample | Collected |
| 1020 | RAILMWØZ    |        | Collected |
| 1119 | RAJLINIV Ø3 |        | Collected |
| (219 | RAILMUSY    |        | Collected |
| 1317 | RAJLMW Ø5   |        | Collected |
| 1416 | RAILMW 11   |        | Collected |
| 1540 | RATLAW 10   |        | Collected |

| Sa         | mple | Last | Parame | ters    |           |  |
|------------|------|------|--------|---------|-----------|--|
| Lecation   | time | Temp | pH     | Sp Cond | Purge Vol |  |
| RATIONNET  | 0734 | 18.8 | 6,69   | 875     | 12,2      |  |
| RAJLINWEZ  | 1007 | 18.1 | 7.03   | 744     | 1212      |  |
| RAJLIMWOS  | 1107 | 19,7 | 6,72   | 753     | 11,6      |  |
| RAJUNW 24  | 1204 | 12,4 | 6,96   | 561     | 9,7       |  |
| RAJLIMU 98 | 1303 | 19,0 | 6.58   | 856     | Ilis      |  |
| RAJL MW 11 | 1403 | 19.3 | 7,04   | 699     | 10.5      |  |
| KATLAW 10  | 1526 | 19,2 | 6,69   | 907     | 815       |  |

Cloun up equipment

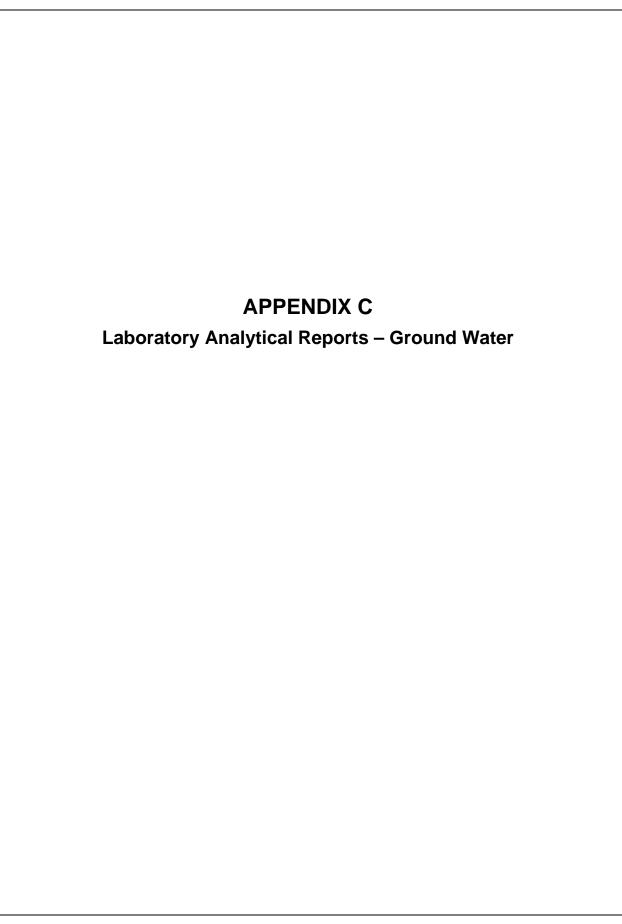
1635 offsite to Hall

Chille 1

4/24/20

0103 Konrad onsite
TLC Construction guys not
onsite today

0710 Calibrak YSI for use


Set up to sample RAJLMURG

Last Parameter time temp pH sp Cond Vol 0749 1918 7101 1215 1317

0806 RAILMWEG Sample Collected

Yesterday the Construction Crew
Installed a New 8" Flush mount
Vault on RAILMING but Casing
Still Needs to be Cut. Call Ken
and he said to Cut it.
Cut Exactly 25" off Casing Using
inside PVC Cutter. Clean up
0935 Offsik to Itall

(melle'///





Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

May 06, 2020

Joseph Tracy Intera, Inc. 6000 Uptown Boulevard, NE Suite 220 Albuquerque, NM 87110

TEL: (505) 246-1600 FAX: (505) 246-2600

RE: COA Rail Yards OrderNo.: 2004A60

## Dear Joseph Tracy:

Hall Environmental Analysis Laboratory received 8 sample(s) on 4/23/2020 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results, it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifiers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0901

Sincerely,

Andy Freeman

Laboratory Manager

andyl

4901 Hawkins NE

Albuquerque, NM 87109

Date Reported: 5/6/2020

## Lab Order 2004A60

# Hall Environmental Analysis Laboratory, Inc.

**CLIENT:** Intera, Inc.

Client Sample ID: RAILMW08

 Project:
 COA Rail Yards
 Collection Date: 4/22/2020 11:26:00 AM

 Lab ID:
 2004A60-001
 Matrix: AQUEOUS
 Received Date: 4/23/2020 4:38:00 PM

| Analyses                                   | Result | RL      | Qual Units | DF | Date Analyzed         | Batch  |
|--------------------------------------------|--------|---------|------------|----|-----------------------|--------|
| EPA 200.8: DISSOLVED METALS                |        |         |            |    | Analyst:              | bcv    |
| Copper                                     | ND     | 0.0010  | mg/L       | 1  | 4/29/2020 5:05:57 PM  | B68526 |
| Lead                                       | ND     | 0.00050 | mg/L       | 1  | 4/29/2020 5:05:57 PM  | B68526 |
| EPA METHOD 200.7: DISSOLVED METALS         |        |         |            |    | Analyst:              | pmf    |
| Barium                                     | 0.061  | 0.0020  | mg/L       | 1  | 4/27/2020 6:56:05 PM  | A68449 |
| Chromium                                   | ND     | 0.0060  | mg/L       | 1  | 4/28/2020 3:34:56 AM  | A68450 |
| Iron                                       | ND     | 0.020   | mg/L       | 1  | 4/27/2020 6:56:05 PM  | A68449 |
| Manganese                                  | 0.048  | 0.0020  | mg/L       | 1  | 4/27/2020 6:56:05 PM  | A68449 |
| Zinc                                       | 0.019  | 0.010   | mg/L       | 1  | 4/27/2020 6:56:05 PM  | A68449 |
| EPA METHOD 8015D: GASOLINE RANGE           |        |         |            |    | Analyst:              | DJF    |
| Gasoline Range Organics (GRO)              | ND     | 0.050   | mg/L       | 1  | 4/25/2020 1:08:15 PM  | GW6841 |
| Surr: BFB                                  | 96.7   | 70-130  | %Rec       | 1  | 4/25/2020 1:08:15 PM  | GW6841 |
| EPA METHOD 8011/504.1: EDB                 |        |         |            |    | Analyst:              | CLP    |
| 1,2-Dibromoethane                          | ND     | 0.0094  | μg/L       | 1  | 4/28/2020 11:28:18 AM | 52123  |
| NOTES:                                     |        |         |            |    |                       |        |
| No trip blank was included with work order |        |         |            |    |                       |        |
| EPA METHOD 8015M/D: DIESEL RANGE           |        |         |            |    | Analyst               | BRM    |
| Diesel Range Organics (DRO)                | ND     | 1.0     | mg/L       | 1  | 4/29/2020 12:14:41 PM | 52139  |
| Motor Oil Range Organics (MRO)             | ND     | 5.0     | mg/L       | 1  | 4/29/2020 12:14:41 PM | 52139  |
| Surr: DNOP                                 | 98.0   | 70-130  | %Rec       | 1  | 4/29/2020 12:14:41 PM | 52139  |
| EPA METHOD 8310: PAHS                      |        |         |            |    | Analyst               | TOM    |
| Naphthalene                                | ND     | 3.0     | μg/L       | 1  | 4/29/2020 1:32:18 PM  | 52095  |
| 1-Methylnaphthalene                        | ND     | 3.0     | μg/L       | 1  | 4/29/2020 1:32:18 PM  | 52095  |
| 2-Methylnaphthalene                        | ND     | 3.0     | μg/L       | 1  | 4/29/2020 1:32:18 PM  | 52095  |
| Acenaphthylene                             | ND     | 3.0     | μg/L       | 1  | 4/29/2020 1:32:18 PM  | 52095  |
| Acenaphthene                               | ND     | 3.0     | μg/L       | 1  | 4/29/2020 1:32:18 PM  | 52095  |
| Fluorene                                   | ND     | 0.80    | μg/L       | 1  | 4/29/2020 1:32:18 PM  | 52095  |
| Phenanthrene                               | ND     | 0.60    | μg/L       | 1  | 4/29/2020 1:32:18 PM  | 52095  |
| Anthracene                                 | ND     | 0.60    | μg/L       | 1  | 4/29/2020 1:32:18 PM  | 52095  |
| Fluoranthene                               | ND     | 0.40    | μg/L       | 1  | 4/29/2020 1:32:18 PM  | 52095  |
| Pyrene                                     | ND     | 0.40    | μg/L       | 1  | 4/29/2020 1:32:18 PM  | 52095  |
| Benz(a)anthracene                          | ND     | 0.070   | μg/L       | 1  | 4/29/2020 1:32:18 PM  | 52095  |
| Chrysene                                   | ND     | 0.20    | μg/L       | 1  | 4/29/2020 1:32:18 PM  | 52095  |
| Benzo(b)fluoranthene                       | ND     | 0.10    | μg/L       | 1  | 4/29/2020 1:32:18 PM  | 52095  |
| Benzo(k)fluoranthene                       | ND     | 0.070   | μg/L       | 1  | 4/29/2020 1:32:18 PM  | 52095  |
| Benzo(a)pyrene                             | ND     | 0.070   | μg/L       | 1  | 4/29/2020 1:32:18 PM  | 52095  |
| Dibenz(a,h)anthracene                      | ND     | 0.12    | μg/L       | 1  | 4/29/2020 1:32:18 PM  | 52095  |
| Benzo(g,h,i)perylene                       | ND     | 0.12    | μg/L       | 1  | 4/29/2020 1:32:18 PM  | 52095  |

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

## Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 1 of 37

Date Reported: 5/6/2020

# Hall Environmental Analysis Laboratory, Inc.

CLIENT: Intera, Inc.

Client Sample ID: RAILMW08

 Project:
 COA Rail Yards
 Collection Date: 4/22/2020 11:26:00 AM

 Lab ID:
 2004A60-001
 Matrix: AQUEOUS
 Received Date: 4/23/2020 4:38:00 PM

| Analyses                       | Result | RL       | Qual Units | DF | Date Analyzed        | Batch  |
|--------------------------------|--------|----------|------------|----|----------------------|--------|
| EPA METHOD 8310: PAHS          |        |          |            |    | Analyst              | том    |
| Indeno(1,2,3-cd)pyrene         | ND     | 0.25     | μg/L       | 1  | 4/29/2020 1:32:18 PM | 52095  |
| Surr: Benzo(e)pyrene           | 56.0   | 43.5-108 | %Rec       | 1  | 4/29/2020 1:32:18 PM | 52095  |
| EPA METHOD 8260B: VOLATILES    |        |          |            |    | Analyst              | DJF    |
| Benzene                        | ND     | 1.0      | μg/L       | 1  | 4/25/2020 1:08:15 PM | W68413 |
| Toluene                        | ND     | 1.0      | μg/L       | 1  | 4/25/2020 1:08:15 PM | W68413 |
| Ethylbenzene                   | ND     | 1.0      | μg/L       | 1  | 4/25/2020 1:08:15 PM | W68413 |
| Methyl tert-butyl ether (MTBE) | ND     | 1.0      | μg/L       | 1  | 4/25/2020 1:08:15 PM | W68413 |
| 1,2,4-Trimethylbenzene         | ND     | 1.0      | μg/L       | 1  | 4/25/2020 1:08:15 PM | W68413 |
| 1,3,5-Trimethylbenzene         | ND     | 1.0      | μg/L       | 1  | 4/25/2020 1:08:15 PM | W68413 |
| 1,2-Dichloroethane (EDC)       | ND     | 1.0      | μg/L       | 1  | 4/25/2020 1:08:15 PM | W68413 |
| 1,2-Dibromoethane (EDB)        | ND     | 1.0      | μg/L       | 1  | 4/25/2020 1:08:15 PM | W68413 |
| Naphthalene                    | ND     | 2.0      | μg/L       | 1  | 4/25/2020 1:08:15 PM | W68413 |
| 1-Methylnaphthalene            | ND     | 4.0      | μg/L       | 1  | 4/25/2020 1:08:15 PM | W68413 |
| 2-Methylnaphthalene            | ND     | 4.0      | μg/L       | 1  | 4/25/2020 1:08:15 PM | W68413 |
| Acetone                        | ND     | 10       | μg/L       | 1  | 4/25/2020 1:08:15 PM | W68413 |
| Bromobenzene                   | ND     | 1.0      | μg/L       | 1  | 4/25/2020 1:08:15 PM | W68413 |
| Bromodichloromethane           | ND     | 1.0      | μg/L       | 1  | 4/25/2020 1:08:15 PM | W68413 |
| Bromoform                      | ND     | 1.0      | μg/L       | 1  | 4/25/2020 1:08:15 PM | W68413 |
| Bromomethane                   | ND     | 3.0      | μg/L       | 1  | 4/25/2020 1:08:15 PM | W68413 |
| 2-Butanone                     | ND     | 10       | μg/L       | 1  | 4/25/2020 1:08:15 PM | W68413 |
| Carbon disulfide               | ND     | 10       | μg/L       | 1  | 4/25/2020 1:08:15 PM | W68413 |
| Carbon Tetrachloride           | ND     | 1.0      | μg/L       | 1  | 4/25/2020 1:08:15 PM | W68413 |
| Chlorobenzene                  | ND     | 1.0      | μg/L       | 1  | 4/25/2020 1:08:15 PM | W68413 |
| Chloroethane                   | ND     | 2.0      | μg/L       | 1  | 4/25/2020 1:08:15 PM | W68413 |
| Chloroform                     | ND     | 1.0      | μg/L       | 1  | 4/25/2020 1:08:15 PM | W68413 |
| Chloromethane                  | ND     | 3.0      | μg/L       | 1  | 4/25/2020 1:08:15 PM | W68413 |
| 2-Chlorotoluene                | ND     | 1.0      | μg/L       | 1  | 4/25/2020 1:08:15 PM | W68413 |
| 4-Chlorotoluene                | ND     | 1.0      | μg/L       | 1  | 4/25/2020 1:08:15 PM | W68413 |
| cis-1,2-DCE                    | ND     | 1.0      | μg/L       | 1  | 4/25/2020 1:08:15 PM | W68413 |
| cis-1,3-Dichloropropene        | ND     | 1.0      | μg/L       | 1  | 4/25/2020 1:08:15 PM | W68413 |
| 1,2-Dibromo-3-chloropropane    | ND     | 2.0      | μg/L       | 1  | 4/25/2020 1:08:15 PM | W68413 |
| Dibromochloromethane           | ND     | 1.0      | μg/L       | 1  | 4/25/2020 1:08:15 PM | W68413 |
| Dibromomethane                 | ND     | 1.0      | μg/L       | 1  | 4/25/2020 1:08:15 PM | W68413 |
| 1,2-Dichlorobenzene            | ND     | 1.0      | μg/L       | 1  | 4/25/2020 1:08:15 PM | W68413 |
| 1,3-Dichlorobenzene            | ND     | 1.0      | μg/L       | 1  | 4/25/2020 1:08:15 PM | W68413 |
| 1,4-Dichlorobenzene            | ND     | 1.0      | μg/L       | 1  | 4/25/2020 1:08:15 PM | W68413 |
| Dichlorodifluoromethane        | ND     | 1.0      | μg/L       | 1  | 4/25/2020 1:08:15 PM | W68413 |
| 1,1-Dichloroethane             | ND     | 1.0      | μg/L       | 1  | 4/25/2020 1:08:15 PM | W68413 |
| 1,1-Dichloroethene             | ND     | 1.0      | μg/L       | 1  | 4/25/2020 1:08:15 PM | W68413 |

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

## Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 2 of 37

Date Reported: 5/6/2020

# Hall Environmental Analysis Laboratory, Inc.

CLIENT: Intera, Inc.

Client Sample ID: RAILMW08

 Project:
 COA Rail Yards
 Collection Date: 4/22/2020 11:26:00 AM

 Lab ID:
 2004A60-001
 Matrix: AQUEOUS
 Received Date: 4/23/2020 4:38:00 PM

| Analyses                    | Result | RL     | Qual Units | DF | Date Analyzed        | Batch  |
|-----------------------------|--------|--------|------------|----|----------------------|--------|
| EPA METHOD 8260B: VOLATILES |        |        |            |    | Analyst              | : DJF  |
| 1,2-Dichloropropane         | ND     | 1.0    | μg/L       | 1  | 4/25/2020 1:08:15 PM | W68413 |
| 1,3-Dichloropropane         | ND     | 1.0    | μg/L       | 1  | 4/25/2020 1:08:15 PM | W68413 |
| 2,2-Dichloropropane         | ND     | 2.0    | μg/L       | 1  | 4/25/2020 1:08:15 PM | W68413 |
| 1,1-Dichloropropene         | ND     | 1.0    | μg/L       | 1  | 4/25/2020 1:08:15 PM | W68413 |
| Hexachlorobutadiene         | ND     | 1.0    | μg/L       | 1  | 4/25/2020 1:08:15 PM | W68413 |
| 2-Hexanone                  | ND     | 10     | μg/L       | 1  | 4/25/2020 1:08:15 PM | W68413 |
| Isopropylbenzene            | ND     | 1.0    | μg/L       | 1  | 4/25/2020 1:08:15 PM | W68413 |
| 4-Isopropyltoluene          | ND     | 1.0    | μg/L       | 1  | 4/25/2020 1:08:15 PM | W68413 |
| 4-Methyl-2-pentanone        | ND     | 10     | μg/L       | 1  | 4/25/2020 1:08:15 PM | W68413 |
| Methylene Chloride          | ND     | 3.0    | μg/L       | 1  | 4/25/2020 1:08:15 PM | W68413 |
| n-Butylbenzene              | ND     | 3.0    | μg/L       | 1  | 4/25/2020 1:08:15 PM | W68413 |
| n-Propylbenzene             | ND     | 1.0    | μg/L       | 1  | 4/25/2020 1:08:15 PM | W68413 |
| sec-Butylbenzene            | ND     | 1.0    | μg/L       | 1  | 4/25/2020 1:08:15 PM | W68413 |
| Styrene                     | ND     | 1.0    | μg/L       | 1  | 4/25/2020 1:08:15 PM | W68413 |
| tert-Butylbenzene           | ND     | 1.0    | μg/L       | 1  | 4/25/2020 1:08:15 PM | W68413 |
| 1,1,1,2-Tetrachloroethane   | ND     | 1.0    | μg/L       | 1  | 4/25/2020 1:08:15 PM | W68413 |
| 1,1,2,2-Tetrachloroethane   | ND     | 2.0    | μg/L       | 1  | 4/25/2020 1:08:15 PM | W68413 |
| Tetrachloroethene (PCE)     | ND     | 1.0    | μg/L       | 1  | 4/25/2020 1:08:15 PM | W68413 |
| trans-1,2-DCE               | ND     | 1.0    | μg/L       | 1  | 4/25/2020 1:08:15 PM | W68413 |
| trans-1,3-Dichloropropene   | ND     | 1.0    | μg/L       | 1  | 4/25/2020 1:08:15 PM | W68413 |
| 1,2,3-Trichlorobenzene      | ND     | 1.0    | μg/L       | 1  | 4/25/2020 1:08:15 PM | W68413 |
| 1,2,4-Trichlorobenzene      | ND     | 1.0    | μg/L       | 1  | 4/25/2020 1:08:15 PM | W68413 |
| 1,1,1-Trichloroethane       | ND     | 1.0    | μg/L       | 1  | 4/25/2020 1:08:15 PM | W68413 |
| 1,1,2-Trichloroethane       | ND     | 1.0    | μg/L       | 1  | 4/25/2020 1:08:15 PM | W68413 |
| Trichloroethene (TCE)       | ND     | 1.0    | μg/L       | 1  | 4/25/2020 1:08:15 PM | W68413 |
| Trichlorofluoromethane      | ND     | 1.0    | μg/L       | 1  | 4/25/2020 1:08:15 PM | W68413 |
| 1,2,3-Trichloropropane      | ND     | 2.0    | μg/L       | 1  | 4/25/2020 1:08:15 PM | W68413 |
| Vinyl chloride              | ND     | 1.0    | μg/L       | 1  | 4/25/2020 1:08:15 PM | W68413 |
| Xylenes, Total              | ND     | 1.5    | μg/L       | 1  | 4/25/2020 1:08:15 PM | W68413 |
| Surr: 1,2-Dichloroethane-d4 | 94.0   | 70-130 | %Rec       | 1  | 4/25/2020 1:08:15 PM | W68413 |
| Surr: 4-Bromofluorobenzene  | 102    | 70-130 | %Rec       | 1  | 4/25/2020 1:08:15 PM | W68413 |
| Surr: Dibromofluoromethane  | 102    | 70-130 | %Rec       | 1  | 4/25/2020 1:08:15 PM | W68413 |
| Surr: Toluene-d8            | 96.6   | 70-130 | %Rec       | 1  | 4/25/2020 1:08:15 PM | W68413 |

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

## Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 3 of 37

Date Reported: 5/6/2020

# Hall Environmental Analysis Laboratory, Inc.

CLIENT: Intera, Inc. Client Sample ID: RAILMW07

**Project:** COA Rail Yards
 Collection Date: 4/23/2020 7:50:00 AM

 **Lab ID:** 2004A60-002
 Matrix: AQUEOUS
 Received Date: 4/23/2020 4:38:00 PM

| Analyses                                   | Result | RL      | Qual | Units | DF | Date Analyzed         | Batch  |
|--------------------------------------------|--------|---------|------|-------|----|-----------------------|--------|
| EPA 200.8: DISSOLVED METALS                |        |         |      |       |    | Analyst               | bcv    |
| Copper                                     | ND     | 0.0010  |      | mg/L  | 1  | 4/29/2020 5:13:45 PM  | B68526 |
| Lead                                       | ND     | 0.00050 |      | mg/L  | 1  | 4/29/2020 5:13:45 PM  | B68526 |
| EPA METHOD 200.7: DISSOLVED METALS         |        |         |      |       |    | Analyst               | pmf    |
| Barium                                     | 0.066  | 0.0020  |      | mg/L  | 1  | 4/27/2020 6:58:52 PM  | A68449 |
| Chromium                                   | ND     | 0.0060  |      | mg/L  | 1  | 4/28/2020 3:37:43 AM  | A68450 |
| Iron                                       | ND     | 0.020   |      | mg/L  | 1  | 4/27/2020 6:58:52 PM  | A68449 |
| Manganese                                  | 0.72   | 0.0020  | *    | mg/L  | 1  | 4/27/2020 6:58:52 PM  | A68449 |
| Zinc                                       | 0.014  | 0.010   |      | mg/L  | 1  | 4/27/2020 6:58:52 PM  | A68449 |
| EPA METHOD 8015D: GASOLINE RANGE           |        |         |      |       |    | Analyst               | : DJF  |
| Gasoline Range Organics (GRO)              | ND     | 0.050   |      | mg/L  | 1  | 4/25/2020 1:36:48 PM  | GW6841 |
| Surr: BFB                                  | 98.9   | 70-130  |      | %Rec  | 1  | 4/25/2020 1:36:48 PM  | GW6841 |
| EPA METHOD 8011/504.1: EDB                 |        |         |      |       |    | Analyst               | CLP    |
| 1,2-Dibromoethane                          | ND     | 0.0094  |      | μg/L  | 1  | 4/28/2020 11:43:23 AM | 52123  |
| NOTES:                                     |        |         |      |       |    |                       |        |
| No trip blank was included with work order |        |         |      |       |    |                       |        |
| EPA METHOD 8015M/D: DIESEL RANGE           |        |         |      |       |    | Analyst               | BRM    |
| Diesel Range Organics (DRO)                | ND     | 1.0     |      | mg/L  | 1  | 4/29/2020 1:28:03 PM  | 52139  |
| Motor Oil Range Organics (MRO)             | ND     | 5.0     |      | mg/L  | 1  | 4/29/2020 1:28:03 PM  | 52139  |
| Surr: DNOP                                 | 97.3   | 70-130  |      | %Rec  | 1  | 4/29/2020 1:28:03 PM  | 52139  |
| EPA METHOD 8310: PAHS                      |        |         |      |       |    | Analyst               | : TOM  |
| Naphthalene                                | ND     | 3.0     |      | μg/L  | 1  | 4/29/2020 1:57:49 PM  | 52095  |
| 1-Methylnaphthalene                        | ND     | 3.0     |      | μg/L  | 1  | 4/29/2020 1:57:49 PM  | 52095  |
| 2-Methylnaphthalene                        | ND     | 3.0     |      | μg/L  | 1  | 4/29/2020 1:57:49 PM  | 52095  |
| Acenaphthylene                             | ND     | 3.0     |      | μg/L  | 1  | 4/29/2020 1:57:49 PM  | 52095  |
| Acenaphthene                               | ND     | 3.0     |      | μg/L  | 1  | 4/29/2020 1:57:49 PM  | 52095  |
| Fluorene                                   | ND     | 0.80    |      | μg/L  | 1  | 4/29/2020 1:57:49 PM  | 52095  |
| Phenanthrene                               | ND     | 0.60    |      | μg/L  | 1  | 4/29/2020 1:57:49 PM  | 52095  |
| Anthracene                                 | ND     | 0.60    |      | μg/L  | 1  | 4/29/2020 1:57:49 PM  | 52095  |
| Fluoranthene                               | ND     | 0.40    |      | μg/L  | 1  | 4/29/2020 1:57:49 PM  | 52095  |
| Pyrene                                     | ND     | 0.40    |      | μg/L  | 1  | 4/29/2020 1:57:49 PM  | 52095  |
| Benz(a)anthracene                          | ND     | 0.070   |      | μg/L  | 1  | 4/29/2020 1:57:49 PM  | 52095  |
| Chrysene                                   | ND     | 0.20    |      | μg/L  | 1  | 4/29/2020 1:57:49 PM  | 52095  |
| Benzo(b)fluoranthene                       | ND     | 0.10    |      | μg/L  | 1  | 4/29/2020 1:57:49 PM  | 52095  |
| Benzo(k)fluoranthene                       | ND     | 0.070   |      | μg/L  | 1  | 4/29/2020 1:57:49 PM  | 52095  |
| Benzo(a)pyrene                             | ND     | 0.070   |      | μg/L  | 1  | 4/29/2020 1:57:49 PM  | 52095  |
| Dibenz(a,h)anthracene                      | ND     | 0.12    |      | μg/L  | 1  | 4/29/2020 1:57:49 PM  | 52095  |
| Benzo(g,h,i)perylene                       | ND     | 0.12    |      | μg/L  | 1  | 4/29/2020 1:57:49 PM  | 52095  |

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

## Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 4 of 37

Date Reported: 5/6/2020

# Hall Environmental Analysis Laboratory, Inc.

CLIENT: Intera, Inc.

Client Sample ID: RAILMW07

 Project:
 COA Rail Yards
 Collection Date: 4/23/2020 7:50:00 AM

 Lab ID:
 2004A60-002
 Matrix: AQUEOUS
 Received Date: 4/23/2020 4:38:00 PM

| Analyses                       | Result | RL       | Qual Units | DF | Date Analyzed        | Batch  |
|--------------------------------|--------|----------|------------|----|----------------------|--------|
| EPA METHOD 8310: PAHS          |        |          |            |    | Analyst              | : ТОМ  |
| Indeno(1,2,3-cd)pyrene         | ND     | 0.25     | μg/L       | 1  | 4/29/2020 1:57:49 PM | 52095  |
| Surr: Benzo(e)pyrene           | 66.0   | 43.5-108 | %Rec       | 1  | 4/29/2020 1:57:49 PM | 52095  |
| EPA METHOD 8260B: VOLATILES    |        |          |            |    | Analyst              | : DJF  |
| Benzene                        | ND     | 1.0      | μg/L       | 1  | 4/25/2020 1:36:48 PM | W68413 |
| Toluene                        | ND     | 1.0      | μg/L       | 1  | 4/25/2020 1:36:48 PM | W68413 |
| Ethylbenzene                   | ND     | 1.0      | μg/L       | 1  | 4/25/2020 1:36:48 PM | W68413 |
| Methyl tert-butyl ether (MTBE) | ND     | 1.0      | μg/L       | 1  | 4/25/2020 1:36:48 PM | W68413 |
| 1,2,4-Trimethylbenzene         | ND     | 1.0      | μg/L       | 1  | 4/25/2020 1:36:48 PM | W68413 |
| 1,3,5-Trimethylbenzene         | ND     | 1.0      | μg/L       | 1  | 4/25/2020 1:36:48 PM | W68413 |
| 1,2-Dichloroethane (EDC)       | ND     | 1.0      | μg/L       | 1  | 4/25/2020 1:36:48 PM | W68413 |
| 1,2-Dibromoethane (EDB)        | ND     | 1.0      | μg/L       | 1  | 4/25/2020 1:36:48 PM | W68413 |
| Naphthalene                    | ND     | 2.0      | μg/L       | 1  | 4/25/2020 1:36:48 PM | W68413 |
| 1-Methylnaphthalene            | ND     | 4.0      | μg/L       | 1  | 4/25/2020 1:36:48 PM | W68413 |
| 2-Methylnaphthalene            | ND     | 4.0      | μg/L       | 1  | 4/25/2020 1:36:48 PM | W68413 |
| Acetone                        | ND     | 10       | μg/L       | 1  | 4/25/2020 1:36:48 PM | W68413 |
| Bromobenzene                   | ND     | 1.0      | μg/L       | 1  | 4/25/2020 1:36:48 PM | W68413 |
| Bromodichloromethane           | ND     | 1.0      | μg/L       | 1  | 4/25/2020 1:36:48 PM | W68413 |
| Bromoform                      | ND     | 1.0      | μg/L       | 1  | 4/25/2020 1:36:48 PM | W68413 |
| Bromomethane                   | ND     | 3.0      | μg/L       | 1  | 4/25/2020 1:36:48 PM | W68413 |
| 2-Butanone                     | ND     | 10       | μg/L       | 1  | 4/25/2020 1:36:48 PM | W68413 |
| Carbon disulfide               | ND     | 10       | μg/L       | 1  | 4/25/2020 1:36:48 PM | W68413 |
| Carbon Tetrachloride           | ND     | 1.0      | μg/L       | 1  | 4/25/2020 1:36:48 PM | W68413 |
| Chlorobenzene                  | ND     | 1.0      | μg/L       | 1  | 4/25/2020 1:36:48 PM | W68413 |
| Chloroethane                   | ND     | 2.0      | μg/L       | 1  | 4/25/2020 1:36:48 PM | W68413 |
| Chloroform                     | ND     | 1.0      | μg/L       | 1  | 4/25/2020 1:36:48 PM | W68413 |
| Chloromethane                  | ND     | 3.0      | μg/L       | 1  | 4/25/2020 1:36:48 PM | W68413 |
| 2-Chlorotoluene                | ND     | 1.0      | μg/L       | 1  | 4/25/2020 1:36:48 PM | W68413 |
| 4-Chlorotoluene                | ND     | 1.0      | μg/L       | 1  | 4/25/2020 1:36:48 PM | W68413 |
| cis-1,2-DCE                    | ND     | 1.0      | μg/L       | 1  | 4/25/2020 1:36:48 PM | W68413 |
| cis-1,3-Dichloropropene        | ND     | 1.0      | μg/L       | 1  | 4/25/2020 1:36:48 PM | W68413 |
| 1,2-Dibromo-3-chloropropane    | ND     | 2.0      | μg/L       | 1  | 4/25/2020 1:36:48 PM | W68413 |
| Dibromochloromethane           | ND     | 1.0      | μg/L       | 1  | 4/25/2020 1:36:48 PM | W68413 |
| Dibromomethane                 | ND     | 1.0      | μg/L       | 1  | 4/25/2020 1:36:48 PM | W68413 |
| 1,2-Dichlorobenzene            | ND     | 1.0      | μg/L       | 1  | 4/25/2020 1:36:48 PM | W68413 |
| 1,3-Dichlorobenzene            | ND     | 1.0      | μg/L       | 1  | 4/25/2020 1:36:48 PM | W68413 |
| 1,4-Dichlorobenzene            | ND     | 1.0      | μg/L       | 1  | 4/25/2020 1:36:48 PM | W68413 |
| Dichlorodifluoromethane        | ND     | 1.0      | μg/L       | 1  | 4/25/2020 1:36:48 PM | W68413 |
| 1,1-Dichloroethane             | ND     | 1.0      | μg/L       | 1  | 4/25/2020 1:36:48 PM | W68413 |
| 1,1-Dichloroethene             | ND     | 1.0      | μg/L       | 1  | 4/25/2020 1:36:48 PM | W68413 |

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

## Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 5 of 37

# Lab Order **2004A60**Date Reported: **5/6/2020**

# Hall Environmental Analysis Laboratory, Inc.

CLIENT: Intera, Inc.

Client Sample ID: RAILMW07

 Project:
 COA Rail Yards
 Collection Date: 4/23/2020 7:50:00 AM

 Lab ID:
 2004A60-002
 Matrix: AQUEOUS
 Received Date: 4/23/2020 4:38:00 PM

| Analyses                    | Result | RL     | Qual Units | DF | Date Analyzed        | Batch  |
|-----------------------------|--------|--------|------------|----|----------------------|--------|
| EPA METHOD 8260B: VOLATILES |        |        |            |    | Analyst              | : DJF  |
| 1,2-Dichloropropane         | ND     | 1.0    | μg/L       | 1  | 4/25/2020 1:36:48 PM | W68413 |
| 1,3-Dichloropropane         | ND     | 1.0    | μg/L       | 1  | 4/25/2020 1:36:48 PM | W68413 |
| 2,2-Dichloropropane         | ND     | 2.0    | μg/L       | 1  | 4/25/2020 1:36:48 PM | W68413 |
| 1,1-Dichloropropene         | ND     | 1.0    | μg/L       | 1  | 4/25/2020 1:36:48 PM | W68413 |
| Hexachlorobutadiene         | ND     | 1.0    | μg/L       | 1  | 4/25/2020 1:36:48 PM | W68413 |
| 2-Hexanone                  | ND     | 10     | μg/L       | 1  | 4/25/2020 1:36:48 PM | W68413 |
| Isopropylbenzene            | ND     | 1.0    | μg/L       | 1  | 4/25/2020 1:36:48 PM | W68413 |
| 4-Isopropyltoluene          | ND     | 1.0    | μg/L       | 1  | 4/25/2020 1:36:48 PM | W68413 |
| 4-Methyl-2-pentanone        | ND     | 10     | μg/L       | 1  | 4/25/2020 1:36:48 PM | W68413 |
| Methylene Chloride          | ND     | 3.0    | μg/L       | 1  | 4/25/2020 1:36:48 PM | W68413 |
| n-Butylbenzene              | ND     | 3.0    | μg/L       | 1  | 4/25/2020 1:36:48 PM | W68413 |
| n-Propylbenzene             | ND     | 1.0    | μg/L       | 1  | 4/25/2020 1:36:48 PM | W68413 |
| sec-Butylbenzene            | ND     | 1.0    | μg/L       | 1  | 4/25/2020 1:36:48 PM | W68413 |
| Styrene                     | ND     | 1.0    | μg/L       | 1  | 4/25/2020 1:36:48 PM | W68413 |
| tert-Butylbenzene           | ND     | 1.0    | μg/L       | 1  | 4/25/2020 1:36:48 PM | W68413 |
| 1,1,1,2-Tetrachloroethane   | ND     | 1.0    | μg/L       | 1  | 4/25/2020 1:36:48 PM | W68413 |
| 1,1,2,2-Tetrachloroethane   | ND     | 2.0    | μg/L       | 1  | 4/25/2020 1:36:48 PM | W68413 |
| Tetrachloroethene (PCE)     | ND     | 1.0    | μg/L       | 1  | 4/25/2020 1:36:48 PM | W68413 |
| trans-1,2-DCE               | ND     | 1.0    | μg/L       | 1  | 4/25/2020 1:36:48 PM | W68413 |
| trans-1,3-Dichloropropene   | ND     | 1.0    | μg/L       | 1  | 4/25/2020 1:36:48 PM | W68413 |
| 1,2,3-Trichlorobenzene      | ND     | 1.0    | μg/L       | 1  | 4/25/2020 1:36:48 PM | W68413 |
| 1,2,4-Trichlorobenzene      | ND     | 1.0    | μg/L       | 1  | 4/25/2020 1:36:48 PM | W68413 |
| 1,1,1-Trichloroethane       | ND     | 1.0    | μg/L       | 1  | 4/25/2020 1:36:48 PM | W68413 |
| 1,1,2-Trichloroethane       | ND     | 1.0    | μg/L       | 1  | 4/25/2020 1:36:48 PM | W68413 |
| Trichloroethene (TCE)       | ND     | 1.0    | μg/L       | 1  | 4/25/2020 1:36:48 PM | W68413 |
| Trichlorofluoromethane      | ND     | 1.0    | μg/L       | 1  | 4/25/2020 1:36:48 PM | W68413 |
| 1,2,3-Trichloropropane      | ND     | 2.0    | μg/L       | 1  | 4/25/2020 1:36:48 PM | W68413 |
| Vinyl chloride              | ND     | 1.0    | μg/L       | 1  | 4/25/2020 1:36:48 PM | W68413 |
| Xylenes, Total              | ND     | 1.5    | μg/L       | 1  | 4/25/2020 1:36:48 PM | W68413 |
| Surr: 1,2-Dichloroethane-d4 | 93.2   | 70-130 | %Rec       | 1  | 4/25/2020 1:36:48 PM | W68413 |
| Surr: 4-Bromofluorobenzene  | 102    | 70-130 | %Rec       | 1  | 4/25/2020 1:36:48 PM | W68413 |
| Surr: Dibromofluoromethane  | 98.5   | 70-130 | %Rec       | 1  | 4/25/2020 1:36:48 PM | W68413 |
| Surr: Toluene-d8            | 95.5   | 70-130 | %Rec       | 1  | 4/25/2020 1:36:48 PM | W68413 |

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

## Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 6 of 37

Date Reported: 5/6/2020

# Hall Environmental Analysis Laboratory, Inc.

CLIENT: Intera, Inc.

Client Sample ID: RAILMW02

 Project:
 COA Rail Yards
 Collection Date: 4/23/2020 10:20:00 AM

 Lab ID:
 2004A60-003
 Matrix: AQUEOUS
 Received Date: 4/23/2020 4:38:00 PM

| Analyses                                   | Result | RL      | Qual Units | DF | Date Analyzed         | Batch  |
|--------------------------------------------|--------|---------|------------|----|-----------------------|--------|
| EPA 200.8: DISSOLVED METALS                |        |         |            |    | Analyst               | bcv    |
| Copper                                     | ND     | 0.0010  | mg/L       | 1  | 4/29/2020 5:16:21 PM  | B68526 |
| Lead                                       | ND     | 0.00050 | mg/L       | 1  | 4/29/2020 5:16:21 PM  | B68526 |
| EPA METHOD 200.7: DISSOLVED METALS         |        |         |            |    | Analyst               | pmf    |
| Barium                                     | 0.11   | 0.0020  | mg/L       | 1  | 4/27/2020 7:01:40 PM  | A68449 |
| Chromium                                   | ND     | 0.0060  | mg/L       | 1  | 4/28/2020 3:40:31 AM  | A68450 |
| Iron                                       | 0.18   | 0.020   | mg/L       | 1  | 4/27/2020 7:01:40 PM  | A68449 |
| Manganese                                  | 0.31   | 0.0020  | * mg/L     | 1  | 4/27/2020 7:01:40 PM  | A68449 |
| Zinc                                       | 0.013  | 0.010   | mg/L       | 1  | 4/27/2020 7:01:40 PM  | A68449 |
| EPA METHOD 8015D: GASOLINE RANGE           |        |         |            |    | Analyst               | DJF    |
| Gasoline Range Organics (GRO)              | ND     | 0.050   | mg/L       | 1  | 4/25/2020 2:05:30 PM  | GW6841 |
| Surr: BFB                                  | 97.7   | 70-130  | %Rec       | 1  | 4/25/2020 2:05:30 PM  | GW6841 |
| EPA METHOD 8011/504.1: EDB                 |        |         |            |    | Analyst               | CLP    |
| 1,2-Dibromoethane                          | ND     | 0.0093  | μg/L       | 1  | 4/28/2020 11:58:31 AM | 52123  |
| NOTES:                                     |        |         |            |    |                       |        |
| No trip blank was included with work order |        |         |            |    |                       |        |
| EPA METHOD 8015M/D: DIESEL RANGE           |        |         |            |    | Analyst               | BRM    |
| Diesel Range Organics (DRO)                | ND     | 1.0     | mg/L       | 1  | 4/29/2020 2:16:45 PM  | 52139  |
| Motor Oil Range Organics (MRO)             | ND     | 5.0     | mg/L       | 1  | 4/29/2020 2:16:45 PM  | 52139  |
| Surr: DNOP                                 | 93.0   | 70-130  | %Rec       | 1  | 4/29/2020 2:16:45 PM  | 52139  |
| EPA METHOD 8310: PAHS                      |        |         |            |    | Analyst               | TOM    |
| Naphthalene                                | ND     | 3.0     | μg/L       | 1  | 4/29/2020 2:23:20 PM  | 52095  |
| 1-Methylnaphthalene                        | ND     | 3.0     | μg/L       | 1  | 4/29/2020 2:23:20 PM  | 52095  |
| 2-Methylnaphthalene                        | ND     | 3.0     | μg/L       | 1  | 4/29/2020 2:23:20 PM  | 52095  |
| Acenaphthylene                             | ND     | 3.0     | μg/L       | 1  | 4/29/2020 2:23:20 PM  | 52095  |
| Acenaphthene                               | ND     | 3.0     | μg/L       | 1  | 4/29/2020 2:23:20 PM  | 52095  |
| Fluorene                                   | ND     | 0.80    | μg/L       | 1  | 4/29/2020 2:23:20 PM  | 52095  |
| Phenanthrene                               | ND     | 0.60    | μg/L       | 1  | 4/29/2020 2:23:20 PM  | 52095  |
| Anthracene                                 | ND     | 0.60    | μg/L       | 1  | 4/29/2020 2:23:20 PM  | 52095  |
| Fluoranthene                               | ND     | 0.40    | μg/L       | 1  | 4/29/2020 2:23:20 PM  | 52095  |
| Pyrene                                     | ND     | 0.40    | μg/L       | 1  | 4/29/2020 2:23:20 PM  | 52095  |
| Benz(a)anthracene                          | ND     | 0.070   | μg/L       | 1  | 4/29/2020 2:23:20 PM  | 52095  |
| Chrysene                                   | ND     | 0.20    | μg/L       | 1  | 4/29/2020 2:23:20 PM  | 52095  |
| Benzo(b)fluoranthene                       | ND     | 0.10    | μg/L       | 1  | 4/29/2020 2:23:20 PM  | 52095  |
| Benzo(k)fluoranthene                       | ND     | 0.070   | μg/L       | 1  | 4/29/2020 2:23:20 PM  | 52095  |
| Benzo(a)pyrene                             | ND     | 0.070   | μg/L       | 1  | 4/29/2020 2:23:20 PM  | 52095  |
| Dibenz(a,h)anthracene                      | ND     | 0.12    | μg/L       | 1  | 4/29/2020 2:23:20 PM  | 52095  |
| Benzo(g,h,i)perylene                       | ND     | 0.12    | μg/L       | 1  | 4/29/2020 2:23:20 PM  | 52095  |

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

## Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 7 of 37

Date Reported: 5/6/2020

# Hall Environmental Analysis Laboratory, Inc.

CLIENT: Intera, Inc.

Client Sample ID: RAILMW02

 Project:
 COA Rail Yards
 Collection Date: 4/23/2020 10:20:00 AM

 Lab ID:
 2004A60-003
 Matrix: AQUEOUS
 Received Date: 4/23/2020 4:38:00 PM

| Analyses                       | Result | RL       | Qual Units | DF | Date Analyzed        | Batch  |
|--------------------------------|--------|----------|------------|----|----------------------|--------|
| EPA METHOD 8310: PAHS          |        |          |            |    | Analyst              | TOM    |
| Indeno(1,2,3-cd)pyrene         | ND     | 0.25     | μg/L       | 1  | 4/29/2020 2:23:20 PM | 52095  |
| Surr: Benzo(e)pyrene           | 65.7   | 43.5-108 | %Rec       | 1  | 4/29/2020 2:23:20 PM | 52095  |
| EPA METHOD 8260B: VOLATILES    |        |          |            |    | Analyst              | DJF    |
| Benzene                        | ND     | 1.0      | μg/L       | 1  | 4/25/2020 2:05:30 PM | W68413 |
| Toluene                        | ND     | 1.0      | μg/L       | 1  | 4/25/2020 2:05:30 PM | W68413 |
| Ethylbenzene                   | ND     | 1.0      | μg/L       | 1  | 4/25/2020 2:05:30 PM | W68413 |
| Methyl tert-butyl ether (MTBE) | ND     | 1.0      | μg/L       | 1  | 4/25/2020 2:05:30 PM | W68413 |
| 1,2,4-Trimethylbenzene         | ND     | 1.0      | μg/L       | 1  | 4/25/2020 2:05:30 PM | W68413 |
| 1,3,5-Trimethylbenzene         | ND     | 1.0      | μg/L       | 1  | 4/25/2020 2:05:30 PM | W68413 |
| 1,2-Dichloroethane (EDC)       | ND     | 1.0      | μg/L       | 1  | 4/25/2020 2:05:30 PM | W68413 |
| 1,2-Dibromoethane (EDB)        | ND     | 1.0      | μg/L       | 1  | 4/25/2020 2:05:30 PM | W68413 |
| Naphthalene                    | ND     | 2.0      | μg/L       | 1  | 4/25/2020 2:05:30 PM | W68413 |
| 1-Methylnaphthalene            | ND     | 4.0      | μg/L       | 1  | 4/25/2020 2:05:30 PM | W68413 |
| 2-Methylnaphthalene            | ND     | 4.0      | μg/L       | 1  | 4/25/2020 2:05:30 PM | W68413 |
| Acetone                        | ND     | 10       | μg/L       | 1  | 4/25/2020 2:05:30 PM | W68413 |
| Bromobenzene                   | ND     | 1.0      | μg/L       | 1  | 4/25/2020 2:05:30 PM | W68413 |
| Bromodichloromethane           | ND     | 1.0      | μg/L       | 1  | 4/25/2020 2:05:30 PM | W68413 |
| Bromoform                      | ND     | 1.0      | μg/L       | 1  | 4/25/2020 2:05:30 PM | W68413 |
| Bromomethane                   | ND     | 3.0      | μg/L       | 1  | 4/25/2020 2:05:30 PM | W68413 |
| 2-Butanone                     | ND     | 10       | μg/L       | 1  | 4/25/2020 2:05:30 PM | W68413 |
| Carbon disulfide               | ND     | 10       | μg/L       | 1  | 4/25/2020 2:05:30 PM | W68413 |
| Carbon Tetrachloride           | ND     | 1.0      | μg/L       | 1  | 4/25/2020 2:05:30 PM | W68413 |
| Chlorobenzene                  | ND     | 1.0      | μg/L       | 1  | 4/25/2020 2:05:30 PM | W68413 |
| Chloroethane                   | ND     | 2.0      | μg/L       | 1  | 4/25/2020 2:05:30 PM | W68413 |
| Chloroform                     | ND     | 1.0      | μg/L       | 1  | 4/25/2020 2:05:30 PM | W68413 |
| Chloromethane                  | ND     | 3.0      | μg/L       | 1  | 4/25/2020 2:05:30 PM | W68413 |
| 2-Chlorotoluene                | ND     | 1.0      | μg/L       | 1  | 4/25/2020 2:05:30 PM | W68413 |
| 4-Chlorotoluene                | ND     | 1.0      | μg/L       | 1  | 4/25/2020 2:05:30 PM | W68413 |
| cis-1,2-DCE                    | ND     | 1.0      | μg/L       | 1  | 4/25/2020 2:05:30 PM | W68413 |
| cis-1,3-Dichloropropene        | ND     | 1.0      | μg/L       | 1  | 4/25/2020 2:05:30 PM | W68413 |
| 1,2-Dibromo-3-chloropropane    | ND     | 2.0      | μg/L       | 1  | 4/25/2020 2:05:30 PM | W68413 |
| Dibromochloromethane           | ND     | 1.0      | μg/L       | 1  | 4/25/2020 2:05:30 PM | W68413 |
| Dibromomethane                 | ND     | 1.0      | μg/L       | 1  | 4/25/2020 2:05:30 PM | W68413 |
| 1,2-Dichlorobenzene            | ND     | 1.0      | μg/L       | 1  | 4/25/2020 2:05:30 PM | W68413 |
| 1,3-Dichlorobenzene            | ND     | 1.0      | μg/L       | 1  | 4/25/2020 2:05:30 PM | W68413 |
| 1,4-Dichlorobenzene            | ND     | 1.0      | μg/L       | 1  | 4/25/2020 2:05:30 PM | W68413 |
| Dichlorodifluoromethane        | ND     | 1.0      | μg/L       | 1  | 4/25/2020 2:05:30 PM | W68413 |
| 1,1-Dichloroethane             | ND     | 1.0      | μg/L       | 1  | 4/25/2020 2:05:30 PM | W68413 |
| 1,1-Dichloroethene             | ND     | 1.0      | μg/L       | 1  | 4/25/2020 2:05:30 PM | W68413 |

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

## Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 8 of 37

# Lab Order **2004A60**Date Reported: **5/6/2020**

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Intera, Inc.

Client Sample ID: RAILMW02

 Project:
 COA Rail Yards
 Collection Date: 4/23/2020 10:20:00 AM

 Lab ID:
 2004A60-003
 Matrix: AQUEOUS
 Received Date: 4/23/2020 4:38:00 PM

| Analyses                    | Result | RL     | Qual Units | DF | Date Analyzed        | Batch  |
|-----------------------------|--------|--------|------------|----|----------------------|--------|
| EPA METHOD 8260B: VOLATILES |        |        |            |    | Analyst              | DJF    |
| 1,2-Dichloropropane         | ND     | 1.0    | μg/L       | 1  | 4/25/2020 2:05:30 PM | W68413 |
| 1,3-Dichloropropane         | ND     | 1.0    | μg/L       | 1  | 4/25/2020 2:05:30 PM | W68413 |
| 2,2-Dichloropropane         | ND     | 2.0    | μg/L       | 1  | 4/25/2020 2:05:30 PM | W68413 |
| 1,1-Dichloropropene         | ND     | 1.0    | μg/L       | 1  | 4/25/2020 2:05:30 PM | W68413 |
| Hexachlorobutadiene         | ND     | 1.0    | μg/L       | 1  | 4/25/2020 2:05:30 PM | W68413 |
| 2-Hexanone                  | ND     | 10     | μg/L       | 1  | 4/25/2020 2:05:30 PM | W68413 |
| Isopropylbenzene            | ND     | 1.0    | μg/L       | 1  | 4/25/2020 2:05:30 PM | W68413 |
| 4-Isopropyltoluene          | ND     | 1.0    | μg/L       | 1  | 4/25/2020 2:05:30 PM | W68413 |
| 4-Methyl-2-pentanone        | ND     | 10     | μg/L       | 1  | 4/25/2020 2:05:30 PM | W68413 |
| Methylene Chloride          | ND     | 3.0    | μg/L       | 1  | 4/25/2020 2:05:30 PM | W68413 |
| n-Butylbenzene              | ND     | 3.0    | μg/L       | 1  | 4/25/2020 2:05:30 PM | W68413 |
| n-Propylbenzene             | ND     | 1.0    | μg/L       | 1  | 4/25/2020 2:05:30 PM | W68413 |
| sec-Butylbenzene            | ND     | 1.0    | μg/L       | 1  | 4/25/2020 2:05:30 PM | W68413 |
| Styrene                     | ND     | 1.0    | μg/L       | 1  | 4/25/2020 2:05:30 PM | W68413 |
| tert-Butylbenzene           | ND     | 1.0    | μg/L       | 1  | 4/25/2020 2:05:30 PM | W68413 |
| 1,1,1,2-Tetrachloroethane   | ND     | 1.0    | μg/L       | 1  | 4/25/2020 2:05:30 PM | W68413 |
| 1,1,2,2-Tetrachloroethane   | ND     | 2.0    | μg/L       | 1  | 4/25/2020 2:05:30 PM | W68413 |
| Tetrachloroethene (PCE)     | ND     | 1.0    | μg/L       | 1  | 4/25/2020 2:05:30 PM | W68413 |
| trans-1,2-DCE               | ND     | 1.0    | μg/L       | 1  | 4/25/2020 2:05:30 PM | W68413 |
| trans-1,3-Dichloropropene   | ND     | 1.0    | μg/L       | 1  | 4/25/2020 2:05:30 PM | W68413 |
| 1,2,3-Trichlorobenzene      | ND     | 1.0    | μg/L       | 1  | 4/25/2020 2:05:30 PM | W68413 |
| 1,2,4-Trichlorobenzene      | ND     | 1.0    | μg/L       | 1  | 4/25/2020 2:05:30 PM | W68413 |
| 1,1,1-Trichloroethane       | ND     | 1.0    | μg/L       | 1  | 4/25/2020 2:05:30 PM | W68413 |
| 1,1,2-Trichloroethane       | ND     | 1.0    | μg/L       | 1  | 4/25/2020 2:05:30 PM | W68413 |
| Trichloroethene (TCE)       | ND     | 1.0    | μg/L       | 1  | 4/25/2020 2:05:30 PM | W68413 |
| Trichlorofluoromethane      | ND     | 1.0    | μg/L       | 1  | 4/25/2020 2:05:30 PM | W68413 |
| 1,2,3-Trichloropropane      | ND     | 2.0    | μg/L       | 1  | 4/25/2020 2:05:30 PM | W68413 |
| Vinyl chloride              | ND     | 1.0    | μg/L       | 1  | 4/25/2020 2:05:30 PM | W68413 |
| Xylenes, Total              | ND     | 1.5    | μg/L       | 1  | 4/25/2020 2:05:30 PM | W68413 |
| Surr: 1,2-Dichloroethane-d4 | 92.7   | 70-130 | %Rec       | 1  | 4/25/2020 2:05:30 PM | W68413 |
| Surr: 4-Bromofluorobenzene  | 96.7   | 70-130 | %Rec       | 1  | 4/25/2020 2:05:30 PM | W68413 |
| Surr: Dibromofluoromethane  | 97.1   | 70-130 | %Rec       | 1  | 4/25/2020 2:05:30 PM | W68413 |
| Surr: Toluene-d8            | 97.1   | 70-130 | %Rec       | 1  | 4/25/2020 2:05:30 PM | W68413 |

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

## Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 9 of 37

Date Reported: 5/6/2020

# Hall Environmental Analysis Laboratory, Inc.

CLIENT: Intera, Inc.

Client Sample ID: RAILMW03

 Project:
 COA Rail Yards
 Collection Date: 4/23/2020 11:19:00 AM

 Lab ID:
 2004A60-004
 Matrix: AQUEOUS
 Received Date: 4/23/2020 4:38:00 PM

| Analyses                                   | Result | RL      | Qual | Units | DF | Date Analyzed         | Batch  |
|--------------------------------------------|--------|---------|------|-------|----|-----------------------|--------|
| EPA 200.8: DISSOLVED METALS                |        |         |      |       |    | Analyst               | bcv    |
| Copper                                     | ND     | 0.0010  |      | mg/L  | 1  | 4/29/2020 5:24:11 PM  | B68526 |
| Lead                                       | ND     | 0.00050 |      | mg/L  | 1  | 4/29/2020 5:24:11 PM  | B68526 |
| EPA METHOD 200.7: DISSOLVED METALS         |        |         |      |       |    | Analyst               | pmf    |
| Barium                                     | 0.21   | 0.0020  |      | mg/L  | 1  | 4/27/2020 7:04:22 PM  | A68449 |
| Chromium                                   | ND     | 0.0060  |      | mg/L  | 1  | 4/28/2020 3:43:13 AM  | A68450 |
| Iron                                       | 3.7    | 0.10    | *    | mg/L  | 5  | 4/28/2020 3:45:44 AM  | A68450 |
| Manganese                                  | 0.39   | 0.0020  | *    | mg/L  | 1  | 4/27/2020 7:04:22 PM  | A68449 |
| Zinc                                       | 0.011  | 0.010   |      | mg/L  | 1  | 4/27/2020 7:04:22 PM  | A68449 |
| EPA METHOD 8015D: GASOLINE RANGE           |        |         |      |       |    | Analyst               | DJF    |
| Gasoline Range Organics (GRO)              | 0.20   | 0.050   |      | mg/L  | 1  | 4/25/2020 2:34:15 PM  | GW6841 |
| Surr: BFB                                  | 100    | 70-130  |      | %Rec  | 1  | 4/25/2020 2:34:15 PM  | GW6841 |
| EPA METHOD 8011/504.1: EDB                 |        |         |      |       |    | Analyst               | CLP    |
| 1,2-Dibromoethane                          | ND     | 0.0095  |      | μg/L  | 1  | 4/28/2020 12:44:02 PM | 52123  |
| NOTES:                                     |        |         |      |       |    |                       |        |
| No trip blank was included with work order |        |         |      |       |    |                       |        |
| EPA METHOD 8015M/D: DIESEL RANGE           |        |         |      |       |    | Analyst               | BRM    |
| Diesel Range Organics (DRO)                | ND     | 1.0     |      | mg/L  | 1  | 4/29/2020 2:41:07 PM  | 52139  |
| Motor Oil Range Organics (MRO)             | ND     | 5.0     |      | mg/L  | 1  | 4/29/2020 2:41:07 PM  | 52139  |
| Surr: DNOP                                 | 97.5   | 70-130  |      | %Rec  | 1  | 4/29/2020 2:41:07 PM  | 52139  |
| EPA METHOD 8310: PAHS                      |        |         |      |       |    | Analyst               | TOM    |
| Naphthalene                                | ND     | 3.0     |      | μg/L  | 1  | 4/29/2020 4:56:26 PM  | 52095  |
| 1-Methylnaphthalene                        | 40     | 3.0     |      | μg/L  | 1  | 4/29/2020 4:56:26 PM  | 52095  |
| 2-Methylnaphthalene                        | 35     | 3.0     |      | μg/L  | 1  | 4/29/2020 4:56:26 PM  | 52095  |
| Acenaphthylene                             | ND     | 3.0     |      | μg/L  | 1  | 4/29/2020 4:56:26 PM  | 52095  |
| Acenaphthene                               | ND     | 3.0     |      | μg/L  | 1  | 4/29/2020 4:56:26 PM  | 52095  |
| Fluorene                                   | 1.7    | 0.80    |      | μg/L  | 1  | 4/29/2020 4:56:26 PM  | 52095  |
| Phenanthrene                               | 1.0    | 0.60    |      | μg/L  | 1  | 4/29/2020 4:56:26 PM  | 52095  |
| Anthracene                                 | ND     | 0.60    |      | μg/L  | 1  | 4/29/2020 4:56:26 PM  | 52095  |
| Fluoranthene                               | ND     | 0.40    |      | μg/L  | 1  | 4/29/2020 4:56:26 PM  | 52095  |
| Pyrene                                     | ND     | 0.40    |      | μg/L  | 1  | 4/29/2020 4:56:26 PM  | 52095  |
| Benz(a)anthracene                          | ND     | 0.070   |      | μg/L  | 1  | 4/29/2020 4:56:26 PM  | 52095  |
| Chrysene                                   | ND     | 0.20    |      | μg/L  | 1  | 4/29/2020 4:56:26 PM  | 52095  |
| Benzo(b)fluoranthene                       | ND     | 0.10    |      | μg/L  | 1  | 4/29/2020 4:56:26 PM  | 52095  |
| Benzo(k)fluoranthene                       | ND     | 0.070   |      | μg/L  | 1  | 4/29/2020 4:56:26 PM  | 52095  |
| Benzo(a)pyrene                             | ND     | 0.070   |      | μg/L  | 1  | 4/29/2020 4:56:26 PM  | 52095  |
| Dibenz(a,h)anthracene                      | ND     | 0.12    |      | μg/L  | 1  | 4/29/2020 4:56:26 PM  | 52095  |
| Benzo(g,h,i)perylene                       | ND     | 0.12    |      | μg/L  | 1  | 4/29/2020 4:56:26 PM  | 52095  |

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

## Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 10 of 37

Date Reported: 5/6/2020

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Intera, Inc. Client Sample ID: RAILMW03

 Project:
 COA Rail Yards
 Collection Date: 4/23/2020 11:19:00 AM

 Lab ID:
 2004A60-004
 Matrix: AQUEOUS
 Received Date: 4/23/2020 4:38:00 PM

| Analyses                       | Result | RL       | Qual Units | DF | Date Analyzed        | Batch  |
|--------------------------------|--------|----------|------------|----|----------------------|--------|
| EPA METHOD 8310: PAHS          |        |          |            |    | Analyst              | : TOM  |
| Indeno(1,2,3-cd)pyrene         | ND     | 0.25     | μg/L       | 1  | 4/29/2020 4:56:26 PM | 52095  |
| Surr: Benzo(e)pyrene           | 55.6   | 43.5-108 | %Rec       | 1  | 4/29/2020 4:56:26 PM | 52095  |
| EPA METHOD 8260B: VOLATILES    |        |          |            |    | Analyst              | : DJF  |
| Benzene                        | 1.0    | 1.0      | μg/L       | 1  | 4/25/2020 2:34:15 PM | W68413 |
| Toluene                        | ND     | 1.0      | μg/L       | 1  | 4/25/2020 2:34:15 PM | W68413 |
| Ethylbenzene                   | ND     | 1.0      | μg/L       | 1  | 4/25/2020 2:34:15 PM | W68413 |
| Methyl tert-butyl ether (MTBE) | ND     | 1.0      | μg/L       | 1  | 4/25/2020 2:34:15 PM | W68413 |
| 1,2,4-Trimethylbenzene         | ND     | 1.0      | μg/L       | 1  | 4/25/2020 2:34:15 PM | W68413 |
| 1,3,5-Trimethylbenzene         | ND     | 1.0      | μg/L       | 1  | 4/25/2020 2:34:15 PM | W68413 |
| 1,2-Dichloroethane (EDC)       | ND     | 1.0      | μg/L       | 1  | 4/25/2020 2:34:15 PM | W68413 |
| 1,2-Dibromoethane (EDB)        | ND     | 1.0      | μg/L       | 1  | 4/25/2020 2:34:15 PM | W68413 |
| Naphthalene                    | ND     | 2.0      | μg/L       | 1  | 4/25/2020 2:34:15 PM | W68413 |
| 1-Methylnaphthalene            | 81     | 4.0      | μg/L       | 1  | 4/25/2020 2:34:15 PM | W68413 |
| 2-Methylnaphthalene            | 93     | 4.0      | μg/L       | 1  | 4/25/2020 2:34:15 PM | W68413 |
| Acetone                        | ND     | 10       | μg/L       | 1  | 4/25/2020 2:34:15 PM | W68413 |
| Bromobenzene                   | ND     | 1.0      | μg/L       | 1  | 4/25/2020 2:34:15 PM | W68413 |
| Bromodichloromethane           | ND     | 1.0      | μg/L       | 1  | 4/25/2020 2:34:15 PM | W68413 |
| Bromoform                      | ND     | 1.0      | μg/L       | 1  | 4/25/2020 2:34:15 PM | W68413 |
| Bromomethane                   | ND     | 3.0      | μg/L       | 1  | 4/25/2020 2:34:15 PM | W68413 |
| 2-Butanone                     | ND     | 10       | μg/L       | 1  | 4/25/2020 2:34:15 PM | W68413 |
| Carbon disulfide               | ND     | 10       | μg/L       | 1  | 4/25/2020 2:34:15 PM | W68413 |
| Carbon Tetrachloride           | ND     | 1.0      | μg/L       | 1  | 4/25/2020 2:34:15 PM | W68413 |
| Chlorobenzene                  | ND     | 1.0      | μg/L       | 1  | 4/25/2020 2:34:15 PM | W68413 |
| Chloroethane                   | ND     | 2.0      | μg/L       | 1  | 4/25/2020 2:34:15 PM | W68413 |
| Chloroform                     | ND     | 1.0      | μg/L       | 1  | 4/25/2020 2:34:15 PM | W68413 |
| Chloromethane                  | ND     | 3.0      | μg/L       | 1  | 4/25/2020 2:34:15 PM | W68413 |
| 2-Chlorotoluene                | ND     | 1.0      | μg/L       | 1  | 4/25/2020 2:34:15 PM | W68413 |
| 4-Chlorotoluene                | ND     | 1.0      | μg/L       | 1  | 4/25/2020 2:34:15 PM | W68413 |
| cis-1,2-DCE                    | ND     | 1.0      | μg/L       | 1  | 4/25/2020 2:34:15 PM | W68413 |
| cis-1,3-Dichloropropene        | ND     | 1.0      | μg/L       | 1  | 4/25/2020 2:34:15 PM | W68413 |
| 1,2-Dibromo-3-chloropropane    | ND     | 2.0      | μg/L       | 1  | 4/25/2020 2:34:15 PM | W68413 |
| Dibromochloromethane           | ND     | 1.0      | μg/L       | 1  | 4/25/2020 2:34:15 PM | W68413 |
| Dibromomethane                 | ND     | 1.0      | μg/L       | 1  | 4/25/2020 2:34:15 PM | W68413 |
| 1,2-Dichlorobenzene            | ND     | 1.0      | μg/L       | 1  | 4/25/2020 2:34:15 PM | W68413 |
| 1,3-Dichlorobenzene            | ND     | 1.0      | μg/L       | 1  | 4/25/2020 2:34:15 PM | W68413 |
| 1,4-Dichlorobenzene            | ND     | 1.0      | μg/L       | 1  | 4/25/2020 2:34:15 PM | W68413 |
| Dichlorodifluoromethane        | ND     | 1.0      | μg/L       | 1  | 4/25/2020 2:34:15 PM | W68413 |
| 1,1-Dichloroethane             | ND     | 1.0      | μg/L       | 1  | 4/25/2020 2:34:15 PM | W68413 |
| 1,1-Dichloroethene             | ND     | 1.0      | μg/L       | 1  | 4/25/2020 2:34:15 PM | W68413 |

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

## Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 11 of 37

# Lab Order **2004A60**Date Reported: **5/6/2020**

# Hall Environmental Analysis Laboratory, Inc.

CLIENT: Intera, Inc.

Client Sample ID: RAILMW03

 Project:
 COA Rail Yards
 Collection Date: 4/23/2020 11:19:00 AM

 Lab ID:
 2004A60-004
 Matrix: AQUEOUS
 Received Date: 4/23/2020 4:38:00 PM

| Analyses                    | Result | RL     | Qual Units | DF | Date Analyzed        | Batch  |
|-----------------------------|--------|--------|------------|----|----------------------|--------|
| EPA METHOD 8260B: VOLATILES |        |        |            |    | Analyst              | : DJF  |
| 1,2-Dichloropropane         | ND     | 1.0    | μg/L       | 1  | 4/25/2020 2:34:15 PM | W68413 |
| 1,3-Dichloropropane         | ND     | 1.0    | μg/L       | 1  | 4/25/2020 2:34:15 PM | W68413 |
| 2,2-Dichloropropane         | ND     | 2.0    | μg/L       | 1  | 4/25/2020 2:34:15 PM | W68413 |
| 1,1-Dichloropropene         | ND     | 1.0    | μg/L       | 1  | 4/25/2020 2:34:15 PM | W68413 |
| Hexachlorobutadiene         | ND     | 1.0    | μg/L       | 1  | 4/25/2020 2:34:15 PM | W68413 |
| 2-Hexanone                  | ND     | 10     | μg/L       | 1  | 4/25/2020 2:34:15 PM | W68413 |
| Isopropylbenzene            | 4.9    | 1.0    | μg/L       | 1  | 4/25/2020 2:34:15 PM | W68413 |
| 4-Isopropyltoluene          | ND     | 1.0    | μg/L       | 1  | 4/25/2020 2:34:15 PM | W68413 |
| 4-Methyl-2-pentanone        | ND     | 10     | μg/L       | 1  | 4/25/2020 2:34:15 PM | W68413 |
| Methylene Chloride          | ND     | 3.0    | μg/L       | 1  | 4/25/2020 2:34:15 PM | W68413 |
| n-Butylbenzene              | ND     | 3.0    | μg/L       | 1  | 4/25/2020 2:34:15 PM | W68413 |
| n-Propylbenzene             | 8.7    | 1.0    | μg/L       | 1  | 4/25/2020 2:34:15 PM | W68413 |
| sec-Butylbenzene            | 1.4    | 1.0    | μg/L       | 1  | 4/25/2020 2:34:15 PM | W68413 |
| Styrene                     | ND     | 1.0    | μg/L       | 1  | 4/25/2020 2:34:15 PM | W68413 |
| tert-Butylbenzene           | ND     | 1.0    | μg/L       | 1  | 4/25/2020 2:34:15 PM | W68413 |
| 1,1,1,2-Tetrachloroethane   | ND     | 1.0    | μg/L       | 1  | 4/25/2020 2:34:15 PM | W68413 |
| 1,1,2,2-Tetrachloroethane   | ND     | 2.0    | μg/L       | 1  | 4/25/2020 2:34:15 PM | W68413 |
| Tetrachloroethene (PCE)     | ND     | 1.0    | μg/L       | 1  | 4/25/2020 2:34:15 PM | W68413 |
| trans-1,2-DCE               | ND     | 1.0    | μg/L       | 1  | 4/25/2020 2:34:15 PM | W68413 |
| trans-1,3-Dichloropropene   | ND     | 1.0    | μg/L       | 1  | 4/25/2020 2:34:15 PM | W68413 |
| 1,2,3-Trichlorobenzene      | ND     | 1.0    | μg/L       | 1  | 4/25/2020 2:34:15 PM | W68413 |
| 1,2,4-Trichlorobenzene      | ND     | 1.0    | μg/L       | 1  | 4/25/2020 2:34:15 PM | W68413 |
| 1,1,1-Trichloroethane       | ND     | 1.0    | μg/L       | 1  | 4/25/2020 2:34:15 PM | W68413 |
| 1,1,2-Trichloroethane       | ND     | 1.0    | μg/L       | 1  | 4/25/2020 2:34:15 PM | W68413 |
| Trichloroethene (TCE)       | ND     | 1.0    | μg/L       | 1  | 4/25/2020 2:34:15 PM | W68413 |
| Trichlorofluoromethane      | ND     | 1.0    | μg/L       | 1  | 4/25/2020 2:34:15 PM | W68413 |
| 1,2,3-Trichloropropane      | ND     | 2.0    | μg/L       | 1  | 4/25/2020 2:34:15 PM | W68413 |
| Vinyl chloride              | ND     | 1.0    | μg/L       | 1  | 4/25/2020 2:34:15 PM | W68413 |
| Xylenes, Total              | ND     | 1.5    | μg/L       | 1  | 4/25/2020 2:34:15 PM | W68413 |
| Surr: 1,2-Dichloroethane-d4 | 94.8   | 70-130 | %Rec       | 1  | 4/25/2020 2:34:15 PM | W68413 |
| Surr: 4-Bromofluorobenzene  | 95.6   | 70-130 | %Rec       | 1  | 4/25/2020 2:34:15 PM | W68413 |
| Surr: Dibromofluoromethane  | 102    | 70-130 | %Rec       | 1  | 4/25/2020 2:34:15 PM | W68413 |
| Surr: Toluene-d8            | 96.9   | 70-130 | %Rec       | 1  | 4/25/2020 2:34:15 PM | W68413 |

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

## Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 12 of 37

## **Analytical Report**

## Lab Order **2004A60**

Date Reported: 5/6/2020

# Hall Environmental Analysis Laboratory, Inc.

CLIENT: Intera, Inc.

Client Sample ID: RAILMW04

 Project:
 COA Rail Yards
 Collection Date: 4/23/2020 12:19:00 PM

 Lab ID:
 2004A60-005
 Matrix: AQUEOUS
 Received Date: 4/23/2020 4:38:00 PM

| Analyses                                   | Result | RL      | Qual | Units | DF | Date Analyzed         | Batch  |
|--------------------------------------------|--------|---------|------|-------|----|-----------------------|--------|
| EPA 200.8: DISSOLVED METALS                |        |         |      |       |    | Analyst               | bcv    |
| Copper                                     | ND     | 0.0010  |      | mg/L  | 1  | 4/29/2020 5:26:47 PM  | B68526 |
| Lead                                       | ND     | 0.00050 |      | mg/L  | 1  | 4/29/2020 5:26:47 PM  | B68526 |
| EPA METHOD 200.7: DISSOLVED METALS         |        |         |      |       |    | Analyst               | pmf    |
| Barium                                     | 0.052  | 0.0020  |      | mg/L  | 1  | 4/27/2020 7:16:09 PM  | A68449 |
| Chromium                                   | ND     | 0.0060  |      | mg/L  | 1  | 4/27/2020 7:16:09 PM  | A68449 |
| Iron                                       | 0.090  | 0.020   |      | mg/L  | 1  | 4/27/2020 7:16:09 PM  | A68449 |
| Manganese                                  | 0.13   | 0.0020  | *    | mg/L  | 1  | 4/27/2020 7:16:09 PM  | A68449 |
| Zinc                                       | 0.016  | 0.010   |      | mg/L  | 1  | 4/27/2020 7:16:09 PM  | A68449 |
| EPA METHOD 8015D: GASOLINE RANGE           |        |         |      |       |    | Analyst               | JMR    |
| Gasoline Range Organics (GRO)              | ND     | 0.050   |      | mg/L  | 1  | 4/26/2020 12:06:02 PM | GW6841 |
| Surr: BFB                                  | 102    | 70-130  |      | %Rec  | 1  | 4/26/2020 12:06:02 PM | GW6841 |
| EPA METHOD 8011/504.1: EDB                 |        |         |      |       |    | Analyst               | CLP    |
| 1,2-Dibromoethane                          | ND     | 0.0094  |      | μg/L  | 1  | 4/28/2020 12:59:09 PM | 52123  |
| NOTES:                                     |        |         |      |       |    |                       |        |
| No trip blank was included with work order |        |         |      |       |    |                       |        |
| EPA METHOD 8015M/D: DIESEL RANGE           |        |         |      |       |    | Analyst               | BRM    |
| Diesel Range Organics (DRO)                | ND     | 1.0     |      | mg/L  | 1  | 4/29/2020 3:05:35 PM  | 52139  |
| Motor Oil Range Organics (MRO)             | ND     | 5.0     |      | mg/L  | 1  | 4/29/2020 3:05:35 PM  | 52139  |
| Surr: DNOP                                 | 98.1   | 70-130  |      | %Rec  | 1  | 4/29/2020 3:05:35 PM  | 52139  |
| EPA METHOD 8310: PAHS                      |        |         |      |       |    | Analyst               | том    |
| Naphthalene                                | ND     | 3.0     |      | μg/L  | 1  | 4/29/2020 2:48:53 PM  | 52095  |
| 1-Methylnaphthalene                        | ND     | 3.0     |      | μg/L  | 1  | 4/29/2020 2:48:53 PM  | 52095  |
| 2-Methylnaphthalene                        | ND     | 3.0     |      | μg/L  | 1  | 4/29/2020 2:48:53 PM  | 52095  |
| Acenaphthylene                             | ND     | 3.0     |      | μg/L  | 1  | 4/29/2020 2:48:53 PM  | 52095  |
| Acenaphthene                               | ND     | 3.0     |      | μg/L  | 1  | 4/29/2020 2:48:53 PM  | 52095  |
| Fluorene                                   | ND     | 0.80    |      | μg/L  | 1  | 4/29/2020 2:48:53 PM  | 52095  |
| Phenanthrene                               | ND     | 0.60    |      | μg/L  | 1  | 4/29/2020 2:48:53 PM  | 52095  |
| Anthracene                                 | ND     | 0.60    |      | μg/L  | 1  | 4/29/2020 2:48:53 PM  | 52095  |
| Fluoranthene                               | ND     | 0.40    |      | μg/L  | 1  | 4/29/2020 2:48:53 PM  | 52095  |
| Pyrene                                     | ND     | 0.40    |      | μg/L  | 1  | 4/29/2020 2:48:53 PM  | 52095  |
| Benz(a)anthracene                          | ND     | 0.070   |      | μg/L  | 1  | 4/29/2020 2:48:53 PM  | 52095  |
| Chrysene                                   | ND     | 0.20    |      | μg/L  | 1  | 4/29/2020 2:48:53 PM  | 52095  |
| Benzo(b)fluoranthene                       | ND     | 0.10    |      | μg/L  | 1  | 4/29/2020 2:48:53 PM  | 52095  |
| Benzo(k)fluoranthene                       | ND     | 0.070   |      | μg/L  | 1  | 4/29/2020 2:48:53 PM  | 52095  |
| Benzo(a)pyrene                             | ND     | 0.070   |      | μg/L  | 1  | 4/29/2020 2:48:53 PM  | 52095  |
| Dibenz(a,h)anthracene                      | ND     | 0.12    |      | μg/L  | 1  | 4/29/2020 2:48:53 PM  | 52095  |
| Benzo(g,h,i)perylene                       | ND     | 0.12    |      | μg/L  | 1  | 4/29/2020 2:48:53 PM  | 52095  |

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

## Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 13 of 37

# Lab Order **2004A60**Date Reported: **5/6/2020**

# Hall Environmental Analysis Laboratory, Inc.

CLIENT: Intera, Inc.

Client Sample ID: RAILMW04

**Project:** COA Rail Yards
 Collection Date: 4/23/2020 12:19:00 PM

 **Lab ID:** 2004A60-005
 Matrix: AQUEOUS
 Received Date: 4/23/2020 4:38:00 PM

| Analyses                       | Result | RL       | Qual Units | DF | Date Analyzed        | Batch  |
|--------------------------------|--------|----------|------------|----|----------------------|--------|
| EPA METHOD 8310: PAHS          |        |          |            |    | Analyst              | : TOM  |
| Indeno(1,2,3-cd)pyrene         | ND     | 0.25     | μg/L       | 1  | 4/29/2020 2:48:53 PM | 52095  |
| Surr: Benzo(e)pyrene           | 64.9   | 43.5-108 | %Rec       | 1  | 4/29/2020 2:48:53 PM | 52095  |
| EPA METHOD 8260B: VOLATILES    |        |          |            |    | Analyst              | : DJF  |
| Benzene                        | ND     | 1.0      | μg/L       | 1  | 4/25/2020 3:02:51 PM | W68413 |
| Toluene                        | ND     | 1.0      | μg/L       | 1  | 4/25/2020 3:02:51 PM | W68413 |
| Ethylbenzene                   | ND     | 1.0      | μg/L       | 1  | 4/25/2020 3:02:51 PM | W68413 |
| Methyl tert-butyl ether (MTBE) | ND     | 1.0      | μg/L       | 1  | 4/25/2020 3:02:51 PM | W68413 |
| 1,2,4-Trimethylbenzene         | ND     | 1.0      | μg/L       | 1  | 4/25/2020 3:02:51 PM | W68413 |
| 1,3,5-Trimethylbenzene         | ND     | 1.0      | μg/L       | 1  | 4/25/2020 3:02:51 PM | W68413 |
| 1,2-Dichloroethane (EDC)       | ND     | 1.0      | μg/L       | 1  | 4/25/2020 3:02:51 PM | W68413 |
| 1,2-Dibromoethane (EDB)        | ND     | 1.0      | μg/L       | 1  | 4/25/2020 3:02:51 PM | W68413 |
| Naphthalene                    | ND     | 2.0      | μg/L       | 1  | 4/25/2020 3:02:51 PM | W68413 |
| 1-Methylnaphthalene            | ND     | 4.0      | μg/L       | 1  | 4/25/2020 3:02:51 PM | W68413 |
| 2-Methylnaphthalene            | ND     | 4.0      | μg/L       | 1  | 4/25/2020 3:02:51 PM | W68413 |
| Acetone                        | ND     | 10       | μg/L       | 1  | 4/25/2020 3:02:51 PM | W68413 |
| Bromobenzene                   | ND     | 1.0      | μg/L       | 1  | 4/25/2020 3:02:51 PM | W68413 |
| Bromodichloromethane           | ND     | 1.0      | μg/L       | 1  | 4/25/2020 3:02:51 PM | W68413 |
| Bromoform                      | ND     | 1.0      | μg/L       | 1  | 4/25/2020 3:02:51 PM | W68413 |
| Bromomethane                   | ND     | 3.0      | μg/L       | 1  | 4/25/2020 3:02:51 PM | W68413 |
| 2-Butanone                     | ND     | 10       | μg/L       | 1  | 4/25/2020 3:02:51 PM | W68413 |
| Carbon disulfide               | ND     | 10       | μg/L       | 1  | 4/25/2020 3:02:51 PM | W68413 |
| Carbon Tetrachloride           | ND     | 1.0      | μg/L       | 1  | 4/25/2020 3:02:51 PM | W68413 |
| Chlorobenzene                  | ND     | 1.0      | μg/L       | 1  | 4/25/2020 3:02:51 PM | W68413 |
| Chloroethane                   | ND     | 2.0      | μg/L       | 1  | 4/25/2020 3:02:51 PM | W68413 |
| Chloroform                     | ND     | 1.0      | μg/L       | 1  | 4/25/2020 3:02:51 PM | W68413 |
| Chloromethane                  | ND     | 3.0      | μg/L       | 1  | 4/25/2020 3:02:51 PM | W68413 |
| 2-Chlorotoluene                | ND     | 1.0      | μg/L       | 1  | 4/25/2020 3:02:51 PM | W68413 |
| 4-Chlorotoluene                | ND     | 1.0      | μg/L       | 1  | 4/25/2020 3:02:51 PM | W68413 |
| cis-1,2-DCE                    | ND     | 1.0      | μg/L       | 1  | 4/25/2020 3:02:51 PM | W68413 |
| cis-1,3-Dichloropropene        | ND     | 1.0      | μg/L       | 1  | 4/25/2020 3:02:51 PM | W68413 |
| 1,2-Dibromo-3-chloropropane    | ND     | 2.0      | μg/L       | 1  | 4/25/2020 3:02:51 PM | W68413 |
| Dibromochloromethane           | ND     | 1.0      | μg/L       | 1  | 4/25/2020 3:02:51 PM | W68413 |
| Dibromomethane                 | ND     | 1.0      | μg/L       | 1  | 4/25/2020 3:02:51 PM | W68413 |
| 1,2-Dichlorobenzene            | ND     | 1.0      | μg/L       | 1  | 4/25/2020 3:02:51 PM | W68413 |
| 1,3-Dichlorobenzene            | ND     | 1.0      | μg/L       | 1  | 4/25/2020 3:02:51 PM | W68413 |
| 1,4-Dichlorobenzene            | ND     | 1.0      | μg/L       | 1  | 4/25/2020 3:02:51 PM | W68413 |
| Dichlorodifluoromethane        | ND     | 1.0      | μg/L       | 1  | 4/25/2020 3:02:51 PM | W68413 |
| 1,1-Dichloroethane             | ND     | 1.0      | μg/L       | 1  | 4/25/2020 3:02:51 PM | W68413 |
| 1,1-Dichloroethene             | ND     | 1.0      | μg/L       | 1  | 4/25/2020 3:02:51 PM | W68413 |

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

## Qualifiers:

- \* Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 14 of 37

Date Reported: 5/6/2020

## Lab Order 2004A60

# Hall Environmental Analysis Laboratory, Inc.

CLIENT: Intera, Inc.

Client Sample ID: RAILMW04

**Project:** COA Rail Yards
 Collection Date: 4/23/2020 12:19:00 PM

 **Lab ID:** 2004A60-005
 Matrix: AQUEOUS
 Received Date: 4/23/2020 4:38:00 PM

| Analyses                    | Result | RL     | Qual Units | DF | Date Analyzed        | Batch  |
|-----------------------------|--------|--------|------------|----|----------------------|--------|
| EPA METHOD 8260B: VOLATILES |        |        |            |    | Analyst              | : DJF  |
| 1,2-Dichloropropane         | ND     | 1.0    | μg/L       | 1  | 4/25/2020 3:02:51 PM | W68413 |
| 1,3-Dichloropropane         | ND     | 1.0    | μg/L       | 1  | 4/25/2020 3:02:51 PM | W68413 |
| 2,2-Dichloropropane         | ND     | 2.0    | μg/L       | 1  | 4/25/2020 3:02:51 PM | W68413 |
| 1,1-Dichloropropene         | ND     | 1.0    | μg/L       | 1  | 4/25/2020 3:02:51 PM | W68413 |
| Hexachlorobutadiene         | ND     | 1.0    | μg/L       | 1  | 4/25/2020 3:02:51 PM | W68413 |
| 2-Hexanone                  | ND     | 10     | μg/L       | 1  | 4/25/2020 3:02:51 PM | W68413 |
| Isopropylbenzene            | ND     | 1.0    | μg/L       | 1  | 4/25/2020 3:02:51 PM | W68413 |
| 4-Isopropyltoluene          | ND     | 1.0    | μg/L       | 1  | 4/25/2020 3:02:51 PM | W68413 |
| 4-Methyl-2-pentanone        | ND     | 10     | μg/L       | 1  | 4/25/2020 3:02:51 PM | W68413 |
| Methylene Chloride          | ND     | 3.0    | μg/L       | 1  | 4/25/2020 3:02:51 PM | W68413 |
| n-Butylbenzene              | ND     | 3.0    | μg/L       | 1  | 4/25/2020 3:02:51 PM | W68413 |
| n-Propylbenzene             | ND     | 1.0    | μg/L       | 1  | 4/25/2020 3:02:51 PM | W68413 |
| sec-Butylbenzene            | ND     | 1.0    | μg/L       | 1  | 4/25/2020 3:02:51 PM | W68413 |
| Styrene                     | ND     | 1.0    | μg/L       | 1  | 4/25/2020 3:02:51 PM | W68413 |
| tert-Butylbenzene           | ND     | 1.0    | μg/L       | 1  | 4/25/2020 3:02:51 PM | W68413 |
| 1,1,1,2-Tetrachloroethane   | ND     | 1.0    | μg/L       | 1  | 4/25/2020 3:02:51 PM | W68413 |
| 1,1,2,2-Tetrachloroethane   | ND     | 2.0    | μg/L       | 1  | 4/25/2020 3:02:51 PM | W68413 |
| Tetrachloroethene (PCE)     | ND     | 1.0    | μg/L       | 1  | 4/25/2020 3:02:51 PM | W68413 |
| trans-1,2-DCE               | ND     | 1.0    | μg/L       | 1  | 4/25/2020 3:02:51 PM | W68413 |
| trans-1,3-Dichloropropene   | ND     | 1.0    | μg/L       | 1  | 4/25/2020 3:02:51 PM | W68413 |
| 1,2,3-Trichlorobenzene      | ND     | 1.0    | μg/L       | 1  | 4/25/2020 3:02:51 PM | W68413 |
| 1,2,4-Trichlorobenzene      | ND     | 1.0    | μg/L       | 1  | 4/25/2020 3:02:51 PM | W68413 |
| 1,1,1-Trichloroethane       | ND     | 1.0    | μg/L       | 1  | 4/25/2020 3:02:51 PM | W68413 |
| 1,1,2-Trichloroethane       | ND     | 1.0    | μg/L       | 1  | 4/25/2020 3:02:51 PM | W68413 |
| Trichloroethene (TCE)       | ND     | 1.0    | μg/L       | 1  | 4/25/2020 3:02:51 PM | W68413 |
| Trichlorofluoromethane      | ND     | 1.0    | μg/L       | 1  | 4/25/2020 3:02:51 PM | W68413 |
| 1,2,3-Trichloropropane      | ND     | 2.0    | μg/L       | 1  | 4/25/2020 3:02:51 PM | W68413 |
| Vinyl chloride              | ND     | 1.0    | μg/L       | 1  | 4/25/2020 3:02:51 PM | W68413 |
| Xylenes, Total              | ND     | 1.5    | μg/L       | 1  | 4/25/2020 3:02:51 PM | W68413 |
| Surr: 1,2-Dichloroethane-d4 | 92.2   | 70-130 | %Rec       | 1  | 4/25/2020 3:02:51 PM | W68413 |
| Surr: 4-Bromofluorobenzene  | 102    | 70-130 | %Rec       | 1  | 4/25/2020 3:02:51 PM | W68413 |
| Surr: Dibromofluoromethane  | 100    | 70-130 | %Rec       | 1  | 4/25/2020 3:02:51 PM | W68413 |
| Surr: Toluene-d8            | 97.8   | 70-130 | %Rec       | 1  | 4/25/2020 3:02:51 PM | W68413 |

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

## Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 15 of 37

Date Reported: 5/6/2020

# Hall Environmental Analysis Laboratory, Inc.

CLIENT: Intera, Inc. Client Sample ID: RAILMW05

**Project:** COA Rail Yards
 Collection Date: 4/23/2020 1:17:00 PM

 **Lab ID:** 2004A60-006
 Matrix: AQUEOUS
 Received Date: 4/23/2020 4:38:00 PM

| Analyses                                   | Result | RL      | Qual Units | DF | Date Analyzed        | Batch  |
|--------------------------------------------|--------|---------|------------|----|----------------------|--------|
| EPA 200.8: DISSOLVED METALS                |        |         |            |    | Analyst              | bcv    |
| Copper                                     | ND     | 0.0010  | mg/L       | 1  | 4/29/2020 5:29:23 PM | B68526 |
| Lead                                       | ND     | 0.00050 | mg/L       | 1  | 4/29/2020 5:29:23 PM | B68526 |
| EPA METHOD 200.7: DISSOLVED METALS         |        |         |            |    | Analyst              | : pmf  |
| Barium                                     | 0.076  | 0.0020  | mg/L       | 1  | 4/27/2020 7:18:49 PM | A68449 |
| Chromium                                   | ND     | 0.0060  | mg/L       | 1  | 4/27/2020 7:18:49 PM | A68449 |
| Iron                                       | ND     | 0.020   | mg/L       | 1  | 4/27/2020 7:18:49 PM | A68449 |
| Manganese                                  | 0.47   | 0.0020  | * mg/L     | 1  | 4/27/2020 7:18:49 PM | A68449 |
| Zinc                                       | 0.041  | 0.010   | mg/L       | 1  | 4/27/2020 7:18:49 PM | A68449 |
| EPA METHOD 8015D: GASOLINE RANGE           |        |         |            |    | Analyst              | : DJF  |
| Gasoline Range Organics (GRO)              | ND     | 0.050   | mg/L       | 1  | 4/25/2020 3:31:19 PM | GW6841 |
| Surr: BFB                                  | 99.2   | 70-130  | %Rec       | 1  | 4/25/2020 3:31:19 PM | GW6841 |
| EPA METHOD 8011/504.1: EDB                 |        |         |            |    | Analyst              | CLP    |
| 1,2-Dibromoethane                          | ND     | 0.0093  | μg/L       | 1  | 4/28/2020 1:29:34 PM | 52123  |
| NOTES:                                     |        |         |            |    |                      |        |
| No trip blank was included with work order |        |         |            |    |                      |        |
| EPA METHOD 8015M/D: DIESEL RANGE           |        |         |            |    | Analyst              | BRM    |
| Diesel Range Organics (DRO)                | ND     | 1.0     | mg/L       | 1  | 4/29/2020 3:30:00 PM | 52139  |
| Motor Oil Range Organics (MRO)             | ND     | 5.0     | mg/L       | 1  | 4/29/2020 3:30:00 PM | 52139  |
| Surr: DNOP                                 | 102    | 70-130  | %Rec       | 1  | 4/29/2020 3:30:00 PM | 52139  |
| EPA METHOD 8310: PAHS                      |        |         |            |    | Analyst              | : TOM  |
| Naphthalene                                | ND     | 3.0     | μg/L       | 1  | 4/29/2020 3:14:23 PM | 52095  |
| 1-Methylnaphthalene                        | ND     | 3.0     | μg/L       | 1  | 4/29/2020 3:14:23 PM | 52095  |
| 2-Methylnaphthalene                        | ND     | 3.0     | μg/L       | 1  | 4/29/2020 3:14:23 PM | 52095  |
| Acenaphthylene                             | ND     | 3.0     | μg/L       | 1  | 4/29/2020 3:14:23 PM | 52095  |
| Acenaphthene                               | ND     | 3.0     | μg/L       | 1  | 4/29/2020 3:14:23 PM | 52095  |
| Fluorene                                   | ND     | 0.80    | μg/L       | 1  | 4/29/2020 3:14:23 PM | 52095  |
| Phenanthrene                               | ND     | 0.60    | μg/L       | 1  | 4/29/2020 3:14:23 PM | 52095  |
| Anthracene                                 | ND     | 0.60    | μg/L       | 1  | 4/29/2020 3:14:23 PM | 52095  |
| Fluoranthene                               | ND     | 0.40    | μg/L       | 1  | 4/29/2020 3:14:23 PM | 52095  |
| Pyrene                                     | ND     | 0.40    | μg/L       | 1  | 4/29/2020 3:14:23 PM | 52095  |
| Benz(a)anthracene                          | ND     | 0.070   | μg/L       | 1  | 4/29/2020 3:14:23 PM | 52095  |
| Chrysene                                   | ND     | 0.20    | μg/L       | 1  | 4/29/2020 3:14:23 PM | 52095  |
| Benzo(b)fluoranthene                       | ND     | 0.10    | μg/L       | 1  | 4/29/2020 3:14:23 PM | 52095  |
| Benzo(k)fluoranthene                       | ND     | 0.070   | μg/L       | 1  | 4/29/2020 3:14:23 PM | 52095  |
| Benzo(a)pyrene                             | ND     | 0.070   | μg/L       | 1  | 4/29/2020 3:14:23 PM | 52095  |
| Dibenz(a,h)anthracene                      | ND     | 0.12    | μg/L       | 1  | 4/29/2020 3:14:23 PM | 52095  |
| Benzo(g,h,i)perylene                       | ND     | 0.12    | μg/L       | 1  | 4/29/2020 3:14:23 PM | 52095  |

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

## Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 16 of 37

Date Reported: 5/6/2020

# Hall Environmental Analysis Laboratory, Inc.

CLIENT: Intera, Inc.

Client Sample ID: RAILMW05

 Project:
 COA Rail Yards
 Collection Date: 4/23/2020 1:17:00 PM

 Lab ID:
 2004A60-006
 Matrix: AQUEOUS
 Received Date: 4/23/2020 4:38:00 PM

| Analyses                       | Result | RL       | Qual Units | DF | Date Analyzed        | Batch  |
|--------------------------------|--------|----------|------------|----|----------------------|--------|
| EPA METHOD 8310: PAHS          |        |          |            |    | Analyst              | : TOM  |
| Indeno(1,2,3-cd)pyrene         | ND     | 0.25     | μg/L       | 1  | 4/29/2020 3:14:23 PM | 52095  |
| Surr: Benzo(e)pyrene           | 63.3   | 43.5-108 | %Rec       | 1  | 4/29/2020 3:14:23 PM | 52095  |
| EPA METHOD 8260B: VOLATILES    |        |          |            |    | Analyst              | : DJF  |
| Benzene                        | ND     | 1.0      | μg/L       | 1  | 4/25/2020 3:31:19 PM | W68413 |
| Toluene                        | ND     | 1.0      | μg/L       | 1  | 4/25/2020 3:31:19 PM | W68413 |
| Ethylbenzene                   | ND     | 1.0      | μg/L       | 1  | 4/25/2020 3:31:19 PM | W68413 |
| Methyl tert-butyl ether (MTBE) | ND     | 1.0      | μg/L       | 1  | 4/25/2020 3:31:19 PM | W68413 |
| 1,2,4-Trimethylbenzene         | ND     | 1.0      | μg/L       | 1  | 4/25/2020 3:31:19 PM | W68413 |
| 1,3,5-Trimethylbenzene         | ND     | 1.0      | μg/L       | 1  | 4/25/2020 3:31:19 PM | W68413 |
| 1,2-Dichloroethane (EDC)       | ND     | 1.0      | μg/L       | 1  | 4/25/2020 3:31:19 PM | W68413 |
| 1,2-Dibromoethane (EDB)        | ND     | 1.0      | μg/L       | 1  | 4/25/2020 3:31:19 PM | W68413 |
| Naphthalene                    | ND     | 2.0      | μg/L       | 1  | 4/25/2020 3:31:19 PM | W68413 |
| 1-Methylnaphthalene            | ND     | 4.0      | μg/L       | 1  | 4/25/2020 3:31:19 PM | W68413 |
| 2-Methylnaphthalene            | ND     | 4.0      | μg/L       | 1  | 4/25/2020 3:31:19 PM | W68413 |
| Acetone                        | ND     | 10       | μg/L       | 1  | 4/25/2020 3:31:19 PM | W68413 |
| Bromobenzene                   | ND     | 1.0      | μg/L       | 1  | 4/25/2020 3:31:19 PM | W68413 |
| Bromodichloromethane           | ND     | 1.0      | μg/L       | 1  | 4/25/2020 3:31:19 PM | W68413 |
| Bromoform                      | ND     | 1.0      | μg/L       | 1  | 4/25/2020 3:31:19 PM | W68413 |
| Bromomethane                   | ND     | 3.0      | μg/L       | 1  | 4/25/2020 3:31:19 PM | W68413 |
| 2-Butanone                     | ND     | 10       | μg/L       | 1  | 4/25/2020 3:31:19 PM | W68413 |
| Carbon disulfide               | ND     | 10       | μg/L       | 1  | 4/25/2020 3:31:19 PM | W68413 |
| Carbon Tetrachloride           | ND     | 1.0      | μg/L       | 1  | 4/25/2020 3:31:19 PM | W68413 |
| Chlorobenzene                  | ND     | 1.0      | μg/L       | 1  | 4/25/2020 3:31:19 PM | W68413 |
| Chloroethane                   | ND     | 2.0      | μg/L       | 1  | 4/25/2020 3:31:19 PM | W68413 |
| Chloroform                     | ND     | 1.0      | μg/L       | 1  | 4/25/2020 3:31:19 PM | W68413 |
| Chloromethane                  | ND     | 3.0      | μg/L       | 1  | 4/25/2020 3:31:19 PM | W68413 |
| 2-Chlorotoluene                | ND     | 1.0      | μg/L       | 1  | 4/25/2020 3:31:19 PM | W68413 |
| 4-Chlorotoluene                | ND     | 1.0      | μg/L       | 1  | 4/25/2020 3:31:19 PM | W68413 |
| cis-1,2-DCE                    | ND     | 1.0      | μg/L       | 1  | 4/25/2020 3:31:19 PM | W68413 |
| cis-1,3-Dichloropropene        | ND     | 1.0      | μg/L       | 1  | 4/25/2020 3:31:19 PM | W68413 |
| 1,2-Dibromo-3-chloropropane    | ND     | 2.0      | μg/L       | 1  | 4/25/2020 3:31:19 PM | W68413 |
| Dibromochloromethane           | ND     | 1.0      | μg/L       | 1  | 4/25/2020 3:31:19 PM | W68413 |
| Dibromomethane                 | ND     | 1.0      | μg/L       | 1  | 4/25/2020 3:31:19 PM | W68413 |
| 1,2-Dichlorobenzene            | ND     | 1.0      | μg/L       | 1  | 4/25/2020 3:31:19 PM | W68413 |
| 1,3-Dichlorobenzene            | ND     | 1.0      | μg/L       | 1  | 4/25/2020 3:31:19 PM | W68413 |
| 1,4-Dichlorobenzene            | ND     | 1.0      | μg/L       | 1  | 4/25/2020 3:31:19 PM | W68413 |
| Dichlorodifluoromethane        | ND     | 1.0      | μg/L       | 1  | 4/25/2020 3:31:19 PM | W68413 |
| 1,1-Dichloroethane             | ND     | 1.0      | μg/L       | 1  | 4/25/2020 3:31:19 PM | W68413 |
| 1,1-Dichloroethene             | ND     | 1.0      | μg/L       | 1  | 4/25/2020 3:31:19 PM | W68413 |

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

## Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 17 of 37

Date Reported: 5/6/2020

## Lab Order 2004A60

# Hall Environmental Analysis Laboratory, Inc.

**CLIENT:** Intera, Inc.

**Client Sample ID:** RAILMW05

 Project:
 COA Rail Yards
 Collection Date: 4/23/2020 1:17:00 PM

 Lab ID:
 2004A60-006
 Matrix: AQUEOUS
 Received Date: 4/23/2020 4:38:00 PM

| Analyses                    | Result | RL     | Qual Units | DF | Date Analyzed        | Batch  |
|-----------------------------|--------|--------|------------|----|----------------------|--------|
| EPA METHOD 8260B: VOLATILES |        |        |            |    | Analyst              | : DJF  |
| 1,2-Dichloropropane         | ND     | 1.0    | μg/L       | 1  | 4/25/2020 3:31:19 PM | W68413 |
| 1,3-Dichloropropane         | ND     | 1.0    | μg/L       | 1  | 4/25/2020 3:31:19 PM | W68413 |
| 2,2-Dichloropropane         | ND     | 2.0    | μg/L       | 1  | 4/25/2020 3:31:19 PM | W68413 |
| 1,1-Dichloropropene         | ND     | 1.0    | μg/L       | 1  | 4/25/2020 3:31:19 PM | W68413 |
| Hexachlorobutadiene         | ND     | 1.0    | μg/L       | 1  | 4/25/2020 3:31:19 PM | W68413 |
| 2-Hexanone                  | ND     | 10     | μg/L       | 1  | 4/25/2020 3:31:19 PM | W68413 |
| Isopropylbenzene            | ND     | 1.0    | μg/L       | 1  | 4/25/2020 3:31:19 PM | W68413 |
| 4-Isopropyltoluene          | ND     | 1.0    | μg/L       | 1  | 4/25/2020 3:31:19 PM | W68413 |
| 4-Methyl-2-pentanone        | ND     | 10     | μg/L       | 1  | 4/25/2020 3:31:19 PM | W68413 |
| Methylene Chloride          | ND     | 3.0    | μg/L       | 1  | 4/25/2020 3:31:19 PM | W68413 |
| n-Butylbenzene              | ND     | 3.0    | μg/L       | 1  | 4/25/2020 3:31:19 PM | W68413 |
| n-Propylbenzene             | ND     | 1.0    | μg/L       | 1  | 4/25/2020 3:31:19 PM | W68413 |
| sec-Butylbenzene            | ND     | 1.0    | μg/L       | 1  | 4/25/2020 3:31:19 PM | W68413 |
| Styrene                     | ND     | 1.0    | μg/L       | 1  | 4/25/2020 3:31:19 PM | W68413 |
| tert-Butylbenzene           | ND     | 1.0    | μg/L       | 1  | 4/25/2020 3:31:19 PM | W68413 |
| 1,1,1,2-Tetrachloroethane   | ND     | 1.0    | μg/L       | 1  | 4/25/2020 3:31:19 PM | W68413 |
| 1,1,2,2-Tetrachloroethane   | ND     | 2.0    | μg/L       | 1  | 4/25/2020 3:31:19 PM | W68413 |
| Tetrachloroethene (PCE)     | ND     | 1.0    | μg/L       | 1  | 4/25/2020 3:31:19 PM | W68413 |
| trans-1,2-DCE               | ND     | 1.0    | μg/L       | 1  | 4/25/2020 3:31:19 PM | W68413 |
| trans-1,3-Dichloropropene   | ND     | 1.0    | μg/L       | 1  | 4/25/2020 3:31:19 PM | W68413 |
| 1,2,3-Trichlorobenzene      | ND     | 1.0    | μg/L       | 1  | 4/25/2020 3:31:19 PM | W68413 |
| 1,2,4-Trichlorobenzene      | ND     | 1.0    | μg/L       | 1  | 4/25/2020 3:31:19 PM | W68413 |
| 1,1,1-Trichloroethane       | ND     | 1.0    | μg/L       | 1  | 4/25/2020 3:31:19 PM | W68413 |
| 1,1,2-Trichloroethane       | ND     | 1.0    | μg/L       | 1  | 4/25/2020 3:31:19 PM | W68413 |
| Trichloroethene (TCE)       | ND     | 1.0    | μg/L       | 1  | 4/25/2020 3:31:19 PM | W68413 |
| Trichlorofluoromethane      | ND     | 1.0    | μg/L       | 1  | 4/25/2020 3:31:19 PM | W68413 |
| 1,2,3-Trichloropropane      | ND     | 2.0    | μg/L       | 1  | 4/25/2020 3:31:19 PM | W68413 |
| Vinyl chloride              | ND     | 1.0    | μg/L       | 1  | 4/25/2020 3:31:19 PM | W68413 |
| Xylenes, Total              | ND     | 1.5    | μg/L       | 1  | 4/25/2020 3:31:19 PM | W68413 |
| Surr: 1,2-Dichloroethane-d4 | 91.0   | 70-130 | %Rec       | 1  | 4/25/2020 3:31:19 PM | W68413 |
| Surr: 4-Bromofluorobenzene  | 99.0   | 70-130 | %Rec       | 1  | 4/25/2020 3:31:19 PM | W68413 |
| Surr: Dibromofluoromethane  | 97.8   | 70-130 | %Rec       | 1  | 4/25/2020 3:31:19 PM | W68413 |
| Surr: Toluene-d8            | 96.3   | 70-130 | %Rec       | 1  | 4/25/2020 3:31:19 PM | W68413 |

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

## Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 18 of 37

Date Reported: 5/6/2020

# Hall Environmental Analysis Laboratory, Inc.

CLIENT: Intera, Inc.

Client Sample ID: RAILMW11

 Project:
 COA Rail Yards
 Collection Date: 4/23/2020 2:16:00 PM

 Lab ID:
 2004A60-007
 Matrix: AQUEOUS
 Received Date: 4/23/2020 4:38:00 PM

| Analyses                                   | Result  | RL      | Qual Units | DF | Date Analyzed        | Batch  |
|--------------------------------------------|---------|---------|------------|----|----------------------|--------|
| EPA 200.8: DISSOLVED METALS                |         |         |            |    | Analyst              | bcv    |
| Copper                                     | ND      | 0.0010  | mg/L       | 1  | 4/29/2020 5:31:59 PM | B68526 |
| Lead                                       | 0.00053 | 0.00050 | mg/L       | 1  | 4/29/2020 5:31:59 PM | B68526 |
| EPA METHOD 200.7: DISSOLVED METALS         |         |         |            |    | Analyst              | pmf    |
| Barium                                     | 0.079   | 0.0020  | mg/L       | 1  | 4/27/2020 7:21:33 PM | A68449 |
| Chromium                                   | ND      | 0.0060  | mg/L       | 1  | 4/27/2020 7:21:33 PM | A68449 |
| Iron                                       | 0.087   | 0.020   | mg/L       | 1  | 4/27/2020 7:21:33 PM | A68449 |
| Manganese                                  | 0.20    | 0.0020  | * mg/L     | 1  | 4/27/2020 7:21:33 PM | A68449 |
| Zinc                                       | 0.021   | 0.010   | mg/L       | 1  | 4/27/2020 7:21:33 PM | A68449 |
| EPA METHOD 8015D: GASOLINE RANGE           |         |         |            |    | Analyst              | DJF    |
| Gasoline Range Organics (GRO)              | 0.11    | 0.050   | mg/L       | 1  | 4/25/2020 3:59:50 PM | GW6841 |
| Surr: BFB                                  | 101     | 70-130  | %Rec       | 1  | 4/25/2020 3:59:50 PM | GW6841 |
| EPA METHOD 8011/504.1: EDB                 |         |         |            |    | Analyst              | CLP    |
| 1,2-Dibromoethane                          | ND      | 0.0094  | μg/L       | 1  | 4/28/2020 1:44:41 PM | 52123  |
| NOTES:                                     |         |         |            |    |                      |        |
| No trip blank was included with work order |         |         |            |    |                      |        |
| EPA METHOD 8015M/D: DIESEL RANGE           |         |         |            |    | Analyst              | BRM    |
| Diesel Range Organics (DRO)                | ND      | 1.0     | mg/L       | 1  | 4/29/2020 3:54:25 PM | 52139  |
| Motor Oil Range Organics (MRO)             | ND      | 5.0     | mg/L       | 1  | 4/29/2020 3:54:25 PM | 52139  |
| Surr: DNOP                                 | 99.5    | 70-130  | %Rec       | 1  | 4/29/2020 3:54:25 PM | 52139  |
| EPA METHOD 8310: PAHS                      |         |         |            |    | Analyst              | ТОМ    |
| Naphthalene                                | ND      | 3.0     | μg/L       | 1  | 4/29/2020 3:39:53 PM | 52095  |
| 1-Methylnaphthalene                        | ND      | 3.0     | μg/L       | 1  | 4/29/2020 3:39:53 PM | 52095  |
| 2-Methylnaphthalene                        | ND      | 3.0     | μg/L       | 1  | 4/29/2020 3:39:53 PM | 52095  |
| Acenaphthylene                             | ND      | 3.0     | μg/L       | 1  | 4/29/2020 3:39:53 PM | 52095  |
| Acenaphthene                               | ND      | 3.0     | μg/L       | 1  | 4/29/2020 3:39:53 PM | 52095  |
| Fluorene                                   | ND      | 0.80    | μg/L       | 1  | 4/29/2020 3:39:53 PM | 52095  |
| Phenanthrene                               | ND      | 0.60    | μg/L       | 1  | 4/29/2020 3:39:53 PM | 52095  |
| Anthracene                                 | ND      | 0.60    | μg/L       | 1  | 4/29/2020 3:39:53 PM | 52095  |
| Fluoranthene                               | ND      | 0.40    | μg/L       | 1  | 4/29/2020 3:39:53 PM | 52095  |
| Pyrene                                     | ND      | 0.40    | μg/L       | 1  | 4/29/2020 3:39:53 PM | 52095  |
| Benz(a)anthracene                          | ND      | 0.070   | μg/L       | 1  | 4/29/2020 3:39:53 PM | 52095  |
| Chrysene                                   | ND      | 0.20    | μg/L       | 1  | 4/29/2020 3:39:53 PM | 52095  |
| Benzo(b)fluoranthene                       | ND      | 0.10    | μg/L       | 1  | 4/29/2020 3:39:53 PM | 52095  |
| Benzo(k)fluoranthene                       | ND      | 0.070   | μg/L       | 1  | 4/29/2020 3:39:53 PM | 52095  |
| Benzo(a)pyrene                             | ND      | 0.070   | μg/L       | 1  | 4/29/2020 3:39:53 PM | 52095  |
| Dibenz(a,h)anthracene                      | ND      | 0.12    | μg/L       | 1  | 4/29/2020 3:39:53 PM | 52095  |
| Benzo(g,h,i)perylene                       | ND      | 0.12    | μg/L       | 1  | 4/29/2020 3:39:53 PM | 52095  |

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

## Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 19 of 37

Date Reported: 5/6/2020

# Hall Environmental Analysis Laboratory, Inc.

CLIENT: Intera, Inc.

Client Sample ID: RAILMW11

 Project:
 COA Rail Yards
 Collection Date: 4/23/2020 2:16:00 PM

 Lab ID:
 2004A60-007
 Matrix: AQUEOUS
 Received Date: 4/23/2020 4:38:00 PM

| Analyses                       | Result | RL       | Qual | Units | DF | Date Analyzed        | Batch  |
|--------------------------------|--------|----------|------|-------|----|----------------------|--------|
| EPA METHOD 8310: PAHS          |        |          |      |       |    | Analyst              | : ТОМ  |
| Indeno(1,2,3-cd)pyrene         | ND     | 0.25     |      | μg/L  | 1  | 4/29/2020 3:39:53 PM | 52095  |
| Surr: Benzo(e)pyrene           | 127    | 43.5-108 | S    | %Rec  | 1  | 4/29/2020 3:39:53 PM | 52095  |
| EPA METHOD 8260B: VOLATILES    |        |          |      |       |    | Analyst              | : DJF  |
| Benzene                        | ND     | 1.0      |      | μg/L  | 1  | 4/25/2020 3:59:50 PM | W68413 |
| Toluene                        | ND     | 1.0      |      | μg/L  | 1  | 4/25/2020 3:59:50 PM | W68413 |
| Ethylbenzene                   | ND     | 1.0      |      | μg/L  | 1  | 4/25/2020 3:59:50 PM | W68413 |
| Methyl tert-butyl ether (MTBE) | ND     | 1.0      |      | μg/L  | 1  | 4/25/2020 3:59:50 PM | W68413 |
| 1,2,4-Trimethylbenzene         | ND     | 1.0      |      | μg/L  | 1  | 4/25/2020 3:59:50 PM | W68413 |
| 1,3,5-Trimethylbenzene         | ND     | 1.0      |      | μg/L  | 1  | 4/25/2020 3:59:50 PM | W68413 |
| 1,2-Dichloroethane (EDC)       | ND     | 1.0      |      | μg/L  | 1  | 4/25/2020 3:59:50 PM | W68413 |
| 1,2-Dibromoethane (EDB)        | ND     | 1.0      |      | μg/L  | 1  | 4/25/2020 3:59:50 PM | W68413 |
| Naphthalene                    | 2.5    | 2.0      |      | μg/L  | 1  | 4/25/2020 3:59:50 PM | W68413 |
| 1-Methylnaphthalene            | ND     | 4.0      |      | μg/L  | 1  | 4/25/2020 3:59:50 PM | W68413 |
| 2-Methylnaphthalene            | ND     | 4.0      |      | μg/L  | 1  | 4/25/2020 3:59:50 PM | W68413 |
| Acetone                        | ND     | 10       |      | μg/L  | 1  | 4/25/2020 3:59:50 PM | W68413 |
| Bromobenzene                   | ND     | 1.0      |      | μg/L  | 1  | 4/25/2020 3:59:50 PM | W68413 |
| Bromodichloromethane           | ND     | 1.0      |      | μg/L  | 1  | 4/25/2020 3:59:50 PM | W68413 |
| Bromoform                      | ND     | 1.0      |      | μg/L  | 1  | 4/25/2020 3:59:50 PM | W68413 |
| Bromomethane                   | ND     | 3.0      |      | μg/L  | 1  | 4/25/2020 3:59:50 PM | W68413 |
| 2-Butanone                     | ND     | 10       |      | μg/L  | 1  | 4/25/2020 3:59:50 PM | W68413 |
| Carbon disulfide               | ND     | 10       |      | μg/L  | 1  | 4/25/2020 3:59:50 PM | W68413 |
| Carbon Tetrachloride           | ND     | 1.0      |      | μg/L  | 1  | 4/25/2020 3:59:50 PM | W68413 |
| Chlorobenzene                  | ND     | 1.0      |      | μg/L  | 1  | 4/25/2020 3:59:50 PM | W68413 |
| Chloroethane                   | ND     | 2.0      |      | μg/L  | 1  | 4/25/2020 3:59:50 PM | W68413 |
| Chloroform                     | ND     | 1.0      |      | μg/L  | 1  | 4/25/2020 3:59:50 PM | W68413 |
| Chloromethane                  | ND     | 3.0      |      | μg/L  | 1  | 4/25/2020 3:59:50 PM | W68413 |
| 2-Chlorotoluene                | ND     | 1.0      |      | μg/L  | 1  | 4/25/2020 3:59:50 PM | W68413 |
| 4-Chlorotoluene                | ND     | 1.0      |      | μg/L  | 1  | 4/25/2020 3:59:50 PM | W68413 |
| cis-1,2-DCE                    | ND     | 1.0      |      | μg/L  | 1  | 4/25/2020 3:59:50 PM | W68413 |
| cis-1,3-Dichloropropene        | ND     | 1.0      |      | μg/L  | 1  | 4/25/2020 3:59:50 PM | W68413 |
| 1,2-Dibromo-3-chloropropane    | ND     | 2.0      |      | μg/L  | 1  | 4/25/2020 3:59:50 PM | W68413 |
| Dibromochloromethane           | ND     | 1.0      |      | μg/L  | 1  | 4/25/2020 3:59:50 PM | W68413 |
| Dibromomethane                 | ND     | 1.0      |      | μg/L  | 1  | 4/25/2020 3:59:50 PM | W68413 |
| 1,2-Dichlorobenzene            | ND     | 1.0      |      | μg/L  | 1  | 4/25/2020 3:59:50 PM | W68413 |
| 1,3-Dichlorobenzene            | ND     | 1.0      |      | μg/L  | 1  | 4/25/2020 3:59:50 PM | W68413 |
| 1,4-Dichlorobenzene            | ND     | 1.0      |      | μg/L  | 1  | 4/25/2020 3:59:50 PM | W68413 |
| Dichlorodifluoromethane        | ND     | 1.0      |      | μg/L  | 1  | 4/25/2020 3:59:50 PM | W68413 |
| 1,1-Dichloroethane             | ND     | 1.0      |      | μg/L  | 1  | 4/25/2020 3:59:50 PM | W68413 |
| 1,1-Dichloroethene             | ND     | 1.0      |      | μg/L  | 1  | 4/25/2020 3:59:50 PM | W68413 |

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

## Qualifiers:

- \* Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 20 of 37

# Lab Order **2004A60**Date Reported: **5/6/2020**

# Hall Environmental Analysis Laboratory, Inc.

CLIENT: Intera, Inc.

Client Sample ID: RAILMW11

 Project:
 COA Rail Yards
 Collection Date: 4/23/2020 2:16:00 PM

 Lab ID:
 2004A60-007
 Matrix: AQUEOUS
 Received Date: 4/23/2020 4:38:00 PM

| Analyses                    | Result | RL     | Qual Units | DF | Date Analyzed        | Batch  |
|-----------------------------|--------|--------|------------|----|----------------------|--------|
| EPA METHOD 8260B: VOLATILES |        |        |            |    | Analyst              | : DJF  |
| 1,2-Dichloropropane         | ND     | 1.0    | μg/L       | 1  | 4/25/2020 3:59:50 PM | W68413 |
| 1,3-Dichloropropane         | ND     | 1.0    | μg/L       | 1  | 4/25/2020 3:59:50 PM | W68413 |
| 2,2-Dichloropropane         | ND     | 2.0    | μg/L       | 1  | 4/25/2020 3:59:50 PM | W68413 |
| 1,1-Dichloropropene         | ND     | 1.0    | μg/L       | 1  | 4/25/2020 3:59:50 PM | W68413 |
| Hexachlorobutadiene         | ND     | 1.0    | μg/L       | 1  | 4/25/2020 3:59:50 PM | W68413 |
| 2-Hexanone                  | ND     | 10     | μg/L       | 1  | 4/25/2020 3:59:50 PM | W68413 |
| Isopropylbenzene            | 2.0    | 1.0    | μg/L       | 1  | 4/25/2020 3:59:50 PM | W68413 |
| 4-Isopropyltoluene          | ND     | 1.0    | μg/L       | 1  | 4/25/2020 3:59:50 PM | W68413 |
| 4-Methyl-2-pentanone        | ND     | 10     | μg/L       | 1  | 4/25/2020 3:59:50 PM | W68413 |
| Methylene Chloride          | ND     | 3.0    | μg/L       | 1  | 4/25/2020 3:59:50 PM | W68413 |
| n-Butylbenzene              | ND     | 3.0    | μg/L       | 1  | 4/25/2020 3:59:50 PM | W68413 |
| n-Propylbenzene             | 5.2    | 1.0    | μg/L       | 1  | 4/25/2020 3:59:50 PM | W68413 |
| sec-Butylbenzene            | ND     | 1.0    | μg/L       | 1  | 4/25/2020 3:59:50 PM | W68413 |
| Styrene                     | ND     | 1.0    | μg/L       | 1  | 4/25/2020 3:59:50 PM | W68413 |
| tert-Butylbenzene           | ND     | 1.0    | μg/L       | 1  | 4/25/2020 3:59:50 PM | W68413 |
| 1,1,1,2-Tetrachloroethane   | ND     | 1.0    | μg/L       | 1  | 4/25/2020 3:59:50 PM | W68413 |
| 1,1,2,2-Tetrachloroethane   | ND     | 2.0    | μg/L       | 1  | 4/25/2020 3:59:50 PM | W68413 |
| Tetrachloroethene (PCE)     | ND     | 1.0    | μg/L       | 1  | 4/25/2020 3:59:50 PM | W68413 |
| trans-1,2-DCE               | ND     | 1.0    | μg/L       | 1  | 4/25/2020 3:59:50 PM | W68413 |
| trans-1,3-Dichloropropene   | ND     | 1.0    | μg/L       | 1  | 4/25/2020 3:59:50 PM | W68413 |
| 1,2,3-Trichlorobenzene      | ND     | 1.0    | μg/L       | 1  | 4/25/2020 3:59:50 PM | W68413 |
| 1,2,4-Trichlorobenzene      | ND     | 1.0    | μg/L       | 1  | 4/25/2020 3:59:50 PM | W68413 |
| 1,1,1-Trichloroethane       | ND     | 1.0    | μg/L       | 1  | 4/25/2020 3:59:50 PM | W68413 |
| 1,1,2-Trichloroethane       | ND     | 1.0    | μg/L       | 1  | 4/25/2020 3:59:50 PM | W68413 |
| Trichloroethene (TCE)       | ND     | 1.0    | μg/L       | 1  | 4/25/2020 3:59:50 PM | W68413 |
| Trichlorofluoromethane      | ND     | 1.0    | μg/L       | 1  | 4/25/2020 3:59:50 PM | W68413 |
| 1,2,3-Trichloropropane      | ND     | 2.0    | μg/L       | 1  | 4/25/2020 3:59:50 PM | W68413 |
| Vinyl chloride              | ND     | 1.0    | μg/L       | 1  | 4/25/2020 3:59:50 PM | W68413 |
| Xylenes, Total              | ND     | 1.5    | μg/L       | 1  | 4/25/2020 3:59:50 PM | W68413 |
| Surr: 1,2-Dichloroethane-d4 | 92.5   | 70-130 | %Rec       | 1  | 4/25/2020 3:59:50 PM | W68413 |
| Surr: 4-Bromofluorobenzene  | 103    | 70-130 | %Rec       | 1  | 4/25/2020 3:59:50 PM | W68413 |
| Surr: Dibromofluoromethane  | 96.8   | 70-130 | %Rec       | 1  | 4/25/2020 3:59:50 PM | W68413 |
| Surr: Toluene-d8            | 97.0   | 70-130 | %Rec       | 1  | 4/25/2020 3:59:50 PM | W68413 |

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

## Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 21 of 37

Date Reported: 5/6/2020

# Hall Environmental Analysis Laboratory, Inc.

CLIENT: Intera, Inc. Client Sample ID: RAILMW10

 Project:
 COA Rail Yards
 Collection Date: 4/23/2020 3:40:00 PM

 Lab ID:
 2004A60-008
 Matrix: AQUEOUS
 Received Date: 4/23/2020 4:38:00 PM

| Analyses                                   | Result | RL      | Qual | Units | DF | Date Analyzed        | Batch  |
|--------------------------------------------|--------|---------|------|-------|----|----------------------|--------|
| EPA 200.8: DISSOLVED METALS                |        |         |      |       |    | Analyst              | bcv    |
| Copper                                     | ND     | 0.0010  |      | mg/L  | 1  | 4/29/2020 5:34:35 PM | B68526 |
| Lead                                       | ND     | 0.00050 |      | mg/L  | 1  | 4/29/2020 5:34:35 PM | B68526 |
| EPA METHOD 200.7: DISSOLVED METALS         |        |         |      |       |    | Analyst              | pmf    |
| Barium                                     | 0.053  | 0.0020  |      | mg/L  | 1  | 4/27/2020 7:24:11 PM | A68449 |
| Chromium                                   | ND     | 0.0060  |      | mg/L  | 1  | 4/27/2020 7:24:11 PM | A68449 |
| Iron                                       | ND     | 0.020   |      | mg/L  | 1  | 4/27/2020 7:24:11 PM | A68449 |
| Manganese                                  | 0.18   | 0.0020  | *    | mg/L  | 1  | 4/27/2020 7:24:11 PM | A68449 |
| Zinc                                       | 0.029  | 0.010   |      | mg/L  | 1  | 4/27/2020 7:24:11 PM | A68449 |
| EPA METHOD 8015D: GASOLINE RANGE           |        |         |      |       |    | Analyst              | DJF    |
| Gasoline Range Organics (GRO)              | ND     | 0.050   |      | mg/L  | 1  | 4/25/2020 4:28:21 PM | GW6841 |
| Surr: BFB                                  | 99.6   | 70-130  |      | %Rec  | 1  | 4/25/2020 4:28:21 PM | GW6841 |
| EPA METHOD 8011/504.1: EDB                 |        |         |      |       |    | Analyst              | CLP    |
| 1,2-Dibromoethane                          | ND     | 0.0094  |      | μg/L  | 1  | 4/28/2020 1:59:48 PM | 52123  |
| NOTES:                                     |        |         |      |       |    |                      |        |
| No trip blank was included with work order |        |         |      |       |    |                      |        |
| EPA METHOD 8015M/D: DIESEL RANGE           |        |         |      |       |    | Analyst              | BRM    |
| Diesel Range Organics (DRO)                | ND     | 1.0     |      | mg/L  | 1  | 4/29/2020 4:18:48 PM | 52139  |
| Motor Oil Range Organics (MRO)             | ND     | 5.0     |      | mg/L  | 1  | 4/29/2020 4:18:48 PM | 52139  |
| Surr: DNOP                                 | 101    | 70-130  |      | %Rec  | 1  | 4/29/2020 4:18:48 PM | 52139  |
| EPA METHOD 8310: PAHS                      |        |         |      |       |    | Analyst              | TOM    |
| Naphthalene                                | ND     | 3.6     |      | μg/L  | 1  | 5/4/2020 9:37:38 AM  | 52187  |
| 1-Methylnaphthalene                        | ND     | 3.6     |      | μg/L  | 1  | 5/4/2020 9:37:38 AM  | 52187  |
| 2-Methylnaphthalene                        | ND     | 3.6     |      | μg/L  | 1  | 5/4/2020 9:37:38 AM  | 52187  |
| Acenaphthylene                             | ND     | 3.6     |      | μg/L  | 1  | 5/4/2020 9:37:38 AM  | 52187  |
| Acenaphthene                               | ND     | 3.6     |      | μg/L  | 1  | 5/4/2020 9:37:38 AM  | 52187  |
| Fluorene                                   | ND     | 0.96    |      | μg/L  | 1  | 5/4/2020 9:37:38 AM  | 52187  |
| Phenanthrene                               | ND     | 0.72    |      | μg/L  | 1  | 5/4/2020 9:37:38 AM  | 52187  |
| Anthracene                                 | ND     | 0.72    |      | μg/L  | 1  | 5/4/2020 9:37:38 AM  | 52187  |
| Fluoranthene                               | ND     | 0.48    |      | μg/L  | 1  | 5/4/2020 9:37:38 AM  | 52187  |
| Pyrene                                     | ND     | 0.48    |      | μg/L  | 1  | 5/4/2020 9:37:38 AM  | 52187  |
| Benz(a)anthracene                          | ND     | 0.084   |      | μg/L  | 1  | 5/4/2020 9:37:38 AM  | 52187  |
| Chrysene                                   | ND     | 0.24    |      | μg/L  | 1  | 5/4/2020 9:37:38 AM  | 52187  |
| Benzo(b)fluoranthene                       | ND     | 0.12    |      | μg/L  | 1  | 5/4/2020 9:37:38 AM  | 52187  |
| Benzo(k)fluoranthene                       | ND     | 0.084   |      | μg/L  | 1  | 5/4/2020 9:37:38 AM  | 52187  |
| Benzo(a)pyrene                             | ND     | 0.084   |      | μg/L  | 1  | 5/4/2020 9:37:38 AM  | 52187  |
| Dibenz(a,h)anthracene                      | ND     | 0.15    |      | μg/L  | 1  | 5/4/2020 9:37:38 AM  | 52187  |
| Benzo(g,h,i)perylene                       | ND     | 0.15    |      | μg/L  | 1  | 5/4/2020 9:37:38 AM  | 52187  |

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

## Qualifiers:

- \* Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 22 of 37

Date Reported: 5/6/2020

# Hall Environmental Analysis Laboratory, Inc.

CLIENT: Intera, Inc.

Client Sample ID: RAILMW10

 Project:
 COA Rail Yards
 Collection Date: 4/23/2020 3:40:00 PM

 Lab ID:
 2004A60-008
 Matrix: AQUEOUS
 Received Date: 4/23/2020 4:38:00 PM

| Analyses                       | Result | RL       | Qual Units | DF | Date Analyzed        | Batch  |
|--------------------------------|--------|----------|------------|----|----------------------|--------|
| EPA METHOD 8310: PAHS          |        |          |            |    | Analyst              | : TOM  |
| Indeno(1,2,3-cd)pyrene         | ND     | 0.30     | μg/L       | 1  | 5/4/2020 9:37:38 AM  | 52187  |
| Surr: Benzo(e)pyrene           | 64.7   | 43.5-108 | %Rec       | 1  | 5/4/2020 9:37:38 AM  | 52187  |
| EPA METHOD 8260B: VOLATILES    |        |          |            |    | Analyst              | : DJF  |
| Benzene                        | ND     | 1.0      | μg/L       | 1  | 4/25/2020 4:28:21 PM | W68413 |
| Toluene                        | ND     | 1.0      | μg/L       | 1  | 4/25/2020 4:28:21 PM | W68413 |
| Ethylbenzene                   | ND     | 1.0      | μg/L       | 1  | 4/25/2020 4:28:21 PM | W68413 |
| Methyl tert-butyl ether (MTBE) | ND     | 1.0      | μg/L       | 1  | 4/25/2020 4:28:21 PM | W68413 |
| 1,2,4-Trimethylbenzene         | ND     | 1.0      | μg/L       | 1  | 4/25/2020 4:28:21 PM | W68413 |
| 1,3,5-Trimethylbenzene         | ND     | 1.0      | μg/L       | 1  | 4/25/2020 4:28:21 PM | W68413 |
| 1,2-Dichloroethane (EDC)       | ND     | 1.0      | μg/L       | 1  | 4/25/2020 4:28:21 PM | W68413 |
| 1,2-Dibromoethane (EDB)        | ND     | 1.0      | μg/L       | 1  | 4/25/2020 4:28:21 PM | W68413 |
| Naphthalene                    | ND     | 2.0      | μg/L       | 1  | 4/25/2020 4:28:21 PM | W68413 |
| 1-Methylnaphthalene            | ND     | 4.0      | μg/L       | 1  | 4/25/2020 4:28:21 PM | W68413 |
| 2-Methylnaphthalene            | ND     | 4.0      | μg/L       | 1  | 4/25/2020 4:28:21 PM | W68413 |
| Acetone                        | ND     | 10       | μg/L       | 1  | 4/25/2020 4:28:21 PM | W68413 |
| Bromobenzene                   | ND     | 1.0      | μg/L       | 1  | 4/25/2020 4:28:21 PM | W68413 |
| Bromodichloromethane           | ND     | 1.0      | μg/L       | 1  | 4/25/2020 4:28:21 PM | W68413 |
| Bromoform                      | ND     | 1.0      | μg/L       | 1  | 4/25/2020 4:28:21 PM | W68413 |
| Bromomethane                   | ND     | 3.0      | μg/L       | 1  | 4/25/2020 4:28:21 PM | W68413 |
| 2-Butanone                     | ND     | 10       | μg/L       | 1  | 4/25/2020 4:28:21 PM | W68413 |
| Carbon disulfide               | ND     | 10       | μg/L       | 1  | 4/25/2020 4:28:21 PM | W68413 |
| Carbon Tetrachloride           | ND     | 1.0      | μg/L       | 1  | 4/25/2020 4:28:21 PM | W68413 |
| Chlorobenzene                  | ND     | 1.0      | μg/L       | 1  | 4/25/2020 4:28:21 PM | W68413 |
| Chloroethane                   | ND     | 2.0      | μg/L       | 1  | 4/25/2020 4:28:21 PM | W68413 |
| Chloroform                     | ND     | 1.0      | μg/L       | 1  | 4/25/2020 4:28:21 PM | W68413 |
| Chloromethane                  | ND     | 3.0      | μg/L       | 1  | 4/25/2020 4:28:21 PM | W68413 |
| 2-Chlorotoluene                | ND     | 1.0      | μg/L       | 1  | 4/25/2020 4:28:21 PM | W68413 |
| 4-Chlorotoluene                | ND     | 1.0      | μg/L       | 1  | 4/25/2020 4:28:21 PM | W68413 |
| cis-1,2-DCE                    | ND     | 1.0      | μg/L       | 1  | 4/25/2020 4:28:21 PM | W68413 |
| cis-1,3-Dichloropropene        | ND     | 1.0      | μg/L       | 1  | 4/25/2020 4:28:21 PM | W68413 |
| 1,2-Dibromo-3-chloropropane    | ND     | 2.0      | μg/L       | 1  | 4/25/2020 4:28:21 PM | W68413 |
| Dibromochloromethane           | ND     | 1.0      | μg/L       | 1  | 4/25/2020 4:28:21 PM | W68413 |
| Dibromomethane                 | ND     | 1.0      | μg/L       | 1  | 4/25/2020 4:28:21 PM | W68413 |
| 1,2-Dichlorobenzene            | ND     | 1.0      | μg/L       | 1  | 4/25/2020 4:28:21 PM | W68413 |
| 1,3-Dichlorobenzene            | ND     | 1.0      | μg/L       | 1  | 4/25/2020 4:28:21 PM | W68413 |
| 1,4-Dichlorobenzene            | ND     | 1.0      | μg/L       | 1  | 4/25/2020 4:28:21 PM | W68413 |
| Dichlorodifluoromethane        | ND     | 1.0      | μg/L       | 1  | 4/25/2020 4:28:21 PM | W68413 |
| 1,1-Dichloroethane             | ND     | 1.0      | μg/L       | 1  | 4/25/2020 4:28:21 PM | W68413 |
| 1,1-Dichloroethene             | ND     | 1.0      | μg/L       | 1  | 4/25/2020 4:28:21 PM | W68413 |

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

## Qualifiers:

- \* Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 23 of 37

# Lab Order **2004A60**Date Reported: **5/6/2020**

# Hall Environmental Analysis Laboratory, Inc.

CLIENT: Intera, Inc. Client Sample ID: RAILMW10

 Project:
 COA Rail Yards
 Collection Date: 4/23/2020 3:40:00 PM

 Lab ID:
 2004A60-008
 Matrix: AQUEOUS
 Received Date: 4/23/2020 4:38:00 PM

| 1,3-Dichloropropane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Analyses                    | Result | RL     | Qual Units | DF | Date Analyzed        | Batch  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|--------|--------|------------|----|----------------------|--------|
| 1,3-Dichloropropane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | EPA METHOD 8260B: VOLATILES |        |        |            |    | Analyst              | DJF    |
| 2,2-Dichloropropane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1,2-Dichloropropane         | ND     | 1.0    | μg/L       | 1  | 4/25/2020 4:28:21 PM | W68413 |
| 2,2-Dichloropropane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1,3-Dichloropropane         | ND     | 1.0    | μg/L       | 1  | 4/25/2020 4:28:21 PM | W68413 |
| Hexachlorobutadiene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2,2-Dichloropropane         | ND     | 2.0    | μg/L       | 1  | 4/25/2020 4:28:21 PM | W68413 |
| 2-Hexanone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1,1-Dichloropropene         | ND     | 1.0    | μg/L       | 1  | 4/25/2020 4:28:21 PM | W68413 |
| Isopropylbenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Hexachlorobutadiene         | ND     | 1.0    | μg/L       | 1  | 4/25/2020 4:28:21 PM | W68413 |
| 4-Isopropyltoluene         ND         1.0         μg/L         1         4/25/2020 4:28:21 PM         W6841           4-Methyl-2-pentanone         ND         10         μg/L         1         4/25/2020 4:28:21 PM         W6841           Methylene Chloride         ND         3.0         μg/L         1         4/25/2020 4:28:21 PM         W6841           n-Butylbenzene         ND         3.0         μg/L         1         4/25/2020 4:28:21 PM         W6841           n-Propylbenzene         ND         1.0         μg/L         1         4/25/2020 4:28:21 PM         W6841           sec-Butylbenzene         ND         1.0         μg/L         1         4/25/2020 4:28:21 PM         W6841           Styrene         ND         1.0         μg/L         1         4/25/2020 4:28:21 PM         W6841           tert-Butylbenzene         ND         1.0         μg/L         1         4/25/2020 4:28:21 PM         W6841           tert-Butylbenzene         ND         1.0         μg/L         1         4/25/2020 4:28:21 PM         W6841           1,1,2-Tetrachloroethane         ND         1.0         μg/L         1         4/25/2020 4:28:21 PM         W6841           1trans-1,2-DCE         ND         1.0 <td>2-Hexanone</td> <td>ND</td> <td>10</td> <td>μg/L</td> <td>1</td> <td>4/25/2020 4:28:21 PM</td> <td>W68413</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2-Hexanone                  | ND     | 10     | μg/L       | 1  | 4/25/2020 4:28:21 PM | W68413 |
| 4-Methyl-2-pentanone         ND         10         µg/L         1         4/25/2020 4:28:21 PM         W6841           Methylene Chloride         ND         3.0         µg/L         1         4/25/2020 4:28:21 PM         W6841           n-Butylbenzene         ND         3.0         µg/L         1         4/25/2020 4:28:21 PM         W6841           n-Propylbenzene         ND         1.0         µg/L         1         4/25/2020 4:28:21 PM         W6841           sec-Butylbenzene         ND         1.0         µg/L         1         4/25/2020 4:28:21 PM         W6841           Styrene         ND         1.0         µg/L         1         4/25/2020 4:28:21 PM         W6841           tert-Butylbenzene         ND         1.0         µg/L         1         4/25/2020 4:28:21 PM         W6841           1,1,2-Tetrachloroethane         ND         1.0         µg/L         1         4/25/2020 4:28:21 PM         W6841           1,1,2-Tetrachloroethane         ND         1.0         µg/L         1         4/25/2020 4:28:21 PM         W6841           Tetrachloroethane (PCE)         ND         1.0         µg/L         1         4/25/2020 4:28:21 PM         W6841           trans-1,2-DCE         ND         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Isopropylbenzene            | ND     | 1.0    | μg/L       | 1  | 4/25/2020 4:28:21 PM | W68413 |
| 4-Methyl-2-pentanone         ND         10         µg/L         1         4/25/2020 4:28:21 PM         W6841           Methylene Chloride         ND         3.0         µg/L         1         4/25/2020 4:28:21 PM         W6841           n-Butylbenzene         ND         3.0         µg/L         1         4/25/2020 4:28:21 PM         W6841           n-Propylbenzene         ND         1.0         µg/L         1         4/25/2020 4:28:21 PM         W6841           sec-Butylbenzene         ND         1.0         µg/L         1         4/25/2020 4:28:21 PM         W6841           Styrene         ND         1.0         µg/L         1         4/25/2020 4:28:21 PM         W6841           tert-Butylbenzene         ND         1.0         µg/L         1         4/25/2020 4:28:21 PM         W6841           1,1,2-Tetrachloroethane         ND         1.0         µg/L         1         4/25/2020 4:28:21 PM         W6841           1,1,2-Tetrachloroethane         ND         1.0         µg/L         1         4/25/2020 4:28:21 PM         W6841           Tetrachloroethane (PCE)         ND         1.0         µg/L         1         4/25/2020 4:28:21 PM         W6841           trans-1,2-DCE         ND         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4-Isopropyltoluene          | ND     | 1.0    | μg/L       | 1  | 4/25/2020 4:28:21 PM | W68413 |
| Methylene Chloride         ND         3.0         µg/L         1         4/25/2020 4:28:21 PM         W6841           n-Butylbenzene         ND         3.0         µg/L         1         4/25/2020 4:28:21 PM         W6841           n-Propylbenzene         ND         1.0         µg/L         1         4/25/2020 4:28:21 PM         W6841           sec-Butylbenzene         ND         1.0         µg/L         1         4/25/2020 4:28:21 PM         W6841           Styrene         ND         1.0         µg/L         1         4/25/2020 4:28:21 PM         W6841           tert-Butylbenzene         ND         1.0         µg/L         1         4/25/2020 4:28:21 PM         W6841           tert-Butylbenzene         ND         1.0         µg/L         1         4/25/2020 4:28:21 PM         W6841           1,1,1,2-Tetrachloroethane         ND         1.0         µg/L         1         4/25/2020 4:28:21 PM         W6841           1,1,2,2-Tetrachloroethane         ND         1.0         µg/L         1         4/25/2020 4:28:21 PM         W6841           tetrachloroethene (PCE)         ND         1.0         µg/L         1         4/25/2020 4:28:21 PM         W6841           trans-1,2-DCE         ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4-Methyl-2-pentanone        | ND     | 10     |            | 1  | 4/25/2020 4:28:21 PM | W68413 |
| n-Propylbenzene         ND         1.0         µg/L         1         4/25/2020 4:28:21 PM         W6841           sec-Butylbenzene         ND         1.0         µg/L         1         4/25/2020 4:28:21 PM         W6841           Styrene         ND         1.0         µg/L         1         4/25/2020 4:28:21 PM         W6841           tert-Butylbenzene         ND         1.0         µg/L         1         4/25/2020 4:28:21 PM         W6841           1,1,1,2-Tetrachloroethane         ND         1.0         µg/L         1         4/25/2020 4:28:21 PM         W6841           1,1,2,2-Tetrachloroethane         ND         1.0         µg/L         1         4/25/2020 4:28:21 PM         W6841           Tetrachloroethane (PCE)         ND         1.0         µg/L         1         4/25/2020 4:28:21 PM         W6841           trans-1,3-Dichloropropene         ND         1.0         µg/L         1         4/25/2020 4:28:21 PM         W6841           1,2,3-Trichlorobenzene         ND         1.0         µg/L         1         4/25/2020 4:28:21 PM         W6841           1,1,1-Trichloroethane         ND         1.0         µg/L         1         4/25/2020 4:28:21 PM         W6841           1,1,2-Trichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Methylene Chloride          | ND     | 3.0    |            | 1  | 4/25/2020 4:28:21 PM | W68413 |
| n-Propylbenzene         ND         1.0         µg/L         1         4/25/2020 4:28:21 PM         W6841           sec-Butylbenzene         ND         1.0         µg/L         1         4/25/2020 4:28:21 PM         W6841           Styrene         ND         1.0         µg/L         1         4/25/2020 4:28:21 PM         W6841           tert-Butylbenzene         ND         1.0         µg/L         1         4/25/2020 4:28:21 PM         W6841           1,1,1,2-Tetrachloroethane         ND         1.0         µg/L         1         4/25/2020 4:28:21 PM         W6841           1,1,2,2-Tetrachloroethane         ND         1.0         µg/L         1         4/25/2020 4:28:21 PM         W6841           Tetrachloroethane (PCE)         ND         1.0         µg/L         1         4/25/2020 4:28:21 PM         W6841           trans-1,3-Dichloropropene         ND         1.0         µg/L         1         4/25/2020 4:28:21 PM         W6841           1,2,3-Trichlorobenzene         ND         1.0         µg/L         1         4/25/2020 4:28:21 PM         W6841           1,1,1-Trichloroethane         ND         1.0         µg/L         1         4/25/2020 4:28:21 PM         W6841           1,1,2-Trichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | n-Butylbenzene              | ND     | 3.0    | μg/L       | 1  | 4/25/2020 4:28:21 PM | W68413 |
| sec-Butylbenzene         ND         1.0         µg/L         1         4/25/2020 4:28:21 PM         W6841           Styrene         ND         1.0         µg/L         1         4/25/2020 4:28:21 PM         W6841           tert-Butylbenzene         ND         1.0         µg/L         1         4/25/2020 4:28:21 PM         W6841           1,1,1,2-Tetrachloroethane         ND         1.0         µg/L         1         4/25/2020 4:28:21 PM         W6841           1,1,2,2-Tetrachloroethane         ND         1.0         µg/L         1         4/25/2020 4:28:21 PM         W6841           Tetrachloroethane (PCE)         ND         1.0         µg/L         1         4/25/2020 4:28:21 PM         W6841           trans-1,2-DCE         ND         1.0         µg/L         1         4/25/2020 4:28:21 PM         W6841           trans-1,3-Dichloropropene         ND         1.0         µg/L         1         4/25/2020 4:28:21 PM         W6841           1,2,3-Trichlorobenzene         ND         1.0         µg/L         1         4/25/2020 4:28:21 PM         W6841           1,1,1-Trichloroethane         ND         1.0         µg/L         1         4/25/2020 4:28:21 PM         W6841           1,1,2-Trichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | n-Propylbenzene             | ND     | 1.0    |            | 1  | 4/25/2020 4:28:21 PM | W68413 |
| Styrene         ND         1.0         µg/L         1         4/25/2020 4:28:21 PM         W6841           tert-Butylbenzene         ND         1.0         µg/L         1         4/25/2020 4:28:21 PM         W6841           1,1,1,2-Tetrachloroethane         ND         1.0         µg/L         1         4/25/2020 4:28:21 PM         W6841           1,1,2,2-Tetrachloroethane         ND         2.0         µg/L         1         4/25/2020 4:28:21 PM         W6841           Tetrachloroethane (PCE)         ND         1.0         µg/L         1         4/25/2020 4:28:21 PM         W6841           trans-1,2-DCE         ND         1.0         µg/L         1         4/25/2020 4:28:21 PM         W6841           trans-1,3-Dichloropropene         ND         1.0         µg/L         1         4/25/2020 4:28:21 PM         W6841           1,2,3-Trichlorobenzene         ND         1.0         µg/L         1         4/25/2020 4:28:21 PM         W6841           1,2,4-Trichlorobenzene         ND         1.0         µg/L         1         4/25/2020 4:28:21 PM         W6841           1,1,1-Trichlorofethane         ND         1.0         µg/L         1         4/25/2020 4:28:21 PM         W6841           1,1,2-Trichlorofethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | sec-Butylbenzene            | ND     | 1.0    |            | 1  | 4/25/2020 4:28:21 PM | W68413 |
| tert-Butylbenzene ND 1.0 µg/L 1 4/25/2020 4:28:21 PM W6841 1,1,1,2-Tetrachloroethane ND 1.0 µg/L 1 4/25/2020 4:28:21 PM W6841 1,1,2,2-Tetrachloroethane ND 2.0 µg/L 1 4/25/2020 4:28:21 PM W6841 1,1,2,2-Tetrachloroethane ND 1.0 µg/L 1 4/25/2020 4:28:21 PM W6841 1,1,2,2-Tetrachloroethane (PCE) ND 1.0 µg/L 1 4/25/2020 4:28:21 PM W6841 1,2,3-Trichloroptopene ND 1.0 µg/L 1 4/25/2020 4:28:21 PM W6841 1,2,3-Trichlorobenzene ND 1.0 µg/L 1 4/25/2020 4:28:21 PM W6841 1,2,4-Trichlorobenzene ND 1.0 µg/L 1 4/25/2020 4:28:21 PM W6841 1,1,1-Trichloroethane ND 1.0 µg/L 1 4/25/2020 4:28:21 PM W6841 1,1,2-Trichloroethane ND 1.0 µg/L 1 4/25/2020 4:28:21 PM W6841 1,1,2-Trichloroethane ND 1.0 µg/L 1 4/25/2020 4:28:21 PM W6841 1,1,2-Trichloroethane ND 1.0 µg/L 1 4/25/2020 4:28:21 PM W6841 1,1,2-Trichloroethane ND 1.0 µg/L 1 4/25/2020 4:28:21 PM W6841 1,2,3-Trichloroethane ND 1.0 µg/L 1 4/25/2020 4:28:21 PM W6841 1,2,3-Trichloroptopane ND 2.0 µg/L 1 4/25/2020 4:28:21 PM W6841 1,2,3-Trichloroptopane ND 2.0 µg/L 1 4/25/2020 4:28:21 PM W6841 1,2,3-Trichloroptopane ND 1.0 µg/L 1 4/25/2020 4:28:21 PM W6841 1,2,3-Trichloroptopane ND 1.0 µg/L 1 4/25/2020 4:28:21 PM W6841 1,2,3-Trichloroethane ND 1.0 µg/L 1 4/25/2020 4:28:21 PM W6841 1,2,3-Trichloroptopane ND 1.0 µg/L 1 4/25/2020 4:28:21 PM W6841 1,2,3-Trichloroptopane ND 1.0 µg/L 1 4/25/2020 4:28:21 PM W6841 1,2,3-Trichloroptopane ND 1.0 µg/L 1 4/25/2020 4:28:21 PM W6841 1,2,3-Trichloroptopane ND 1.0 µg/L 1 4/25/2020 4:28:21 PM W6841 1,2,3-Trichloroptopane ND 1.0 µg/L 1 4/25/2020 4:28:21 PM W6841 1,2,3-Trichloroptopane ND 1.0 µg/L 1 4/25/2020 4:28:21 PM W6841 1,2,3-Trichloroptopane ND 1.0 µg/L 1 4/25/2020 4:28:21 PM W6841 1,2,3-Trichloroptopane ND 1.0 µg/L 1 4/25/2020 4:28:21 PM W6841 1,2,3-Trichloroptopane ND 1.0 µg/L 1 4/25/2020 4:28:21 PM W6841 1,2,3-Trichloroptopane ND 1.0 µg/L 1 4/25/2020 4:28:21 PM W6841 1,2,3-Trichloroptopane ND 1.0 µg/L 1 4/25/2020 4:28:21 PM W6841 1,2,3-Trichloroptopane ND 1.0 µg/L 1 4/25/2020 4:28:21 PM W6841 1,2,3-Trichloroptopane ND 1.0 µg/L 1 4/25/2020 4:28:21 P | Styrene                     | ND     | 1.0    |            | 1  | 4/25/2020 4:28:21 PM | W68413 |
| 1,1,1,2-Tetrachloroethane         ND         1.0         µg/L         1         4/25/2020 4:28:21 PM         W6841           1,1,2,2-Tetrachloroethane         ND         2.0         µg/L         1         4/25/2020 4:28:21 PM         W6841           Tetrachloroethene (PCE)         ND         1.0         µg/L         1         4/25/2020 4:28:21 PM         W6841           trans-1,2-DCE         ND         1.0         µg/L         1         4/25/2020 4:28:21 PM         W6841           trans-1,3-Dichloropropene         ND         1.0         µg/L         1         4/25/2020 4:28:21 PM         W6841           1,2,3-Trichlorobenzene         ND         1.0         µg/L         1         4/25/2020 4:28:21 PM         W6841           1,1,1-Trichloroethane         ND         1.0         µg/L         1         4/25/2020 4:28:21 PM         W6841           1,1,2-Trichloroethane         ND         1.0         µg/L         1         4/25/2020 4:28:21 PM         W6841           1,1,2-Trichloroethane         ND         1.0         µg/L         1         4/25/2020 4:28:21 PM         W6841           Trichlorofluoromethane         ND         1.0         µg/L         1         4/25/2020 4:28:21 PM         W6841           Vinyl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | tert-Butylbenzene           | ND     | 1.0    |            | 1  | 4/25/2020 4:28:21 PM | W68413 |
| Tetrachloroethene (PCE)         ND         1.0         μg/L         1         4/25/2020 4:28:21 PM         W6841           trans-1,2-DCE         ND         1.0         μg/L         1         4/25/2020 4:28:21 PM         W6841           trans-1,3-Dichloropropene         ND         1.0         μg/L         1         4/25/2020 4:28:21 PM         W6841           1,2,3-Trichlorobenzene         ND         1.0         μg/L         1         4/25/2020 4:28:21 PM         W6841           1,2,4-Trichlorobenzene         ND         1.0         μg/L         1         4/25/2020 4:28:21 PM         W6841           1,1,1-Trichloroethane         ND         1.0         μg/L         1         4/25/2020 4:28:21 PM         W6841           1,1,2-Trichloroethane         ND         1.0         μg/L         1         4/25/2020 4:28:21 PM         W6841           1,1,2-Trichloroethane (TCE)         ND         1.0         μg/L         1         4/25/2020 4:28:21 PM         W6841           Trichlorofluoromethane         ND         1.0         μg/L         1         4/25/2020 4:28:21 PM         W6841           1,2,3-Trichloropropane         ND         1.0         μg/L         1         4/25/2020 4:28:21 PM         W6841           Viny                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1,1,1,2-Tetrachloroethane   | ND     | 1.0    |            | 1  | 4/25/2020 4:28:21 PM | W68413 |
| trans-1,2-DCE ND 1.0 µg/L 1 4/25/2020 4:28:21 PM W6841 1,2,3-Trichlorobenzene ND 1.0 µg/L 1 4/25/2020 4:28:21 PM W6841 1,2,4-Trichlorobenzene ND 1.0 µg/L 1 4/25/2020 4:28:21 PM W6841 1,2,4-Trichlorobenzene ND 1.0 µg/L 1 4/25/2020 4:28:21 PM W6841 1,1,1-Trichloroethane ND 1.0 µg/L 1 4/25/2020 4:28:21 PM W6841 1,1,2-Trichloroethane ND 1.0 µg/L 1 4/25/2020 4:28:21 PM W6841 1,1,2-Trichloroethane ND 1.0 µg/L 1 4/25/2020 4:28:21 PM W6841 1,1,2-Trichloroethane ND 1.0 µg/L 1 4/25/2020 4:28:21 PM W6841 1,2,3-Trichlorofluoromethane ND 1.0 µg/L 1 4/25/2020 4:28:21 PM W6841 1,2,3-Trichloropropane ND 2.0 µg/L 1 4/25/2020 4:28:21 PM W6841 1,2,3-Trichloropropane ND 2.0 µg/L 1 4/25/2020 4:28:21 PM W6841 Vinyl chloride ND 1.0 µg/L 1 4/25/2020 4:28:21 PM W6841 Surr: 1,2-Dichloroethane-d4 95.1 70-130 %Rec 1 4/25/2020 4:28:21 PM W6841 Surr: 4-Bromofluorobenzene 99.7 70-130 %Rec 1 4/25/2020 4:28:21 PM W6841 Surr: Dibromofluoromethane 99.6 70-130 %Rec 1 4/25/2020 4:28:21 PM W6841                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1,1,2,2-Tetrachloroethane   | ND     | 2.0    | μg/L       | 1  | 4/25/2020 4:28:21 PM | W68413 |
| trans-1,3-Dichloropropene ND 1.0 µg/L 1 4/25/2020 4:28:21 PM W6841 1,2,3-Trichlorobenzene ND 1.0 µg/L 1 4/25/2020 4:28:21 PM W6841 1,2,4-Trichlorobenzene ND 1.0 µg/L 1 4/25/2020 4:28:21 PM W6841 1,1,1-Trichloroethane ND 1.0 µg/L 1 4/25/2020 4:28:21 PM W6841 1,1,2-Trichloroethane ND 1.0 µg/L 1 4/25/2020 4:28:21 PM W6841 1,1,2-Trichloroethane ND 1.0 µg/L 1 4/25/2020 4:28:21 PM W6841 1,1,2-Trichloroethane ND 1.0 µg/L 1 4/25/2020 4:28:21 PM W6841 1,2,3-Trichlorofluoromethane ND 1.0 µg/L 1 4/25/2020 4:28:21 PM W6841 1,2,3-Trichloropropane ND 2.0 µg/L 1 4/25/2020 4:28:21 PM W6841 1,2,3-Trichloropropane ND 2.0 µg/L 1 4/25/2020 4:28:21 PM W6841 1,2,3-Trichloropropane ND 1.0 µg/L 1 4/25/2020 4:28:21 PM W6841 1,2,3-Trichloropropane ND 1.0 µg/L 1 4/25/2020 4:28:21 PM W6841 1,2,3-Trichloropropane ND 1.0 µg/L 1 4/25/2020 4:28:21 PM W6841 1,2,3-Trichloropropane ND 1.0 µg/L 1 4/25/2020 4:28:21 PM W6841 1,2,3-Trichloropropane ND 1.0 µg/L 1 4/25/2020 4:28:21 PM W6841 1,2,3-Trichloropropane ND 1.0 µg/L 1 4/25/2020 4:28:21 PM W6841 1,2,3-Trichloropropane ND 1.0 µg/L 1 4/25/2020 4:28:21 PM W6841 1,2,3-Trichloropropane ND 1.0 µg/L 1 4/25/2020 4:28:21 PM W6841 1,2,3-Trichloropropane ND 1.0 µg/L 1 4/25/2020 4:28:21 PM W6841 1,2,3-Trichloropropane ND 1.0 µg/L 1 4/25/2020 4:28:21 PM W6841 1,2,3-Trichloropropane ND 1.0 µg/L 1 4/25/2020 4:28:21 PM W6841 1,2,3-Trichloropropane ND 1.0 µg/L 1 4/25/2020 4:28:21 PM W6841 1,2,3-Trichloropropane ND 1.0 µg/L 1 4/25/2020 4:28:21 PM W6841 1,2,3-Trichloropropane ND 1.0 µg/L 1 4/25/2020 4:28:21 PM W6841 1,2,3-Trichloropropane ND 1.0 µg/L 1 4/25/2020 4:28:21 PM W6841 1,2,3-Trichloropropane ND 1.0 µg/L 1 4/25/2020 4:28:21 PM W6841 1,2,3-Trichloropropane ND 1.0 µg/L 1 4/25/2020 4:28:21 PM W6841 1,2,3-Trichloropropane ND 1.0 µg/L 1 4/25/2020 4:28:21 PM W6841 1,2,3-Trichloropropane ND 1.0 µg/L 1 4/25/2020 4:28:21 PM W6841 1,2,3-Trichloropropane ND 1.0 µg/L 1 4/25/2020 4:28:21 PM W6841 1,2,3-Trichloropropane ND 1.0 µg/L 1 4/25/2020 4:28:21 PM W6841 1,2,3-Trichloropropane ND 1.0 µg/L 1 4/25/2020 4:28:21 PM | Tetrachloroethene (PCE)     | ND     | 1.0    | μg/L       | 1  | 4/25/2020 4:28:21 PM | W68413 |
| 1,2,3-Trichlorobenzene       ND       1.0       μg/L       1       4/25/2020 4:28:21 PM       W6841         1,2,4-Trichlorobenzene       ND       1.0       μg/L       1       4/25/2020 4:28:21 PM       W6841         1,1,1-Trichloroethane       ND       1.0       μg/L       1       4/25/2020 4:28:21 PM       W6841         1,1,2-Trichloroethane       ND       1.0       μg/L       1       4/25/2020 4:28:21 PM       W6841         Trichloroethene (TCE)       ND       1.0       μg/L       1       4/25/2020 4:28:21 PM       W6841         Trichlorofluoromethane       ND       1.0       μg/L       1       4/25/2020 4:28:21 PM       W6841         1,2,3-Trichloropropane       ND       2.0       μg/L       1       4/25/2020 4:28:21 PM       W6841         Vinyl chloride       ND       1.0       μg/L       1       4/25/2020 4:28:21 PM       W6841         Xylenes, Total       ND       1.5       μg/L       1       4/25/2020 4:28:21 PM       W6841         Surr: 1,2-Dichloroethane-d4       95.1       70-130       %Rec       1       4/25/2020 4:28:21 PM       W6841         Surr: 2-Dichloroethane       99.6       70-130       %Rec       1       4/25/2020 4:28:21 PM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | trans-1,2-DCE               | ND     | 1.0    | μg/L       | 1  | 4/25/2020 4:28:21 PM | W68413 |
| 1,2,4-Trichlorobenzene       ND       1.0       μg/L       1       4/25/2020 4:28:21 PM       W6841         1,1,1-Trichloroethane       ND       1.0       μg/L       1       4/25/2020 4:28:21 PM       W6841         1,1,2-Trichloroethane       ND       1.0       μg/L       1       4/25/2020 4:28:21 PM       W6841         Trichloroethene (TCE)       ND       1.0       μg/L       1       4/25/2020 4:28:21 PM       W6841         Trichlorofluoromethane       ND       1.0       μg/L       1       4/25/2020 4:28:21 PM       W6841         1,2,3-Trichloropropane       ND       2.0       μg/L       1       4/25/2020 4:28:21 PM       W6841         Vinyl chloride       ND       1.0       μg/L       1       4/25/2020 4:28:21 PM       W6841         Xylenes, Total       ND       1.5       μg/L       1       4/25/2020 4:28:21 PM       W6841         Surr: 1,2-Dichloroethane-d4       95.1       70-130       %Rec       1       4/25/2020 4:28:21 PM       W6841         Surr: 2-Bromofluorobenzene       99.7       70-130       %Rec       1       4/25/2020 4:28:21 PM       W6841         Surr: Dibromofluoromethane       99.6       70-130       %Rec       1       4/25/2020 4:2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | trans-1,3-Dichloropropene   | ND     | 1.0    | μg/L       | 1  | 4/25/2020 4:28:21 PM | W68413 |
| 1,1,1-Trichloroethane       ND       1.0       μg/L       1       4/25/2020 4:28:21 PM       W6841         1,1,2-Trichloroethane       ND       1.0       μg/L       1       4/25/2020 4:28:21 PM       W6841         Trichloroethene (TCE)       ND       1.0       μg/L       1       4/25/2020 4:28:21 PM       W6841         Trichlorofluoromethane       ND       1.0       μg/L       1       4/25/2020 4:28:21 PM       W6841         1,2,3-Trichloropropane       ND       2.0       μg/L       1       4/25/2020 4:28:21 PM       W6841         Vinyl chloride       ND       1.0       μg/L       1       4/25/2020 4:28:21 PM       W6841         Xylenes, Total       ND       1.5       μg/L       1       4/25/2020 4:28:21 PM       W6841         Surr: 1,2-Dichloroethane-d4       95.1       70-130       %Rec       1       4/25/2020 4:28:21 PM       W6841         Surr: 4-Bromofluorobenzene       99.7       70-130       %Rec       1       4/25/2020 4:28:21 PM       W6841         Surr: Dibromofluoromethane       99.6       70-130       %Rec       1       4/25/2020 4:28:21 PM       W6841                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1,2,3-Trichlorobenzene      | ND     | 1.0    | μg/L       | 1  | 4/25/2020 4:28:21 PM | W68413 |
| 1,1,1-Trichloroethane       ND       1.0       μg/L       1       4/25/2020 4:28:21 PM       W6841         1,1,2-Trichloroethane       ND       1.0       μg/L       1       4/25/2020 4:28:21 PM       W6841         Trichloroethene (TCE)       ND       1.0       μg/L       1       4/25/2020 4:28:21 PM       W6841         Trichlorofluoromethane       ND       1.0       μg/L       1       4/25/2020 4:28:21 PM       W6841         1,2,3-Trichloropropane       ND       2.0       μg/L       1       4/25/2020 4:28:21 PM       W6841         Vinyl chloride       ND       1.0       μg/L       1       4/25/2020 4:28:21 PM       W6841         Xylenes, Total       ND       1.5       μg/L       1       4/25/2020 4:28:21 PM       W6841         Surr: 1,2-Dichloroethane-d4       95.1       70-130       %Rec       1       4/25/2020 4:28:21 PM       W6841         Surr: 4-Bromofluorobenzene       99.7       70-130       %Rec       1       4/25/2020 4:28:21 PM       W6841         Surr: Dibromofluoromethane       99.6       70-130       %Rec       1       4/25/2020 4:28:21 PM       W6841                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1,2,4-Trichlorobenzene      | ND     | 1.0    | μg/L       | 1  | 4/25/2020 4:28:21 PM | W68413 |
| Trichloroethene (TCE)         ND         1.0         μg/L         1         4/25/2020 4:28:21 PM         W6841           Trichlorofluoromethane         ND         1.0         μg/L         1         4/25/2020 4:28:21 PM         W6841           1,2,3-Trichloropropane         ND         2.0         μg/L         1         4/25/2020 4:28:21 PM         W6841           Vinyl chloride         ND         1.0         μg/L         1         4/25/2020 4:28:21 PM         W6841           Xylenes, Total         ND         1.5         μg/L         1         4/25/2020 4:28:21 PM         W6841           Surr: 1,2-Dichloroethane-d4         95.1         70-130         %Rec         1         4/25/2020 4:28:21 PM         W6841           Surr: 4-Bromofluorobenzene         99.7         70-130         %Rec         1         4/25/2020 4:28:21 PM         W6841           Surr: Dibromofluoromethane         99.6         70-130         %Rec         1         4/25/2020 4:28:21 PM         W6841                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1,1,1-Trichloroethane       | ND     | 1.0    |            | 1  | 4/25/2020 4:28:21 PM | W68413 |
| Trichlorofluoromethane         ND         1.0         μg/L         1         4/25/2020 4:28:21 PM         W6841           1,2,3-Trichloropropane         ND         2.0         μg/L         1         4/25/2020 4:28:21 PM         W6841           Vinyl chloride         ND         1.0         μg/L         1         4/25/2020 4:28:21 PM         W6841           Xylenes, Total         ND         1.5         μg/L         1         4/25/2020 4:28:21 PM         W6841           Surr: 1,2-Dichloroethane-d4         95.1         70-130         %Rec         1         4/25/2020 4:28:21 PM         W6841           Surr: 4-Bromofluorobenzene         99.7         70-130         %Rec         1         4/25/2020 4:28:21 PM         W6841           Surr: Dibromofluoromethane         99.6         70-130         %Rec         1         4/25/2020 4:28:21 PM         W6841                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1,1,2-Trichloroethane       | ND     | 1.0    | μg/L       | 1  | 4/25/2020 4:28:21 PM | W68413 |
| 1,2,3-Trichloropropane       ND       2.0       μg/L       1       4/25/2020 4:28:21 PM       W6841         Vinyl chloride       ND       1.0       μg/L       1       4/25/2020 4:28:21 PM       W6841         Xylenes, Total       ND       1.5       μg/L       1       4/25/2020 4:28:21 PM       W6841         Surr: 1,2-Dichloroethane-d4       95.1       70-130       %Rec       1       4/25/2020 4:28:21 PM       W6841         Surr: 4-Bromofluorobenzene       99.7       70-130       %Rec       1       4/25/2020 4:28:21 PM       W6841         Surr: Dibromofluoromethane       99.6       70-130       %Rec       1       4/25/2020 4:28:21 PM       W6841                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Trichloroethene (TCE)       | ND     | 1.0    | μg/L       | 1  | 4/25/2020 4:28:21 PM | W68413 |
| Vinyl chloride         ND         1.0         μg/L         1         4/25/2020 4:28:21 PM         W6841           Xylenes, Total         ND         1.5         μg/L         1         4/25/2020 4:28:21 PM         W6841           Surr: 1,2-Dichloroethane-d4         95.1         70-130         %Rec         1         4/25/2020 4:28:21 PM         W6841           Surr: 4-Bromofluorobenzene         99.7         70-130         %Rec         1         4/25/2020 4:28:21 PM         W6841           Surr: Dibromofluoromethane         99.6         70-130         %Rec         1         4/25/2020 4:28:21 PM         W6841                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Trichlorofluoromethane      | ND     | 1.0    | μg/L       | 1  | 4/25/2020 4:28:21 PM | W68413 |
| Xylenes, Total       ND       1.5       μg/L       1       4/25/2020 4:28:21 PM       W6841         Surr: 1,2-Dichloroethane-d4       95.1       70-130       %Rec       1       4/25/2020 4:28:21 PM       W6841         Surr: 4-Bromofluorobenzene       99.7       70-130       %Rec       1       4/25/2020 4:28:21 PM       W6841         Surr: Dibromofluoromethane       99.6       70-130       %Rec       1       4/25/2020 4:28:21 PM       W6841                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1,2,3-Trichloropropane      | ND     | 2.0    | μg/L       | 1  | 4/25/2020 4:28:21 PM | W68413 |
| Surr: 1,2-Dichloroethane-d4       95.1       70-130       %Rec       1       4/25/2020 4:28:21 PM       W6841         Surr: 4-Bromofluorobenzene       99.7       70-130       %Rec       1       4/25/2020 4:28:21 PM       W6841         Surr: Dibromofluoromethane       99.6       70-130       %Rec       1       4/25/2020 4:28:21 PM       W6841                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Vinyl chloride              | ND     | 1.0    | μg/L       | 1  | 4/25/2020 4:28:21 PM | W68413 |
| Surr: 4-Bromofluorobenzene       99.7       70-130       %Rec       1       4/25/2020 4:28:21 PM       W6841         Surr: Dibromofluoromethane       99.6       70-130       %Rec       1       4/25/2020 4:28:21 PM       W6841                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Xylenes, Total              | ND     | 1.5    | μg/L       | 1  | 4/25/2020 4:28:21 PM | W68413 |
| Surr: Dibromofluoromethane 99.6 70-130 %Rec 1 4/25/2020 4:28:21 PM W6841                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Surr: 1,2-Dichloroethane-d4 | 95.1   | 70-130 | %Rec       | 1  | 4/25/2020 4:28:21 PM | W68413 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Surr: 4-Bromofluorobenzene  | 99.7   | 70-130 | %Rec       | 1  | 4/25/2020 4:28:21 PM | W68413 |
| Surr: Toluene-d8 96.2 70-130 %Rec 1 4/25/2020 4:28:21 PM W6841                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Surr: Dibromofluoromethane  | 99.6   | 70-130 | %Rec       | 1  | 4/25/2020 4:28:21 PM | W68413 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Surr: Toluene-d8            | 96.2   | 70-130 | %Rec       | 1  | 4/25/2020 4:28:21 PM | W68413 |

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

## Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 24 of 37

Intera, Inc.

**Client:** 

# Hall Environmental Analysis Laboratory, Inc.

WO#: **2004A60** 

06-May-20

| Project: COA Ra    | il Yards |                 |           |                                              |                                              |           |               |           |          |      |  |  |
|--------------------|----------|-----------------|-----------|----------------------------------------------|----------------------------------------------|-----------|---------------|-----------|----------|------|--|--|
| Sample ID: MB-A    | Samp     | Туре: МЕ        | BLK       | Tes                                          | tCode: E                                     | PA Method | 200.7: Dissol | ved Metal | ls       |      |  |  |
| Client ID: PBW     | Bato     | ch ID: A6       | 8449      | F                                            | RunNo: 6                                     | 8449      |               |           |          |      |  |  |
| Prep Date:         | Analysis | Date: 4/        | 27/2020   | S                                            | SeqNo: 2                                     | 368369    | Units: mg/L   |           |          |      |  |  |
| Analyte            | Result   | PQL             | SPK value | SPK Ref Val                                  | %REC                                         | LowLimit  | HighLimit     | %RPD      | RPDLimit | Qual |  |  |
| Barium             | ND       | 0.0020          |           |                                              |                                              |           |               |           |          |      |  |  |
| Chromium           | ND       | 0.0060          |           |                                              |                                              |           |               |           |          |      |  |  |
| Iron               | ND       | 0.020           |           |                                              |                                              |           |               |           |          |      |  |  |
| Manganese          | ND       | 0.0020          |           |                                              |                                              |           |               |           |          |      |  |  |
| Zinc               | ND       | 0.010           |           |                                              |                                              |           |               |           |          |      |  |  |
| Sample ID: LLLCS-A | Samp     | Type: <b>LC</b> | SLL       | Tes                                          | TestCode: EPA Method 200.7: Dissolved Metals |           |               |           |          |      |  |  |
| Client ID: BatchQC | Bato     | ch ID: A6       | 8449      | F                                            | RunNo: <b>68449</b>                          |           |               |           |          |      |  |  |
| Prep Date:         | Analysis | Date: <b>4/</b> | 27/2020   | 5                                            | SeqNo: <b>2368373</b> Unit                   |           |               |           |          |      |  |  |
| Analyte            | Result   | PQL             | SPK value | SPK Ref Val                                  | %REC                                         | LowLimit  | HighLimit     | %RPD      | RPDLimit | Qual |  |  |
| Barium             | ND       | 0.0020          | 0.002000  | 0                                            | 94.6                                         | 50        | 150           |           |          |      |  |  |
| Chromium           | ND       | 0.0060          | 0.006000  | 0                                            | 99.4                                         | 50        | 150           |           |          |      |  |  |
| Iron               | ND       | 0.020           | 0.02000   | 0                                            | 87.9                                         | 50        | 150           |           |          |      |  |  |
| Manganese          | ND       | 0.0020          | 0.002000  | 0                                            | 95.8                                         | 50        | 150           |           |          |      |  |  |
| Zinc               | ND       | 0.010           | 0.01000   | 0                                            | 90.9                                         | 50        | 150           |           |          |      |  |  |
| Sample ID: LCS-A   | Samp     | Type: <b>LC</b> | s         | TestCode: EPA Method 200.7: Dissolved Metals |                                              |           |               |           |          |      |  |  |
| Client ID: LCSW    | Bato     | ch ID: A6       | 8449      | RunNo: 68449                                 |                                              |           |               |           |          |      |  |  |
| Prep Date:         | Analysis | Date: 4/        | 27/2020   | 9                                            | SeqNo: 2                                     | 368375    | Units: mg/L   |           |          |      |  |  |
| Analyte            | Result   | PQL             | SPK value | SPK Ref Val                                  | %REC                                         | LowLimit  | HighLimit     | %RPD      | RPDLimit | Qual |  |  |
| Barium             | 0.44     | 0.0020          | 0.5000    | 0                                            | 88.8                                         | 85        | 115           |           |          |      |  |  |
| Chromium           | 0.43     | 0.0060          | 0.5000    | 0                                            | 86.5                                         | 85        | 115           |           |          |      |  |  |
| Iron               | 0.48     | 0.020           | 0.5000    | 0                                            | 96.0                                         | 85        | 115           |           |          |      |  |  |
| Manganese          | 0.46     | 0.0020          | 0.5000    | 0                                            | 91.3                                         | 85        | 115           |           |          |      |  |  |
| Zinc               | 0.43     | 0.010           | 0.5000    | 0                                            | 85.9                                         | 85        | 115           |           |          |      |  |  |
| Sample ID: MB-A    | Samp     | Туре: МЕ        | BLK       | Tes                                          | tCode: E                                     | PA Method | 200.7: Dissol | ved Metal | ls       |      |  |  |
| Client ID: PBW     | Bato     | ch ID: A6       | 8450      | F                                            | RunNo: 6                                     | 8450      |               |           |          |      |  |  |
| Prep Date:         | Analysis | Date: <b>4/</b> | 28/2020   | 8                                            | SeqNo: 2                                     | 368467    | Units: mg/L   |           |          |      |  |  |
|                    |          |                 |           |                                              |                                              |           |               |           |          |      |  |  |

## Qualifiers:

Chromium Iron

\* Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND

ND

0.0060

0.020

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 25 of 37

## Hall Environmental Analysis Laboratory, Inc.

WO#: **2004A60** 

06-May-20

Client: Intera, Inc.
Project: COA Rail Yards

Sample ID: LLLCS-A SampType: LCSLL TestCode: EPA Method 200.7: Dissolved Metals Client ID: **BatchQC** Batch ID: A68450 RunNo: 68450 Prep Date: Analysis Date: 4/28/2020 SeqNo: 2368469 Units: mg/L Analyte PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Result Chromium ND 0.0060 0.006000 0 95.8 50 150 Iron ND 0.020 0.02000 0 93.8 50 150

Sample ID: LCS TestCode: EPA Method 200.7: Dissolved Metals SampType: LCS Client ID: LCSW Batch ID: A68450 RunNo: 68450 Prep Date: Analysis Date: 4/28/2020 SeqNo: 2368479 Units: mg/L Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Chromium 0.46 0.0060 0.5000 0 91.9 85 115 0.50 0.5000 0 99.5 85 Iron 0.020 115

#### Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

# Hall Environmental Analysis Laboratory, Inc.

WO#: **2004A60** 

06-May-20

| Client:                                              | Intera, In     |                                                                     |                                                                                     |                                                                                 |                                                           |                                                                                                  |                                                       |                                                                       |              |          |      |
|------------------------------------------------------|----------------|---------------------------------------------------------------------|-------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|-----------------------------------------------------------|--------------------------------------------------------------------------------------------------|-------------------------------------------------------|-----------------------------------------------------------------------|--------------|----------|------|
| Project:                                             | COA Rai        | 1 Yards                                                             |                                                                                     |                                                                                 |                                                           |                                                                                                  |                                                       |                                                                       |              |          |      |
| Sample ID:                                           | MB             | Samp                                                                | Туре: МЕ                                                                            | 3LK                                                                             | Tes                                                       | tCode: <b>EF</b>                                                                                 | A 200.8: D                                            | Dissolved Met                                                         | tals         |          |      |
| Client ID:                                           | PBW            | Batc                                                                | ch ID: <b>B6</b>                                                                    | 8526                                                                            | R                                                         | RunNo: 68                                                                                        | 3526                                                  |                                                                       |              |          |      |
| Prep Date:                                           |                | Analysis [                                                          | Date: <b>4/</b>                                                                     | 29/2020                                                                         | S                                                         | SeqNo: 23                                                                                        | 371038                                                | Units: mg/L                                                           |              |          |      |
| Analyte                                              |                | Result                                                              | PQL                                                                                 | SPK value                                                                       | SPK Ref Val                                               | %REC                                                                                             | LowLimit                                              | HighLimit                                                             | %RPD         | RPDLimit | Qual |
| Copper                                               |                | ND                                                                  | 0.0010                                                                              |                                                                                 |                                                           |                                                                                                  |                                                       |                                                                       |              |          |      |
| Lead                                                 |                | טא                                                                  | 0.00050                                                                             |                                                                                 |                                                           |                                                                                                  |                                                       |                                                                       |              |          |      |
| Sample ID:                                           | LLLCS          | Samp                                                                | Type: <b>LC</b>                                                                     | SLL                                                                             | Test                                                      | tCode: EP                                                                                        | 'A 200.8: D                                           | Dissolved Met                                                         | tals         |          |      |
| Client ID:                                           | BatchQC        | Batc                                                                | h ID: <b>B6</b>                                                                     | 8526                                                                            | R                                                         | RunNo: <b>68</b>                                                                                 | 3526                                                  |                                                                       |              |          |      |
| Prep Date:                                           |                | Analysis [                                                          | Oate: <b>4/</b>                                                                     | 29/2020                                                                         | 8                                                         | SeqNo: 23                                                                                        | 371039                                                | Units: mg/L                                                           |              |          |      |
| Analyte                                              |                | Result                                                              | PQL                                                                                 |                                                                                 | SPK Ref Val                                               | %REC                                                                                             | LowLimit                                              | HighLimit                                                             | %RPD         | RPDLimit | Qual |
| Copper                                               | · <del></del>  | ND                                                                  | 0.0010                                                                              | 0.001000                                                                        | 0                                                         | 97.0                                                                                             | 50                                                    | 150                                                                   | _            |          |      |
| Lead                                                 |                | 0.00050                                                             | 0.00050                                                                             | 0.0005000                                                                       | 0                                                         | 100                                                                                              | 50                                                    | 150                                                                   |              |          |      |
| Sample ID:                                           | LCS            | Samp                                                                | Type: <b>LC</b>                                                                     | s                                                                               | Tes                                                       | tCode: <b>EF</b>                                                                                 | A 200.8: D                                            | Dissolved Met                                                         | tals         |          |      |
| Client ID:                                           | LCSW           | Batc                                                                | ch ID: <b>B6</b>                                                                    | 8526                                                                            | R                                                         | RunNo: <b>68</b>                                                                                 | 3526                                                  |                                                                       |              |          |      |
| Prep Date:                                           |                | Analysis [                                                          | Date: <b>4/</b>                                                                     | 29/2020                                                                         | S                                                         | SeqNo: 23                                                                                        | 371040                                                | Units: mg/L                                                           |              |          |      |
| Analyte                                              |                |                                                                     | PQL                                                                                 | SPK value                                                                       | CDV Dof Vol                                               | %REC                                                                                             | LowLimit                                              | HighLimit                                                             | %RPD         | RPDLimit | Qual |
|                                                      |                | Result                                                              |                                                                                     |                                                                                 |                                                           |                                                                                                  |                                                       |                                                                       |              |          |      |
| Copper                                               |                | 0.024                                                               | 0.0010                                                                              | 0.02500                                                                         | 0                                                         | 96.7                                                                                             | 85                                                    | 115                                                                   |              |          |      |
| Copper<br>Lead                                       |                | 0.024                                                               |                                                                                     |                                                                                 |                                                           |                                                                                                  | 85<br>85                                              |                                                                       | _            |          |      |
| Lead                                                 | 2004A60-001EMS | 0.024<br>0.012                                                      | 0.0010<br>0.00050                                                                   | 0.02500<br>0.01250                                                              | 0                                                         | 96.7<br>96.9                                                                                     | 85                                                    | 115                                                                   | ìals         |          |      |
| Lead                                                 |                | 0.024<br>0.012                                                      | 0.0010<br>0.00050                                                                   | 0.02500<br>0.01250                                                              | 0<br>0<br>Test                                            | 96.7<br>96.9                                                                                     | 85<br>PA 200.8: D                                     | 115<br>115                                                            | tals         |          |      |
| Lead Sample ID:                                      | RAILMW08       | 0.024<br>0.012                                                      | 0.0010<br>0.00050<br>Type: <b>MS</b>                                                | 0.02500<br>0.01250<br>68526                                                     | 0<br>0<br>Test                                            | 96.7<br>96.9<br>tCode: <b>EP</b>                                                                 | 85<br>PA 200.8: D                                     | 115<br>115                                                            | tals         |          |      |
| Sample ID:                                           | RAILMW08       | 0.024<br>0.012<br>SLL Samp                                          | 0.0010<br>0.00050<br>Type: <b>MS</b>                                                | 0.02500<br>0.01250<br>6<br>88526<br>(29/2020                                    | 0<br>0<br>Test                                            | 96.7<br>96.9<br>tCode: <b>EP</b><br>RunNo: <b>68</b><br>SeqNo: <b>23</b>                         | 85<br>PA 200.8: D                                     | 115<br>115<br>Dissolved Met                                           | tals<br>%RPD | RPDLimit | Qual |
| Sample ID:<br>Client ID:<br>Prep Date:               | RAILMW08       | 0.024<br>0.012<br>ELL Samp<br>Batc<br>Analysis [                    | 0.0010<br>0.00050<br>Type: MS                                                       | 0.02500<br>0.01250<br>6.8526<br>729/2020<br>SPK value                           | 0<br>0<br>Test<br>R                                       | 96.7<br>96.9<br>tCode: <b>EP</b><br>RunNo: <b>68</b><br>SeqNo: <b>23</b>                         | 85<br>PA 200.8: D<br>3526<br>371042                   | 115<br>115<br>Dissolved Met                                           |              | RPDLimit | Qual |
| Sample ID: Client ID: Prep Date: Analyte             | RAILMW08       | 0.024<br>0.012<br>BLL Samp<br>Batc<br>Analysis I<br>Result<br>0.024 | 0.0010<br>0.00050<br>Type: MS<br>ch ID: B6<br>Date: 4/2                             | 0.02500<br>0.01250<br>6.8526<br>729/2020<br>SPK value                           | 0<br>0<br>Test<br>R<br>S<br>SPK Ref Val                   | 96.7<br>96.9<br>tCode: EP<br>RunNo: 68<br>SeqNo: 23<br>%REC                                      | 85<br>PA 200.8: D<br>3526<br>371042<br>LowLimit       | 115<br>115<br>Dissolved Met<br>Units: mg/L<br>HighLimit               |              | RPDLimit | Qual |
| Sample ID: Client ID: Prep Date: Analyte Copper Lead | RAILMW08       | 0.024 0.012  BLL Samp Batc Analysis [ Result 0.024 0.011            | 0.0010<br>0.00050<br>Type: MS<br>ch ID: B6<br>Date: 4/:<br>PQL<br>0.0010<br>0.00050 | 0.02500<br>0.01250<br>68526<br>(29/2020<br>SPK value<br>0.02500<br>0.01250      | 0<br>0<br>Test<br>R<br>S<br>SPK Ref Val<br>0.0007778      | 96.7<br>96.9<br>tCode: <b>EP</b><br>RunNo: <b>68</b><br>SeqNo: <b>23</b><br>%REC<br>91.7<br>85.1 | 85 PA 200.8: D 8526 871042 LowLimit 70 70             | 115<br>115<br>Dissolved Met<br>Units: mg/L<br>HighLimit<br>130        | %RPD         | RPDLimit | Qual |
| Sample ID: Client ID: Prep Date: Analyte Copper Lead | RAILMW08       | 0.024 0.012  SLL Samp Batc Analysis [ Result 0.024 0.011            | 0.0010<br>0.00050<br>Type: MS<br>ch ID: B6<br>Date: 4/:<br>PQL<br>0.0010<br>0.00050 | 0.02500<br>0.01250<br>6<br>88526<br>729/2020<br>SPK value<br>0.02500<br>0.01250 | 0<br>0<br>Test<br>R<br>S<br>SPK Ref Val<br>0.0007778<br>0 | 96.7<br>96.9<br>tCode: <b>EP</b><br>RunNo: <b>68</b><br>SeqNo: <b>23</b><br>%REC<br>91.7<br>85.1 | 85 PA 200.8: D 8526 871042 LowLimit 70 70 PA 200.8: D | 115<br>115<br>Dissolved Met<br>Units: mg/L<br>HighLimit<br>130<br>130 | %RPD         | RPDLimit | Qual |

## Qualifiers:

Analyte

Copper

Lead

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

Result

0.024

PQL

0.0010

0.011 0.00050

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

B Analyte detected in the associated Method Blank

94.4

86.6

LowLimit

70

70

HighLimit

130

130

%RPD

2.81

1.74

**RPDLimit** 

20

20

Qual

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

SPK value SPK Ref Val %REC

0.02500 0.0007778

0.01250

Page 27 of 37

## Hall Environmental Analysis Laboratory, Inc.

WO#: **2004A60** 

06-May-20

Client: Intera, Inc.

Project: COA Rail Yards

Sample ID: MB-52123 SampType: MBLK TestCode: EPA Method 8011/504.1: EDB

Client ID: PBW Batch ID: 52123 RunNo: 68492

Prep Date: 4/28/2020 Analysis Date: 4/28/2020 SeqNo: 2369970 Units: μg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

1,2-Dibromoethane ND 0.010

Sample ID: LCS-52123 SampType: LCS TestCode: EPA Method 8011/504.1: EDB

Client ID: LCSW Batch ID: 52123 RunNo: 68492

Prep Date: 4/28/2020 Analysis Date: 4/28/2020 SeqNo: 2369971 Units: μg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

1.2-Dibromoethane 0.12 0.010 0.1000 0 117 70 130

Sample ID: 2004A60-003BMS SampType: MS TestCode: EPA Method 8011/504.1: EDB

Client ID: RAILMW02 Batch ID: 52123 RunNo: 68492

Prep Date: 4/28/2020 Analysis Date: 4/28/2020 SeqNo: 2369996 Units: μg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

1,2-Dibromoethane 0.097 0.0093 0.09333 0 104 65 135

Sample ID: 2004A60-003BMSD SampType: MSD TestCode: EPA Method 8011/504.1: EDB

Client ID: RAILMW02 Batch ID: 52123 RunNo: 68492

Prep Date: 4/28/2020 Analysis Date: 4/28/2020 SeqNo: 2369997 Units: µg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

1.2-Dibromoethane 0.10 0.0094 0.09434 0 106 65 135 2.59 20

Sample ID: MB-52123 SampType: MBLK TestCode: EPA Method 8011/504.1: EDB

Client ID: PBW Batch ID: 52123 RunNo: 68492

Prep Date: 4/28/2020 Analysis Date: 4/28/2020 SeqNo: 2369999 Units: μg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

1,2-Dibromoethane ND 0.010

## NOTES:

No trip blank was included with work order No trip blank was included with work order

#### Qualifiers:

\* Value exceeds Maximum Contaminant Level

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 28 of 37

# Hall Environmental Analysis Laboratory, Inc.

0.92

1.000

WO#: **2004A60** 

06-May-20

| Client: Intera, Intera | Inc.<br>ail Yards                                   |                  |           |             |                   |           |              |          |          |      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|------------------|-----------|-------------|-------------------|-----------|--------------|----------|----------|------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     | MC               |           | T           | +Cada: <b>F</b> l | DA Mathad | 0045M/D- Dia | aal Dana |          |      |
| Sample ID: 2004A60-001CM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                     | ype: <b>M</b> \$ |           |             |                   |           | 8015M/D: Die | sei Kang | е        |      |
| Client ID: RAILMW08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Batch                                               | 1D: <b>52</b>    | 139       | F           | RunNo: 6          | 8535      |              |          |          |      |
| Prep Date: 4/28/2020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Analysis D                                          | ate: 4/          | 29/2020   | 9           | SeqNo: 2          | 371369    | Units: mg/L  |          |          |      |
| Analyte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Result                                              | PQL              | SPK value | SPK Ref Val | %REC              | LowLimit  | HighLimit    | %RPD     | RPDLimit | Qual |
| Diesel Range Organics (DRO)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5.0                                                 | 1.0              | 5.000     | 0           | 99.7              | 70        | 130          |          |          |      |
| Surr: DNOP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.48                                                |                  | 0.5000    |             | 96.2              | 70        | 130          |          |          |      |
| Sample ID: 2004A60-001CM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | I <b>SD</b> SampT                                   | ype: <b>M</b> \$ | SD        | Tes         | tCode: El         | PA Method | 8015M/D: Die | sel Rang | e        |      |
| Client ID: RAILMW08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Batch                                               | 1D: <b>52</b>    | 139       | F           | RunNo: 6          | 8535      |              |          |          |      |
| Prep Date: 4/28/2020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Analysis D                                          | ate: 4/          | 29/2020   | 5           | SeqNo: 2          | 371370    | Units: mg/L  |          |          |      |
| Analyte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Result                                              | PQL              | SPK value | SPK Ref Val | %REC              | LowLimit  | HighLimit    | %RPD     | RPDLimit | Qual |
| Diesel Range Organics (DRO)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4.8                                                 | 1.0              | 5.000     | 0           | 96.8              | 70        | 130          | 2.96     | 20       |      |
| Surr: DNOP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.46                                                |                  | 0.5000    |             | 92.6              | 70        | 130          | 0        | 0        |      |
| Sample ID: LCS-52139                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | SampT                                               | ype: <b>LC</b>   | s         | Tes         | tCode: El         | PA Method | 8015M/D: Die | sel Rang | e        |      |
| Client ID: LCSW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Batch                                               | n ID: <b>52</b>  | 139       | F           | RunNo: 6          | 8535      |              |          |          |      |
| Prep Date: 4/28/2020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Analysis D                                          | ate: 4/          | 29/2020   | S           | SeqNo: 2          | 371388    | Units: mg/L  |          |          |      |
| Analyte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Result                                              | PQL              | SPK value | SPK Ref Val | %REC              | LowLimit  | HighLimit    | %RPD     | RPDLimit | Qual |
| Diesel Range Organics (DRO)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5.3                                                 | 1.0              | 5.000     | 0           | 106               | 70        | 130          |          |          |      |
| Surr: DNOP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.48                                                |                  | 0.5000    |             | 96.3              | 70        | 130          |          |          |      |
| Sample ID: MB-52139                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SampT                                               | ype: ME          | BLK       | Tes         | tCode: El         | PA Method | 8015M/D: Die | sel Rang | e        |      |
| Client ID: PBW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Batch                                               | 1D: <b>52</b>    | 139       | F           | RunNo: 6          | 8535      |              |          |          |      |
| Prep Date: 4/28/2020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Analysis Date: 4/29/2020 SeqNo: 2371389 Units: mg/L |                  |           |             |                   |           |              |          |          |      |
| Analyte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Result                                              | PQL              | SPK value | SPK Ref Val | %REC              | LowLimit  | HighLimit    | %RPD     | RPDLimit | Qual |
| Diesel Range Organics (DRO)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ND                                                  | 1.0              |           |             |                   |           |              |          |          |      |
| Motor Oil Range Organics (MRO)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ND                                                  | 5.0              |           |             |                   |           |              |          |          |      |

## Qualifiers:

Surr: DNOP

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

92.2

70

130

- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

# Hall Environmental Analysis Laboratory, Inc.

WO#: **2004A60** 

06-May-20

Client: Intera, Inc.
Project: COA Rail Yards

Sample ID: mb1 SampType: MBLK TestCode: EPA Method 8260B: VOLATILES

Client ID: PBW Batch ID: W68413 RunNo: 68413

| Client ID: PBW                 | Batch ID: <b>W68413</b> |          | F         | RunNo: 68   | 3413     |          |             |      |          |      |
|--------------------------------|-------------------------|----------|-----------|-------------|----------|----------|-------------|------|----------|------|
| Prep Date:                     | Analysis D              | Date: 4/ | 25/2020   | 5           | SeqNo: 2 | 366850   | Units: µg/L |      |          |      |
| Analyte                        | Result                  | PQL      | SPK value | SPK Ref Val | %REC     | LowLimit | HighLimit   | %RPD | RPDLimit | Qual |
| Benzene                        | ND                      | 1.0      |           |             |          |          |             |      |          |      |
| Toluene                        | ND                      | 1.0      |           |             |          |          |             |      |          |      |
| Ethylbenzene                   | ND                      | 1.0      |           |             |          |          |             |      |          |      |
| Methyl tert-butyl ether (MTBE) | ND                      | 1.0      |           |             |          |          |             |      |          |      |
| 1,2,4-Trimethylbenzene         | ND                      | 1.0      |           |             |          |          |             |      |          |      |
| 1,3,5-Trimethylbenzene         | ND                      | 1.0      |           |             |          |          |             |      |          |      |
| 1,2-Dichloroethane (EDC)       | ND                      | 1.0      |           |             |          |          |             |      |          |      |
| 1,2-Dibromoethane (EDB)        | ND                      | 1.0      |           |             |          |          |             |      |          |      |
| Naphthalene                    | ND                      | 2.0      |           |             |          |          |             |      |          |      |
| 1-Methylnaphthalene            | ND                      | 4.0      |           |             |          |          |             |      |          |      |
| 2-Methylnaphthalene            | ND                      | 4.0      |           |             |          |          |             |      |          |      |
| Acetone                        | ND                      | 10       |           |             |          |          |             |      |          |      |
| Bromobenzene                   | ND                      | 1.0      |           |             |          |          |             |      |          |      |
| Bromodichloromethane           | ND                      | 1.0      |           |             |          |          |             |      |          |      |
| Bromoform                      | ND                      | 1.0      |           |             |          |          |             |      |          |      |
| Bromomethane                   | ND                      | 3.0      |           |             |          |          |             |      |          |      |
| 2-Butanone                     | ND                      | 10       |           |             |          |          |             |      |          |      |
| Carbon disulfide               | ND                      | 10       |           |             |          |          |             |      |          |      |
| Carbon Tetrachloride           | ND                      | 1.0      |           |             |          |          |             |      |          |      |
| Chlorobenzene                  | ND                      | 1.0      |           |             |          |          |             |      |          |      |
| Chloroethane                   | ND                      | 2.0      |           |             |          |          |             |      |          |      |
| Chloroform                     | ND                      | 1.0      |           |             |          |          |             |      |          |      |
| Chloromethane                  | ND                      | 3.0      |           |             |          |          |             |      |          |      |
| 2-Chlorotoluene                | ND                      | 1.0      |           |             |          |          |             |      |          |      |
| 4-Chlorotoluene                | ND                      | 1.0      |           |             |          |          |             |      |          |      |
| cis-1,2-DCE                    | ND                      | 1.0      |           |             |          |          |             |      |          |      |
| cis-1,3-Dichloropropene        | ND                      | 1.0      |           |             |          |          |             |      |          |      |
| 1,2-Dibromo-3-chloropropane    | ND                      | 2.0      |           |             |          |          |             |      |          |      |
| Dibromochloromethane           | ND                      | 1.0      |           |             |          |          |             |      |          |      |
| Dibromomethane                 | ND                      | 1.0      |           |             |          |          |             |      |          |      |
| 1,2-Dichlorobenzene            | ND                      | 1.0      |           |             |          |          |             |      |          |      |
| 1,3-Dichlorobenzene            | ND                      | 1.0      |           |             |          |          |             |      |          |      |
| 1,4-Dichlorobenzene            | ND                      | 1.0      |           |             |          |          |             |      |          |      |
| Dichlorodifluoromethane        | ND                      | 1.0      |           |             |          |          |             |      |          |      |
| 1,1-Dichloroethane             | ND                      | 1.0      |           |             |          |          |             |      |          |      |
| 1,1-Dichloroethene             | ND                      | 1.0      |           |             |          |          |             |      |          |      |
| 1,2-Dichloropropane            | ND                      | 1.0      |           |             |          |          |             |      |          |      |
| 1,3-Dichloropropane            | ND                      | 1.0      |           |             |          |          |             |      |          |      |
| 2,2-Dichloropropane            | ND                      | 2.0      |           |             |          |          |             |      |          |      |
|                                |                         |          |           |             |          |          |             |      |          |      |

## Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

# Hall Environmental Analysis Laboratory, Inc.

WO#: **2004A60** 

06-May-20

Client: Intera, Inc.
Project: COA Rail Yards

| Sample ID: mb1              | SampT      | ype: ME | BLK       | Tes         | tCode: El | PA Method | 8260B: VOL  | ATILES |          |      |
|-----------------------------|------------|---------|-----------|-------------|-----------|-----------|-------------|--------|----------|------|
| Client ID: PBW              | Batch      | n ID: W | 8413      | F           | RunNo: 6  | 8413      |             |        |          |      |
| Prep Date:                  | Analysis D | ate: 4/ | 25/2020   | 5           | SeqNo: 2: | 366850    | Units: µg/L |        |          |      |
| Analyte                     | Result     | PQL     | SPK value | SPK Ref Val | %REC      | LowLimit  | HighLimit   | %RPD   | RPDLimit | Qual |
| 1,1-Dichloropropene         | ND         | 1.0     |           |             |           |           |             |        |          |      |
| Hexachlorobutadiene         | ND         | 1.0     |           |             |           |           |             |        |          |      |
| 2-Hexanone                  | ND         | 10      |           |             |           |           |             |        |          |      |
| Isopropylbenzene            | ND         | 1.0     |           |             |           |           |             |        |          |      |
| 4-Isopropyltoluene          | ND         | 1.0     |           |             |           |           |             |        |          |      |
| 4-Methyl-2-pentanone        | ND         | 10      |           |             |           |           |             |        |          |      |
| Methylene Chloride          | ND         | 3.0     |           |             |           |           |             |        |          |      |
| n-Butylbenzene              | ND         | 3.0     |           |             |           |           |             |        |          |      |
| n-Propylbenzene             | ND         | 1.0     |           |             |           |           |             |        |          |      |
| sec-Butylbenzene            | ND         | 1.0     |           |             |           |           |             |        |          |      |
| Styrene                     | ND         | 1.0     |           |             |           |           |             |        |          |      |
| tert-Butylbenzene           | ND         | 1.0     |           |             |           |           |             |        |          |      |
| 1,1,1,2-Tetrachloroethane   | ND         | 1.0     |           |             |           |           |             |        |          |      |
| 1,1,2,2-Tetrachloroethane   | ND         | 2.0     |           |             |           |           |             |        |          |      |
| Tetrachloroethene (PCE)     | ND         | 1.0     |           |             |           |           |             |        |          |      |
| trans-1,2-DCE               | ND         | 1.0     |           |             |           |           |             |        |          |      |
| trans-1,3-Dichloropropene   | ND         | 1.0     |           |             |           |           |             |        |          |      |
| 1,2,3-Trichlorobenzene      | ND         | 1.0     |           |             |           |           |             |        |          |      |
| 1,2,4-Trichlorobenzene      | ND         | 1.0     |           |             |           |           |             |        |          |      |
| 1,1,1-Trichloroethane       | ND         | 1.0     |           |             |           |           |             |        |          |      |
| 1,1,2-Trichloroethane       | ND         | 1.0     |           |             |           |           |             |        |          |      |
| Trichloroethene (TCE)       | ND         | 1.0     |           |             |           |           |             |        |          |      |
| Trichlorofluoromethane      | ND         | 1.0     |           |             |           |           |             |        |          |      |
| 1,2,3-Trichloropropane      | ND         | 2.0     |           |             |           |           |             |        |          |      |
| Vinyl chloride              | ND         | 1.0     |           |             |           |           |             |        |          |      |
| Xylenes, Total              | ND         | 1.5     |           |             |           |           |             |        |          |      |
| Surr: 1,2-Dichloroethane-d4 | 9.3        |         | 10.00     |             | 93.3      | 70        | 130         |        |          |      |
| Surr: 4-Bromofluorobenzene  | 10         |         | 10.00     |             | 100       | 70        | 130         |        |          |      |
| Surr: Dibromofluoromethane  | 9.8        |         | 10.00     |             | 98.0      | 70        | 130         |        |          |      |
| Surr: Toluene-d8            | 9.6        |         | 10.00     |             | 95.6      | 70        | 130         |        |          |      |

| Sample ID: 100ng lcs | S          | TestCode: EPA Method 8260B: VOLATILES |           |             |          |          |             |      |          |      |
|----------------------|------------|---------------------------------------|-----------|-------------|----------|----------|-------------|------|----------|------|
| Client ID: LCSW      | Batch      | 8413                                  | F         | RunNo: 6    | 8413     |          |             |      |          |      |
| Prep Date:           | Analysis D | ate: <b>4/</b> 2                      | 25/2020   | 8           | SeqNo: 2 | 366851   | Units: µg/L |      |          |      |
| Analyte              | Result     | PQL                                   | SPK value | SPK Ref Val | %REC     | LowLimit | HighLimit   | %RPD | RPDLimit | Qual |
| Benzene              | 20         | 1.0                                   | 20.00     | 0           | 97.8     | 70       | 130         |      |          |      |
| Toluene              | 22         | 1.0                                   | 20.00     | 0           | 108      | 70       | 130         |      |          |      |
| Chlorobenzene        | 23         | 1.0                                   | 20.00     | 0           | 114      | 70       | 130         |      |          |      |

## **Qualifiers:**

- \* Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 31 of 37

# Hall Environmental Analysis Laboratory, Inc.

WO#: **2004A60** 

06-May-20

Client: Intera, Inc.

Project: COA Rail Yards

| Sample ID: 100ng lcs        | SampType: LCS            |     |           | TestCode: EPA Method 8260B: VOLATILES |      |          |             |      |          |      |
|-----------------------------|--------------------------|-----|-----------|---------------------------------------|------|----------|-------------|------|----------|------|
| Client ID: LCSW             | Batch ID: W68413         |     |           | F                                     | 8413 |          |             |      |          |      |
| Prep Date:                  | Analysis Date: 4/25/2020 |     |           | SeqNo: 2366851                        |      |          | Units: µg/L |      |          |      |
| Analyte                     | Result                   | PQL | SPK value | SPK Ref Val                           | %REC | LowLimit | HighLimit   | %RPD | RPDLimit | Qual |
| 1,1-Dichloroethene          | 21                       | 1.0 | 20.00     | 0                                     | 107  | 70       | 130         |      |          |      |
| Trichloroethene (TCE)       | 19                       | 1.0 | 20.00     | 0                                     | 95.1 | 70       | 130         |      |          |      |
| Surr: 1,2-Dichloroethane-d4 | 9.2                      |     | 10.00     |                                       | 92.1 | 70       | 130         |      |          |      |
| Surr: 4-Bromofluorobenzene  | 10                       |     | 10.00     |                                       | 99.8 | 70       | 130         |      |          |      |
| Surr: Dibromofluoromethane  | 9.8                      |     | 10.00     |                                       | 98.0 | 70       | 130         |      |          |      |
| Surr: Toluene-d8            | 9.8                      |     | 10.00     |                                       | 97.8 | 70       | 130         |      |          |      |

| Sample ID: 2004a60-001a ms  | SampT      | ype: <b>MS</b>           | 3         | Tes         | tCode: El           |          |             |      |          |      |
|-----------------------------|------------|--------------------------|-----------|-------------|---------------------|----------|-------------|------|----------|------|
| Client ID: RAILMW08         | Batch      | n ID: <b>W</b> 6         | 8413      | F           | RunNo: <b>68413</b> |          |             |      |          |      |
| Prep Date:                  | Analysis D | Analysis Date: 4/25/2020 |           |             | SeqNo: 2            | 366855   | Units: µg/L |      |          |      |
| Analyte                     | Result     | PQL                      | SPK value | SPK Ref Val | %REC                | LowLimit | HighLimit   | %RPD | RPDLimit | Qual |
| Benzene                     | 19         | 1.0                      | 20.00     | 0           | 95.4                | 70       | 130         |      |          |      |
| Toluene                     | 21         | 1.0                      | 20.00     | 0           | 104                 | 70       | 130         |      |          |      |
| Chlorobenzene               | 22         | 1.0                      | 20.00     | 0           | 112                 | 70       | 130         |      |          |      |
| 1,1-Dichloroethene          | 20         | 1.0                      | 20.00     | 0           | 101                 | 70       | 130         |      |          |      |
| Trichloroethene (TCE)       | 19         | 1.0                      | 20.00     | 0           | 92.6                | 70       | 130         |      |          |      |
| Surr: 1,2-Dichloroethane-d4 | 8.8        |                          | 10.00     |             | 88.3                | 70       | 130         |      |          |      |
| Surr: 4-Bromofluorobenzene  | 9.8        |                          | 10.00     |             | 98.4                | 70       | 130         |      |          |      |
| Surr: Dibromofluoromethane  | 10         |                          | 10.00     |             | 99.9                | 70       | 130         |      |          |      |
| Surr: Toluene-d8            | 9.7        |                          | 10.00     |             | 96.8                | 70       | 130         |      |          |      |

| Sample ID: 2004a60-001a msd | I SampT                  | ype: MS | SD        | Tes         | tCode: El           |          |           |      |          |      |
|-----------------------------|--------------------------|---------|-----------|-------------|---------------------|----------|-----------|------|----------|------|
| Client ID: RAILMW08         | Batch ID: W68413         |         |           | F           | RunNo: <b>68413</b> |          |           |      |          |      |
| Prep Date:                  | Analysis Date: 4/25/2020 |         |           | 8           | SeqNo: 2            | 366856   |           |      |          |      |
| Analyte                     | Result                   | PQL     | SPK value | SPK Ref Val | %REC                | LowLimit | HighLimit | %RPD | RPDLimit | Qual |
| Benzene                     | 18                       | 1.0     | 20.00     | 0           | 89.8                | 70       | 130       | 6.12 | 20       |      |
| Toluene                     | 20                       | 1.0     | 20.00     | 0           | 101                 | 70       | 130       | 3.14 | 20       |      |
| Chlorobenzene               | 21                       | 1.0     | 20.00     | 0           | 107                 | 70       | 130       | 4.32 | 20       |      |
| 1,1-Dichloroethene          | 19                       | 1.0     | 20.00     | 0           | 95.3                | 70       | 130       | 5.75 | 20       |      |
| Trichloroethene (TCE)       | 18                       | 1.0     | 20.00     | 0           | 89.7                | 70       | 130       | 3.13 | 20       |      |
| Surr: 1,2-Dichloroethane-d4 | 9.2                      |         | 10.00     |             | 91.8                | 70       | 130       | 0    | 0        |      |
| Surr: 4-Bromofluorobenzene  | 9.9                      |         | 10.00     |             | 99.4                | 70       | 130       | 0    | 0        |      |
| Surr: Dibromofluoromethane  | 9.5                      |         | 10.00     |             | 94.6                | 70       | 130       | 0    | 0        |      |
| Surr: Toluene-d8            | 9.7                      |         | 10.00     |             | 96.8                | 70       | 130       | 0    | 0        |      |

## Qualifiers:

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 32 of 37

## Hall Environmental Analysis Laboratory, Inc.

WO#: **2004A60** 

06-May-20

Client: Intera, Inc.

Project: COA Rail Yards

Sample ID: MB-52095 SampType: MBLK TestCode: EPA Method 8310: PAHs Client ID: PBW Batch ID: 52095 RunNo: 68458 Prep Date: 4/27/2020 Analysis Date: 4/28/2020 SeqNo: 2369419 Units: µg/L Analyte PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Result Naphthalene ND 3.0 1-Methylnaphthalene ND 3.0 2-Methylnaphthalene ND 3.0 Acenaphthylene ND 3.0 Acenaphthene ND 3.0 Fluorene ND 0.80 Phenanthrene ND 0.60 Anthracene ND 0.60 Fluoranthene ND 0.40 Pyrene ND 0.40 ND 0.070 Benz(a)anthracene 0.20 ND Chrysene ND 0.10 Benzo(b)fluoranthene Benzo(k)fluoranthene ND 0.070 ND 0.070 Benzo(a)pyrene Dibenz(a,h)anthracene ND 0.12 ND 0.12 Benzo(g,h,i)perylene Indeno(1,2,3-cd)pyrene ND 0.25 Surr: Benzo(e)pyrene 10 20.00 50.0 43.5 108

| Sample ID: LCS-52095 | SampType: LCS TestCode: EPA Method |                   |           |             |           |          | 8310: PAHs  |      |          |      |
|----------------------|------------------------------------|-------------------|-----------|-------------|-----------|----------|-------------|------|----------|------|
| Client ID: LCSW      | Batcl                              | n ID: <b>52</b> 0 | 095       | R           | RunNo: 68 | 3458     |             |      |          |      |
| Prep Date: 4/27/2020 | Analysis D                         | Date: 4/          | 28/2020   | S           | SeqNo: 23 | 369420   | Units: µg/L |      |          |      |
| Analyte              | Result                             | PQL               | SPK value | SPK Ref Val | %REC      | LowLimit | HighLimit   | %RPD | RPDLimit | Qual |
| Naphthalene          | 36                                 | 3.0               | 80.00     | 0           | 45.4      | 34       | 92.6        |      |          |      |
| 1-Methylnaphthalene  | 38                                 | 3.0               | 80.20     | 0           | 47.1      | 35.4     | 95.3        |      |          |      |
| 2-Methylnaphthalene  | 38                                 | 3.0               | 80.00     | 0           | 46.9      | 33.7     | 95.3        |      |          |      |
| Acenaphthylene       | 38                                 | 3.0               | 80.20     | 0           | 46.8      | 32.1     | 112         |      |          |      |
| Acenaphthene         | 38                                 | 3.0               | 80.00     | 0           | 47.2      | 38.5     | 103         |      |          |      |
| Fluorene             | 3.6                                | 0.80              | 8.020     | 0           | 45.5      | 35       | 111         |      |          |      |
| Phenanthrene         | 2.0                                | 0.60              | 4.020     | 0           | 50.7      | 35.4     | 112         |      |          |      |
| Anthracene           | 2.1                                | 0.60              | 4.020     | 0           | 51.7      | 36.7     | 116         |      |          |      |
| Fluoranthene         | 4.4                                | 0.40              | 8.020     | 0           | 54.7      | 26.8     | 121         |      |          |      |
| Pyrene               | 4.2                                | 0.40              | 8.020     | 0           | 52.7      | 37.8     | 117         |      |          |      |
| Benz(a)anthracene    | 0.44                               | 0.070             | 0.8020    | 0           | 54.9      | 36.1     | 122         |      |          |      |
| Chrysene             | 2.2                                | 0.20              | 4.020     | 0           | 54.0      | 37.3     | 118         |      |          |      |
| Benzo(b)fluoranthene | 0.54                               | 0.10              | 1.002     | 0           | 53.9      | 35.6     | 120         |      |          |      |
| Benzo(k)fluoranthene | 0.27                               | 0.070             | 0.5000    | 0           | 54.0      | 36.2     | 118         |      |          |      |

#### Qualifiers:

- \* Value exceeds Maximum Contaminant Level
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 33 of 37

## Hall Environmental Analysis Laboratory, Inc.

SampType: MBLK

WO#: **2004A60** 

06-May-20

Client: Intera, Inc.
Project: COA Rail Yards

Sample ID: MB-52095

| Sample ID: LCS-52095   | ype: <b>LC</b> | S       | Tes       | tCode: El   | PA Method | 8310: PAHs  |           |      |          |      |
|------------------------|----------------|---------|-----------|-------------|-----------|-------------|-----------|------|----------|------|
| Client ID: LCSW        |                |         |           |             | RunNo: 6  | 8458        |           |      |          |      |
| Prep Date: 4/27/2020   | Date: 4/2      | 28/2020 | 9         | SeqNo: 2    | 369420    | Units: µg/L |           |      |          |      |
| Analyte                | Result         | PQL     | SPK value | SPK Ref Val | %REC      | LowLimit    | HighLimit | %RPD | RPDLimit | Qual |
| Benzo(a)pyrene         | 0.26           | 0.070   | 0.5020    | 0           | 51.8      | 37.3        | 115       |      |          |      |
| Dibenz(a,h)anthracene  | 0.52           | 0.12    | 1.002     | 0           | 51.9      | 32.7        | 125       |      |          |      |
| Benzo(g,h,i)perylene   | 0.52           | 0.12    | 1.000     | 0           | 52.0      | 34.8        | 123       |      |          |      |
| Indeno(1,2,3-cd)pyrene | 1.1            | 0.25    | 2.004     | 0           | 52.9      | 33.3        | 123       |      |          |      |
| Surr: Benzo(e)pyrene   | 11             |         | 20.00     |             | 55.7      | 43.5        | 108       |      |          |      |

TestCode: EPA Method 8310: PAHs

| Client ID: PBW         | Batch      | n ID: <b>52</b> 0 | 095       | F           | RunNo: 68 | 8458     |             |      |          |      |
|------------------------|------------|-------------------|-----------|-------------|-----------|----------|-------------|------|----------|------|
| Prep Date: 4/27/2020   | Analysis D | oate: <b>4/</b> 2 | 28/2020   | 9           | SeqNo: 2  | 370355   | Units: µg/L |      |          |      |
| Analyte                | Result     | PQL               | SPK value | SPK Ref Val | %REC      | LowLimit | HighLimit   | %RPD | RPDLimit | Qual |
| Naphthalene            | ND         | 3.0               |           |             |           |          |             |      |          |      |
| 1-Methylnaphthalene    | ND         | 3.0               |           |             |           |          |             |      |          |      |
| 2-Methylnaphthalene    | ND         | 3.0               |           |             |           |          |             |      |          |      |
| Acenaphthylene         | ND         | 3.0               |           |             |           |          |             |      |          |      |
| Acenaphthene           | ND         | 3.0               |           |             |           |          |             |      |          |      |
| Fluorene               | ND         | 0.80              |           |             |           |          |             |      |          |      |
| Phenanthrene           | ND         | 0.60              |           |             |           |          |             |      |          |      |
| Anthracene             | ND         | 0.60              |           |             |           |          |             |      |          |      |
| Fluoranthene           | ND         | 0.40              |           |             |           |          |             |      |          |      |
| Pyrene                 | ND         | 0.40              |           |             |           |          |             |      |          |      |
| Benz(a)anthracene      | ND         | 0.070             |           |             |           |          |             |      |          |      |
| Chrysene               | ND         | 0.20              |           |             |           |          |             |      |          |      |
| Benzo(b)fluoranthene   | ND         | 0.10              |           |             |           |          |             |      |          |      |
| Benzo(k)fluoranthene   | ND         | 0.070             |           |             |           |          |             |      |          |      |
| Benzo(a)pyrene         | ND         | 0.070             |           |             |           |          |             |      |          |      |
| Dibenz(a,h)anthracene  | ND         | 0.12              |           |             |           |          |             |      |          |      |
| Benzo(g,h,i)perylene   | ND         | 0.12              |           |             |           |          |             |      |          |      |
| Indeno(1,2,3-cd)pyrene | ND         | 0.25              |           |             |           |          |             |      |          |      |
| Surr: Benzo(e)pyrene   | 9.9        |                   | 20.00     |             | 49.7      | 43.5     | 108         |      |          |      |

| Sample ID: MB-52187        | SampT      | ype: MBLK TestCo |           |             |          | PA Method | 8310: PAHs  |      |          |      |
|----------------------------|------------|------------------|-----------|-------------|----------|-----------|-------------|------|----------|------|
| Client ID: PBW             | 187        | R                | tunNo: 6  | 8607        |          |           |             |      |          |      |
| Prep Date: 4/30/2020       | Analysis D | ate: 5/          | 4/2020    | S           | SeqNo: 2 | 375014    | Units: µg/L |      |          |      |
| Analyte                    | Result     | PQL              | SPK value | SPK Ref Val | %REC     | LowLimit  | HighLimit   | %RPD | RPDLimit | Qual |
| Naphthalene                | ND         | 3.0              |           |             |          |           |             |      |          |      |
| 1-Methylnaphthalene        | ND         | 3.0              |           |             |          |           |             |      |          |      |
| 2-Methylnaphthalene ND 3.0 |            |                  |           |             |          |           |             |      |          |      |
| Acenaphthylene ND 3.0      |            |                  |           |             |          |           |             |      |          |      |

### Qualifiers:

- \* Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 34 of 37

### Hall Environmental Analysis Laboratory, Inc.

WO#: **2004A60** 

06-May-20

Client: Intera, Inc.

Project: COA Rail Yards

Sample ID: MB-52187 SampType: MBLK TestCode: EPA Method 8310: PAHs Client ID: PBW Batch ID: 52187 RunNo: 68607 Analysis Date: 5/4/2020 Prep Date: 4/30/2020 SeqNo: 2375014 Units: µg/L PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Analyte Result Acenaphthene ND 3.0 Fluorene ND 0.80 ND 0.60 Phenanthrene Anthracene ND 0.60 Fluoranthene ND 0.40 ND 0.40 Pyrene Benz(a)anthracene ND 0.070 Chrysene ND 0.20 Benzo(b)fluoranthene ND 0.10 Benzo(k)fluoranthene ND 0.070 Benzo(a)pyrene ND 0.070 Dibenz(a,h)anthracene ND 0.12 ND 0.12 Benzo(g,h,i)perylene Indeno(1,2,3-cd)pyrene ND 0.25 Surr: Benzo(e)pyrene 14 20.00 71.6 43.5 108

| Sample ID: LCS-52187   | Samp       | Гуре: <b>LC</b>   | s         | Tes         | tCode: El | PA Method | 8310: PAHs  |      |          |      |
|------------------------|------------|-------------------|-----------|-------------|-----------|-----------|-------------|------|----------|------|
| Client ID: LCSW        | Batc       | h ID: <b>52</b> ' | 187       | F           | RunNo: 6  | 8607      |             |      |          |      |
| Prep Date: 4/30/2020   | Analysis [ | Date: <b>5/</b>   | 4/2020    | S           | SeqNo: 2  | 375015    | Units: µg/L |      |          |      |
| Analyte                | Result     | PQL               | SPK value | SPK Ref Val | %REC      | LowLimit  | HighLimit   | %RPD | RPDLimit | Qual |
| Naphthalene            | 43         | 3.0               | 80.00     | 0           | 54.3      | 34        | 92.6        |      |          |      |
| 1-Methylnaphthalene    | 44         | 3.0               | 80.20     | 0           | 54.8      | 35.4      | 95.3        |      |          |      |
| 2-Methylnaphthalene    | 44         | 3.0               | 80.00     | 0           | 54.4      | 33.7      | 95.3        |      |          |      |
| Acenaphthylene         | 44         | 3.0               | 80.20     | 0           | 54.4      | 32.1      | 112         |      |          |      |
| Acenaphthene           | 44         | 3.0               | 80.00     | 0           | 55.2      | 38.5      | 103         |      |          |      |
| Fluorene               | 4.3        | 0.80              | 8.020     | 0           | 53.7      | 35        | 111         |      |          |      |
| Phenanthrene           | 2.3        | 0.60              | 4.020     | 0           | 57.5      | 35.4      | 112         |      |          |      |
| Anthracene             | 2.3        | 0.60              | 4.020     | 0           | 58.2      | 36.7      | 116         |      |          |      |
| Fluoranthene           | 4.8        | 0.40              | 8.020     | 0           | 59.9      | 26.8      | 121         |      |          |      |
| Pyrene                 | 4.8        | 0.40              | 8.020     | 0           | 60.1      | 37.8      | 117         |      |          |      |
| Benz(a)anthracene      | 0.51       | 0.070             | 0.8020    | 0           | 63.6      | 36.1      | 122         |      |          |      |
| Chrysene               | 2.4        | 0.20              | 4.020     | 0           | 60.7      | 37.3      | 118         |      |          |      |
| Benzo(b)fluoranthene   | 0.62       | 0.10              | 1.002     | 0           | 61.9      | 35.6      | 120         |      |          |      |
| Benzo(k)fluoranthene   | 0.33       | 0.070             | 0.5000    | 0           | 66.0      | 36.2      | 118         |      |          |      |
| Benzo(a)pyrene         | 0.32       | 0.070             | 0.5020    | 0           | 63.7      | 37.3      | 115         |      |          |      |
| Dibenz(a,h)anthracene  | 0.63       | 0.12              | 1.002     | 0           | 62.9      | 32.7      | 125         |      |          |      |
| Benzo(g,h,i)perylene   | 0.63       | 0.12              | 1.000     | 0           | 63.0      | 34.8      | 123         |      |          |      |
| Indeno(1,2,3-cd)pyrene | 1.2        | 0.25              | 2.004     | 0           | 60.4      | 33.3      | 123         |      |          |      |

#### Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 35 of 37

### Hall Environmental Analysis Laboratory, Inc.

ND

ND

ND

14

0.12 0.12

0.25

20.00

WO#: **2004A60** 

06-May-20

Client: Intera, Inc.
Project: COA Rail Yards

Sample ID: LCS-52187 SampType: LCS TestCode: EPA Method 8310: PAHs

Client ID: LCSW Batch ID: 52187 RunNo: 68607

Prep Date: 4/30/2020 Analysis Date: 5/4/2020 SeqNo: 2375015 Units: μg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Surr: Benzo(e)pyrene 12 20.00 62.0 43.5 108

Sample ID: MB-52187 SampType: MBLK TestCode: EPA Method 8310: PAHs Client ID: PBW Batch ID: 52187 RunNo: 68607 Prep Date: 4/30/2020 Analysis Date: 5/4/2020 SeqNo: 2375060 Units: µg/L PQL SPK value SPK Ref Val %REC LowLimit %RPD **RPDLimit** Analyte Result HighLimit Qual ND Naphthalene 3.0 1-Methylnaphthalene ND 3.0 2-Methylnaphthalene ND 3.0 Acenaphthylene ND 3.0 ND 3.0 Acenaphthene Fluorene ND 0.80 0.60 ND Phenanthrene ND 0.60 Anthracene Fluoranthene ND 0.40 Pyrene ND 0.40 Benz(a)anthracene ND 0.070 ND 0.20 Chrysene Benzo(b)fluoranthene ND 0.10 Benzo(k)fluoranthene ND 0.070 Benzo(a)pyrene ND 0.070

#### Qualifiers:

Dibenz(a,h)anthracene

Indeno(1,2,3-cd)pyrene

Surr: Benzo(e)pyrene

Benzo(g,h,i)perylene

Value exceeds Maximum Contaminant Level

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

69.6

43.5

108

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 36 of 37

Intera, Inc.

**Client:** 

# Hall Environmental Analysis Laboratory, Inc.

WO#: **2004A60** 

06-May-20

| Project: COA Rai                           | l Yards    |                  |           |             |           |           |             |           |          |      |
|--------------------------------------------|------------|------------------|-----------|-------------|-----------|-----------|-------------|-----------|----------|------|
| Sample ID: mb1                             | SampT      | ype: ME          | BLK       | Tes         | tCode: El | PA Method | 8015D: Gaso | line Rang | e        |      |
| Client ID: PBW                             | Batch      | ID: GV           | V68413    | F           | RunNo: 6  | 8413      |             |           |          |      |
| Prep Date:                                 | Analysis D | ate: 4/          | 25/2020   | 8           | SeqNo: 2  | 366900    | Units: mg/L |           |          |      |
| Analyte                                    | Result     | PQL              | SPK value | SPK Ref Val | %REC      | LowLimit  | HighLimit   | %RPD      | RPDLimit | Qual |
| Gasoline Range Organics (GRO)<br>Surr: BFB | ND<br>9.8  | 0.050            | 10.00     |             | 98.0      | 70        | 130         |           |          |      |
| Sample ID: 2.5ug gro Ics                   | SampT      | ype: <b>LC</b>   | s         | Tes         | tCode: El | PA Method | 8015D: Gaso | line Rang | e        |      |
| Client ID: LCSW                            | Batch      | ID: GV           | V68413    | F           | RunNo: 6  | 8413      |             |           |          |      |
| Prep Date:                                 | Analysis D | ate: 4/          | 25/2020   | 8           | SeqNo: 2  | 366901    | Units: mg/L |           |          |      |
| Analyte                                    | Result     | PQL              | SPK value | SPK Ref Val | %REC      | LowLimit  | HighLimit   | %RPD      | RPDLimit | Qual |
| Gasoline Range Organics (GRO)              | 0.47       | 0.050            | 0.5000    | 0           | 94.7      | 70        | 130         |           |          |      |
| Surr: BFB                                  | 9.8        |                  | 10.00     |             | 97.9      | 70        | 130         |           |          |      |
| Sample ID: 2004a60-002a ms                 | SampT      | ype: <b>M</b> \$ | <br>S     | Tes         | tCode: El | PA Method | 8015D: Gaso | line Rang | e        |      |
| Client ID: RAILMW07                        | Batch      | ID: GV           | V68413    | F           | RunNo: 6  | 8413      |             |           |          |      |
| Prep Date:                                 | Analysis D | ate: 4/          | 25/2020   | S           | SeqNo: 2  | 366905    | Units: mg/L |           |          |      |
| Analyte                                    | Result     | PQL              | SPK value | SPK Ref Val | %REC      | LowLimit  | HighLimit   | %RPD      | RPDLimit | Qual |
| Gasoline Range Organics (GRO)              | 0.47       | 0.050            | 0.5000    | 0           | 94.2      | 70        | 130         |           |          |      |
| Surr: BFB                                  | 10         |                  | 10.00     |             | 101       | 70        | 130         |           |          |      |

| Sample ID: 2004a60-002a ms    | <b>d</b> SampT | ype: <b>MS</b> | SD        | Tes         | tCode: El | PA Method | 8015D: Gaso | line Rang | е        |      |
|-------------------------------|----------------|----------------|-----------|-------------|-----------|-----------|-------------|-----------|----------|------|
| Client ID: RAILMW07           | Batch          | ID: GV         | V68413    | F           | RunNo: 6  | 8413      |             |           |          |      |
| Prep Date:                    | Analysis D     | ate: <b>4/</b> | 25/2020   | S           | SeqNo: 2  | 366906    | Units: mg/L |           |          |      |
| Analyte                       | Result         | PQL            | SPK value | SPK Ref Val | %REC      | LowLimit  | HighLimit   | %RPD      | RPDLimit | Qual |
| Gasoline Range Organics (GRO) | 0.44           | 0.050          | 0.5000    | 0           | 87.4      | 70        | 130         | 7.53      | 20       |      |
| Surr: BFB                     | 9.7            |                | 10.00     |             | 97.3      | 70        | 130         | 0         | 0        |      |

### Qualifiers:

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit



Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107

Website: www.hallenvironmental.com

## Sample Log-In Check List

Client Name: INT Work Order Number: 2004A60 RcptNo: 1 Received By: Leah Baca 4/23/2020 4:38:00 PM Completed By: Desiree Dominguez 4/24/2020 11:08:05 AM 24/20 Reviewed By: Chain of Custody 1. Is Chain of Custody sufficiently complete? Yes 🗸 No 🗌 Not Present 2. How was the sample delivered? Client Log In 3. Was an attempt made to cool the samples? No 🗌 Yes 🗸 NA 🗌 No 🗌 4. Were all samples received at a temperature of >0° C to 6.0°C Yes V NA 🗌 5. Sample(s) in proper container(s)? Yes V No \_ 6. Sufficient sample volume for indicated test(s)? No 🗌 Yes V 7. Are samples (except VOA and ONG) properly preserved? Yes V No 8. Was preservative added to bottles? Yes \_ No V NA 🗌 9. Received at least 1 vial with headspace <1/4" for AQ VOA? Yes V No 🗌 NA 🗌 10. Were any sample containers received broken? Yes No V # of preserved bottles checke 11. Does paperwork match bottle labels? Yes V No 🗌 for pH: (Note discrepancies on chain of custody) r >12 unless noted) 12. Are matrices correctly identified on Chain of Custody? No 🗌 Adjusted? NO Yes 🗸 13. Is it clear what analyses were requested? Yes V No 🗌 Checked by: 5PA 4 24/20 14. Were all holding times able to be met? No 🗌 Yes V (If no, notify customer for authorization.) Special Handling (if applicable) 15. Was client notified of all discrepancies with this order? NA V Yes No 🗌 Person Notified: Date: By Whom: Via: eMail Phone Fax In Person Regarding: Client Instructions: 16. Additional remarks: 17. Cooler Information Cooler No Temp °C Condition Seal Intact Seal No Seal Date Signed By 1.2 Good Not Present

| TATAL DE LA COLONIA DE LA COLO | ANAI YSTS I ABORATORY | al com                    | - Albuquerque, NM 87109                       | 505-345-4107       | rest     | /2<br>(ju        | iesdAVI<br>GBC/30           | Preser                     | 8'<br>8'      | olifoi<br>oss /            | O latoT<br>WlozeIQ<br>OL OQ     | ×                  | \<br>\<br>\<br>\ | \<br>\<br>\ | メメ       | XX        | ××       | メメ        | ××        |  |   | and but he            | Comment copyed to the total plangenese |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|---------------------------|-----------------------------------------------|--------------------|----------|------------------|-----------------------------|----------------------------|---------------|----------------------------|---------------------------------|--------------------|------------------|-------------|----------|-----------|----------|-----------|-----------|--|---|-----------------------|----------------------------------------|
| CHAMP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | STS I                 | www.hallenvironmental.com | Albuquerque                                   | Fax 505-3          | THE SAME | †O               | PO₄, S                      |                            |               | (AO)                       | 7, 17, 13<br>7) 0828<br>8) 0728 | X                  | 92               | X           | X        | X         | X        | ×         | X         |  |   | als                   | t publication (                        |
| LAII                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NAL                   | alled www                 |                                               |                    | An       |                  |                             |                            | stals         | ∍M 8                       | PAHs t<br>ARDA                  | $\prec$            | y                | <i>y</i>    | (        | Y         | )        | )         |           |  |   | Dissolved metals      |                                        |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       |                           | 4901 Hawkins NE                               | Tel. 505-345-3975  |          |                  |                             | (1.40                      | g po          | Jetho                      | 9081 P<br>EDB (N                | X                  | (X)              | 7           | X        | 7.        | 17       | /         | X         |  |   | Dissolu               | 本でかれ                                   |
| I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       |                           | 490                                           | <u>e</u>           |          |                  | S (802<br>MM \ O            |                            |               |                            | / ХЭТ8<br>08:НЧТ                | ×                  | ×                | ×           | >        | ×         | ×        | ×         | ×         |  |   | Remarks:              | 7 A                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                           | Yards                                         |                    |          |                  |                             | %<br>□ No                  |               | (J.) 15=21(C)              | HEAL NO.                        |                    | 200-             | 5,00-       | - 004    | -005      | -006     | £00-      | -008      |  |   | Date Time 1/238 1/438 | Ďate Time                              |
| Time:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | □ Rush                | ***                       | Rail                                          |                    |          | ger:             | Tracy                       | Onrad Cla                  | (1)           | including CF):             | Preservative<br>Type            | HCL NASSOF<br>HNO3 | 1                |             |          |           |          |           | 4         |  | F | Via: CPC<br>Nr.       | Via:                                   |
| Turn-Around Time:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ©Standard             | Project Name:             | COR                                           | Project #:         |          | Project Manager: | Joe                         | Sampler: Ko                | # of Coolers: | Cooler Temp(including CF): | Container<br>Type and #         |                    | - /              |             |          |           |          |           | >         |  |   | Received by:          | Received by:                           |
| Chain-of-Custody Record                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Inc                   |                           | Mailing Address: 6000 Up town Blud NE Suite 2 | Albyrague KM 87110 | 246-1600 | ey @ intera, com | ☐ Level 4 (Full Validation) | npliance                   |               |                            | Sample Name                     | RATLINUES          | RAILMWOT         | RATIMWEZ    | RATIMWES | RAILMUNDY | RATLMWES | RATIONALL | RAILMW 10 |  |   | d by/                 | d by:                                  |
| of-Cu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                     |                           | 0000                                          | Albyan             | 505-24   | Tracy            |                             | ☐ Az Compliance<br>☐ Other |               |                            | Matrix                          | 1420               | K20              | HZD         | H20      | H20       | H20      | H20       | H20       |  |   | Relinquished by       | Relinquished by                        |
| hain-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Intera                |                           | Address                                       | ,                  | EX.      | r Fax#:          | QA/QC Package:              |                            | <u>ا</u> ــ ا |                            | Time                            | (126               | 0220             | 1020        | 6111     | 1219      | 1317     | 1416      | 1540      |  |   | Time:<br>1638         | Time:                                  |
| O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Client:               |                           | Mailing                                       |                    | Phone #: | email or Fax#:   | QA/QC Packa                 | Accreditation:             | □ EDD (Type)  |                            | Date                            | 4/22/20            | W23/20           | 4/23/20     | 4/23/20  | 473/20    | 4/23/20  | 4/23/20   | 423/20    |  |   | 3/2                   | Date:                                  |

If necessary, samples submitted to Hall Environmental may be subcontracted to other accredited laboratories. This serves as notice of this possibility. Any sub-contracted data will be clearly notated on the analytical report.



Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

May 04, 2020

Joseph Tracy
Intera, Inc.
6000 Uptown Boulevard, NE Suite 220
Albuquerque, NM 87110

TEL: (505) 246-1600 FAX: (505) 246-2600

RE: COA Rail Yards OrderNo.: 2004A57

### Dear Joseph Tracy:

Hall Environmental Analysis Laboratory received 1 sample(s) on 4/24/2020 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results, it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifiers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0901

Sincerely,

Andy Freeman

Laboratory Manager

andyl

4901 Hawkins NE

Albuquerque, NM 87109

### Lab Order **2004A57**

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 5/4/2020

CLIENT: Intera, Inc.

Client Sample ID: RAILMW06

 Project:
 COA Rail Yards
 Collection Date: 4/24/2020 8:06:00 AM

 Lab ID:
 2004A57-001
 Matrix: AQUEOUS
 Received Date: 4/24/2020 10:05:00 AM

| Analyses                                   | Result | RL      | Qual Units | DF | Date Analyzed         | Batch  |
|--------------------------------------------|--------|---------|------------|----|-----------------------|--------|
| EPA 200.8: DISSOLVED METALS                |        |         |            |    | Analyst:              | bcv    |
| Copper                                     | 0.0011 | 0.0010  | mg/L       | 1  | 4/28/2020 12:41:53 PM | A68476 |
| Lead                                       | ND     | 0.00050 | mg/L       | 1  | 4/28/2020 12:41:53 PM | A68476 |
| EPA METHOD 200.7: DISSOLVED METALS         |        |         |            |    | Analyst:              | pmf    |
| Barium                                     | 0.052  | 0.0020  | mg/L       | 1  | 4/27/2020 6:53:16 PM  | A68449 |
| Chromium                                   | ND     | 0.0060  | mg/L       | 1  | 4/28/2020 3:32:06 AM  | A68450 |
| Iron                                       | ND     | 0.020   | mg/L       | 1  | 4/27/2020 6:53:16 PM  | A68449 |
| Manganese                                  | 0.59   | 0.0020  | * mg/L     | 1  | 4/27/2020 6:53:16 PM  | A68449 |
| Zinc                                       | 0.026  | 0.010   | mg/L       | 1  | 4/27/2020 6:53:16 PM  | A68449 |
| EPA METHOD 8015D: GASOLINE RANGE           |        |         |            |    | Analyst:              | DJF    |
| Gasoline Range Organics (GRO)              | ND     | 0.050   | mg/L       | 1  | 4/25/2020 3:15:34 AM  | GW6840 |
| Surr: BFB                                  | 94.9   | 70-130  | %Rec       | 1  | 4/25/2020 3:15:34 AM  | GW6840 |
| EPA METHOD 8011/504.1: EDB                 |        |         |            |    | Analyst:              | CLP    |
| 1,2-Dibromoethane                          | ND     | 0.0092  | μg/L       | 1  | 4/28/2020 11:13:09 AM | 52123  |
| NOTES:                                     |        |         |            |    |                       |        |
| No trip blank was included with work order |        |         |            |    |                       |        |
| EPA METHOD 8015M/D: DIESEL RANGE           |        |         |            |    | Analyst:              | BRM    |
| Diesel Range Organics (DRO)                | ND     | 1.0     | mg/L       | 1  | 4/27/2020 8:22:24 PM  | 52065  |
| Surr: DNOP                                 | 121    | 70-130  | %Rec       | 1  | 4/27/2020 8:22:24 PM  | 52065  |
| EPA METHOD 8310: PAHS                      |        |         |            |    | Analyst:              | TOM    |
| Naphthalene                                | ND     | 3.0     | μg/L       | 1  | 4/29/2020 1:06:47 PM  | 52095  |
| 1-Methylnaphthalene                        | ND     | 3.0     | μg/L       | 1  | 4/29/2020 1:06:47 PM  | 52095  |
| 2-Methylnaphthalene                        | ND     | 3.0     | μg/L       | 1  | 4/29/2020 1:06:47 PM  | 52095  |
| Acenaphthylene                             | ND     | 3.0     | μg/L       | 1  | 4/29/2020 1:06:47 PM  | 52095  |
| Acenaphthene                               | ND     | 3.0     | μg/L       | 1  | 4/29/2020 1:06:47 PM  | 52095  |
| Fluorene                                   | ND     | 0.80    | μg/L       | 1  | 4/29/2020 1:06:47 PM  | 52095  |
| Phenanthrene                               | ND     | 0.60    | μg/L       | 1  | 4/29/2020 1:06:47 PM  | 52095  |
| Anthracene                                 | ND     | 0.60    | μg/L       | 1  | 4/29/2020 1:06:47 PM  | 52095  |
| Fluoranthene                               | ND     | 0.40    | μg/L       | 1  | 4/29/2020 1:06:47 PM  | 52095  |
| Pyrene                                     | ND     | 0.40    | μg/L       | 1  | 4/29/2020 1:06:47 PM  | 52095  |
| Benz(a)anthracene                          | ND     | 0.070   | μg/L       | 1  | 4/29/2020 1:06:47 PM  | 52095  |
| Chrysene                                   | ND     | 0.20    | μg/L       | 1  | 4/29/2020 1:06:47 PM  | 52095  |
| Benzo(b)fluoranthene                       | ND     | 0.10    | μg/L       | 1  | 4/29/2020 1:06:47 PM  | 52095  |
| Benzo(k)fluoranthene                       | ND     | 0.070   | μg/L       | 1  | 4/29/2020 1:06:47 PM  | 52095  |
| Benzo(a)pyrene                             | ND     | 0.070   | μg/L       | 1  | 4/29/2020 1:06:47 PM  | 52095  |
| Dibenz(a,h)anthracene                      | ND     | 0.12    | μg/L       | 1  | 4/29/2020 1:06:47 PM  | 52095  |
| Benzo(g,h,i)perylene                       | ND     | 0.12    | μg/L       | 1  | 4/29/2020 1:06:47 PM  | 52095  |
| Indeno(1,2,3-cd)pyrene                     | ND     | 0.25    | μg/L       | 1  | 4/29/2020 1:06:47 PM  | 52095  |

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

#### Qualifiers:

- \* Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 1 of 14

## Lab Order **2004A57**

Date Reported: 5/4/2020

### Hall Environmental Analysis Laboratory, Inc.

CLIENT: Intera, Inc.

Client Sample ID: RAILMW06

 Project:
 COA Rail Yards
 Collection Date: 4/24/2020 8:06:00 AM

 Lab ID:
 2004A57-001
 Matrix: AQUEOUS
 Received Date: 4/24/2020 10:05:00 AM

| Analyses                       | Result | RL       | Qual Units | DF | Date Analyzed        | Batch  |
|--------------------------------|--------|----------|------------|----|----------------------|--------|
| EPA METHOD 8310: PAHS          |        |          |            |    | Analyst              | : TOM  |
| Surr: Benzo(e)pyrene           | 61.0   | 43.5-108 | %Rec       | 1  | 4/29/2020 1:06:47 PM | 52095  |
| EPA METHOD 8260B: VOLATILES    |        |          |            |    | Analyst              | : DJF  |
| Benzene                        | ND     | 1.0      | μg/L       | 1  | 4/25/2020 3:15:34 AM | W68408 |
| Toluene                        | ND     | 1.0      | μg/L       | 1  | 4/25/2020 3:15:34 AM | W68408 |
| Ethylbenzene                   | ND     | 1.0      | μg/L       | 1  | 4/25/2020 3:15:34 AM | W68408 |
| Methyl tert-butyl ether (MTBE) | ND     | 1.0      | μg/L       | 1  | 4/25/2020 3:15:34 AM | W68408 |
| 1,2,4-Trimethylbenzene         | ND     | 1.0      | μg/L       | 1  | 4/25/2020 3:15:34 AM | W68408 |
| 1,3,5-Trimethylbenzene         | ND     | 1.0      | μg/L       | 1  | 4/25/2020 3:15:34 AM | W68408 |
| 1,2-Dichloroethane (EDC)       | ND     | 1.0      | μg/L       | 1  | 4/25/2020 3:15:34 AM | W68408 |
| 1,2-Dibromoethane (EDB)        | ND     | 1.0      | μg/L       | 1  | 4/25/2020 3:15:34 AM | W68408 |
| Naphthalene                    | ND     | 2.0      | μg/L       | 1  | 4/25/2020 3:15:34 AM | W68408 |
| 1-Methylnaphthalene            | ND     | 4.0      | μg/L       | 1  | 4/25/2020 3:15:34 AM | W68408 |
| 2-Methylnaphthalene            | ND     | 4.0      | μg/L       | 1  | 4/25/2020 3:15:34 AM | W68408 |
| Acetone                        | ND     | 10       | μg/L       | 1  | 4/25/2020 3:15:34 AM | W68408 |
| Bromobenzene                   | ND     | 1.0      | μg/L       | 1  | 4/25/2020 3:15:34 AM | W68408 |
| Bromodichloromethane           | ND     | 1.0      | μg/L       | 1  | 4/25/2020 3:15:34 AM | W68408 |
| Bromoform                      | ND     | 1.0      | μg/L       | 1  | 4/25/2020 3:15:34 AM | W68408 |
| Bromomethane                   | ND     | 3.0      | μg/L       | 1  | 4/25/2020 3:15:34 AM | W68408 |
| 2-Butanone                     | ND     | 10       | μg/L       | 1  | 4/25/2020 3:15:34 AM | W68408 |
| Carbon disulfide               | ND     | 10       | μg/L       | 1  | 4/25/2020 3:15:34 AM | W68408 |
| Carbon Tetrachloride           | ND     | 1.0      | μg/L       | 1  | 4/25/2020 3:15:34 AM | W68408 |
| Chlorobenzene                  | ND     | 1.0      | μg/L       | 1  | 4/25/2020 3:15:34 AM | W68408 |
| Chloroethane                   | ND     | 2.0      | μg/L       | 1  | 4/25/2020 3:15:34 AM | W68408 |
| Chloroform                     | ND     | 1.0      | μg/L       | 1  | 4/25/2020 3:15:34 AM | W68408 |
| Chloromethane                  | ND     | 3.0      | μg/L       | 1  | 4/25/2020 3:15:34 AM | W68408 |
| 2-Chlorotoluene                | ND     | 1.0      | μg/L       | 1  | 4/25/2020 3:15:34 AM | W68408 |
| 4-Chlorotoluene                | ND     | 1.0      | μg/L       | 1  | 4/25/2020 3:15:34 AM | W68408 |
| cis-1,2-DCE                    | ND     | 1.0      | μg/L       | 1  | 4/25/2020 3:15:34 AM | W68408 |
| cis-1,3-Dichloropropene        | ND     | 1.0      | μg/L       | 1  | 4/25/2020 3:15:34 AM | W68408 |
| 1,2-Dibromo-3-chloropropane    | ND     | 2.0      | μg/L       | 1  | 4/25/2020 3:15:34 AM | W68408 |
| Dibromochloromethane           | ND     | 1.0      | μg/L       | 1  | 4/25/2020 3:15:34 AM | W68408 |
| Dibromomethane                 | ND     | 1.0      | μg/L       | 1  | 4/25/2020 3:15:34 AM | W68408 |
| 1,2-Dichlorobenzene            | ND     | 1.0      | μg/L       | 1  | 4/25/2020 3:15:34 AM | W68408 |
| 1,3-Dichlorobenzene            | ND     | 1.0      | μg/L       | 1  | 4/25/2020 3:15:34 AM | W68408 |
| 1,4-Dichlorobenzene            | ND     | 1.0      | μg/L       | 1  | 4/25/2020 3:15:34 AM | W68408 |
| Dichlorodifluoromethane        | ND     | 1.0      | μg/L       | 1  | 4/25/2020 3:15:34 AM | W68408 |
| 1,1-Dichloroethane             | ND     | 1.0      | μg/L       | 1  | 4/25/2020 3:15:34 AM | W68408 |
| 1,1-Dichloroethene             | ND     | 1.0      | μg/L       | 1  | 4/25/2020 3:15:34 AM | W68408 |
| 1,2-Dichloropropane            | ND     | 1.0      | μg/L       | 1  | 4/25/2020 3:15:34 AM | W68408 |

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

#### Qualifiers:

- \* Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 2 of 14

### Lab Order **2004A57**

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 5/4/2020

CLIENT: Intera, Inc.

Client Sample ID: RAILMW06

 Project:
 COA Rail Yards
 Collection Date: 4/24/2020 8:06:00 AM

 Lab ID:
 2004A57-001
 Matrix: AQUEOUS
 Received Date: 4/24/2020 10:05:00 AM

| Analyses                    | Result | RL     | Qual Units | DF | Date Analyzed        | Batch  |
|-----------------------------|--------|--------|------------|----|----------------------|--------|
| EPA METHOD 8260B: VOLATILES |        |        |            |    | Analyst              | DJF    |
| 1,3-Dichloropropane         | ND     | 1.0    | μg/L       | 1  | 4/25/2020 3:15:34 AM | W68408 |
| 2,2-Dichloropropane         | ND     | 2.0    | μg/L       | 1  | 4/25/2020 3:15:34 AM | W68408 |
| 1,1-Dichloropropene         | ND     | 1.0    | μg/L       | 1  | 4/25/2020 3:15:34 AM | W68408 |
| Hexachlorobutadiene         | ND     | 1.0    | μg/L       | 1  | 4/25/2020 3:15:34 AM | W68408 |
| 2-Hexanone                  | ND     | 10     | μg/L       | 1  | 4/25/2020 3:15:34 AM | W68408 |
| Isopropylbenzene            | ND     | 1.0    | μg/L       | 1  | 4/25/2020 3:15:34 AM | W68408 |
| 4-Isopropyltoluene          | ND     | 1.0    | μg/L       | 1  | 4/25/2020 3:15:34 AM | W68408 |
| 4-Methyl-2-pentanone        | ND     | 10     | μg/L       | 1  | 4/25/2020 3:15:34 AM | W68408 |
| Methylene Chloride          | ND     | 3.0    | μg/L       | 1  | 4/25/2020 3:15:34 AM | W68408 |
| n-Butylbenzene              | ND     | 3.0    | μg/L       | 1  | 4/25/2020 3:15:34 AM | W68408 |
| n-Propylbenzene             | ND     | 1.0    | μg/L       | 1  | 4/25/2020 3:15:34 AM | W68408 |
| sec-Butylbenzene            | ND     | 1.0    | μg/L       | 1  | 4/25/2020 3:15:34 AM | W68408 |
| Styrene                     | ND     | 1.0    | μg/L       | 1  | 4/25/2020 3:15:34 AM | W68408 |
| tert-Butylbenzene           | ND     | 1.0    | μg/L       | 1  | 4/25/2020 3:15:34 AM | W68408 |
| 1,1,1,2-Tetrachloroethane   | ND     | 1.0    | μg/L       | 1  | 4/25/2020 3:15:34 AM | W68408 |
| 1,1,2,2-Tetrachloroethane   | ND     | 2.0    | μg/L       | 1  | 4/25/2020 3:15:34 AM | W68408 |
| Tetrachloroethene (PCE)     | ND     | 1.0    | μg/L       | 1  | 4/25/2020 3:15:34 AM | W68408 |
| trans-1,2-DCE               | ND     | 1.0    | μg/L       | 1  | 4/25/2020 3:15:34 AM | W68408 |
| trans-1,3-Dichloropropene   | ND     | 1.0    | μg/L       | 1  | 4/25/2020 3:15:34 AM | W68408 |
| 1,2,3-Trichlorobenzene      | ND     | 1.0    | μg/L       | 1  | 4/25/2020 3:15:34 AM | W68408 |
| 1,2,4-Trichlorobenzene      | ND     | 1.0    | μg/L       | 1  | 4/25/2020 3:15:34 AM | W68408 |
| 1,1,1-Trichloroethane       | ND     | 1.0    | μg/L       | 1  | 4/25/2020 3:15:34 AM | W68408 |
| 1,1,2-Trichloroethane       | ND     | 1.0    | μg/L       | 1  | 4/25/2020 3:15:34 AM | W68408 |
| Trichloroethene (TCE)       | ND     | 1.0    | μg/L       | 1  | 4/25/2020 3:15:34 AM | W68408 |
| Trichlorofluoromethane      | ND     | 1.0    | μg/L       | 1  | 4/25/2020 3:15:34 AM | W68408 |
| 1,2,3-Trichloropropane      | ND     | 2.0    | μg/L       | 1  | 4/25/2020 3:15:34 AM | W68408 |
| Vinyl chloride              | ND     | 1.0    | μg/L       | 1  | 4/25/2020 3:15:34 AM | W68408 |
| Xylenes, Total              | ND     | 1.5    | μg/L       | 1  | 4/25/2020 3:15:34 AM | W68408 |
| Surr: 1,2-Dichloroethane-d4 | 90.6   | 70-130 | %Rec       | 1  | 4/25/2020 3:15:34 AM | W68408 |
| Surr: 4-Bromofluorobenzene  | 98.6   | 70-130 | %Rec       | 1  | 4/25/2020 3:15:34 AM | W68408 |
| Surr: Dibromofluoromethane  | 99.2   | 70-130 | %Rec       | 1  | 4/25/2020 3:15:34 AM | W68408 |
| Surr: Toluene-d8            | 97.8   | 70-130 | %Rec       | 1  | 4/25/2020 3:15:34 AM | W68408 |

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

#### Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit
- Page 3 of 14

Intera, Inc.

**Client:** 

## Hall Environmental Analysis Laboratory, Inc.

WO#: **2004A57** 

04-May-20

| Project:                                                                                      | COA Rail Yards                                                                                                      |                                                                   |                                              |                                                                                          |                                                                          |                                                                              |                   |                      |      |
|-----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|----------------------------------------------|------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|------------------------------------------------------------------------------|-------------------|----------------------|------|
| Sample ID: MB-A                                                                               | SampType: <b>ME</b>                                                                                                 | ELK                                                               | Tes                                          | tCode: EP                                                                                | A Method                                                                 | 200.7: Dissol                                                                | ved Metal         | s                    |      |
| Client ID: PBW                                                                                | Batch ID: A6                                                                                                        | 8449                                                              | R                                            | RunNo: <b>68</b>                                                                         | 8449                                                                     |                                                                              |                   |                      |      |
| Prep Date:                                                                                    | Analysis Date: 4/                                                                                                   | 27/2020                                                           | S                                            | SeqNo: 23                                                                                | 868369                                                                   | Units: mg/L                                                                  |                   |                      |      |
| Analyte                                                                                       | Result PQL                                                                                                          | SPK value                                                         | SPK Ref Val                                  | %REC                                                                                     | LowLimit                                                                 | HighLimit                                                                    | %RPD              | RPDLimit             | Qual |
| Barium                                                                                        | ND 0.0020                                                                                                           |                                                                   |                                              |                                                                                          |                                                                          |                                                                              |                   |                      |      |
| Iron                                                                                          | ND 0.020                                                                                                            |                                                                   |                                              |                                                                                          |                                                                          |                                                                              |                   |                      |      |
| Manganese                                                                                     | ND 0.0020                                                                                                           |                                                                   |                                              |                                                                                          |                                                                          |                                                                              |                   |                      |      |
| Zinc                                                                                          | ND 0.010                                                                                                            |                                                                   |                                              |                                                                                          |                                                                          |                                                                              |                   |                      |      |
| Sample ID: LLLCS-                                                                             | A SampType: LC                                                                                                      | SLL                                                               | Tes                                          | tCode: <b>EP</b>                                                                         | A Method                                                                 | 200.7: Dissol                                                                | ved Metal         | s                    |      |
| Client ID: BatchQ                                                                             | C Batch ID: A6                                                                                                      | 8449                                                              | R                                            | RunNo: <b>68</b>                                                                         | 3449                                                                     |                                                                              |                   |                      |      |
| Prep Date:                                                                                    | Analysis Date: 4/                                                                                                   | 27/2020                                                           | S                                            | SeqNo: 23                                                                                | 868373                                                                   | Units: mg/L                                                                  |                   |                      |      |
| Analyte                                                                                       | Result PQL                                                                                                          | SPK value                                                         | SPK Ref Val                                  | %REC                                                                                     | LowLimit                                                                 | HighLimit                                                                    | %RPD              | RPDLimit             | Qual |
| Barium                                                                                        | ND 0.0020                                                                                                           | 0.002000                                                          | 0                                            | 94.6                                                                                     | 50                                                                       | 150                                                                          |                   |                      |      |
| Iron                                                                                          | ND 0.020                                                                                                            | 0.02000                                                           | 0                                            | 87.9                                                                                     | 50                                                                       | 150                                                                          |                   |                      |      |
| Manganese                                                                                     | ND 0.0020                                                                                                           | 0.002000                                                          | 0                                            | 95.8                                                                                     | 50                                                                       | 150                                                                          |                   |                      |      |
| Zinc                                                                                          | ND 0.010                                                                                                            | 0.01000                                                           | 0                                            | 90.9                                                                                     | 50                                                                       | 150                                                                          |                   |                      |      |
| Sample ID: LCS-A                                                                              | SampType: <b>LC</b>                                                                                                 | S                                                                 | Tes                                          | tCode: <b>EP</b>                                                                         | A Method                                                                 | 200.7: Dissol                                                                | ved Metal         | s                    |      |
| Client ID: LCSW                                                                               | Batch ID: A6                                                                                                        | 8449                                                              | R                                            | RunNo: <b>68</b>                                                                         | 8449                                                                     |                                                                              |                   |                      |      |
| Prep Date:                                                                                    | Analysis Date: 4/                                                                                                   | 27/2020                                                           | S                                            | SeqNo: 23                                                                                | 68375                                                                    | Units: mg/L                                                                  |                   |                      |      |
| Analyte                                                                                       | Result PQL                                                                                                          | SPK value                                                         | SPK Ref Val                                  | %REC                                                                                     | LowLimit                                                                 | HighLimit                                                                    | %RPD              | RPDLimit             | Qual |
| Barium                                                                                        | 0.44 0.0000                                                                                                         | 0.5000                                                            |                                              |                                                                                          |                                                                          |                                                                              |                   |                      |      |
|                                                                                               | 0.44 0.0020                                                                                                         | 0.5000                                                            | 0                                            | 88.8                                                                                     | 85                                                                       | 115                                                                          |                   |                      |      |
| Iron                                                                                          | 0.48 0.020                                                                                                          | 0.5000                                                            | 0<br>0                                       | 96.0                                                                                     | 85                                                                       | 115                                                                          |                   |                      |      |
| Iron<br>Manganese                                                                             | 0.48 0.020<br>0.46 0.0020                                                                                           |                                                                   | 0                                            | 96.0<br>91.3                                                                             | 85<br>85                                                                 | 115<br>115                                                                   |                   |                      |      |
|                                                                                               | 0.48 0.020                                                                                                          | 0.5000                                                            | 0                                            | 96.0                                                                                     | 85                                                                       | 115                                                                          |                   |                      |      |
| Manganese                                                                                     | 0.48 0.020<br>0.46 0.0020                                                                                           | 0.5000<br>0.5000<br>0.5000                                        | 0<br>0<br>0                                  | 96.0<br>91.3<br>85.9                                                                     | 85<br>85<br>85                                                           | 115<br>115                                                                   | ved Metal         | s                    |      |
| Manganese<br>Zinc                                                                             | 0.48 0.020<br>0.46 0.0020<br>0.43 0.010                                                                             | 0.5000<br>0.5000<br>0.5000                                        | 0<br>0<br>0                                  | 96.0<br>91.3<br>85.9                                                                     | 85<br>85<br>85<br><b>PA Method</b>                                       | 115<br>115<br>115                                                            | ved Metal         | s                    |      |
| Manganese<br>Zinc<br>Sample ID: MB-A                                                          | 0.48 0.020<br>0.46 0.0020<br>0.43 0.010<br>SampType: <b>ME</b>                                                      | 0.5000<br>0.5000<br>0.5000<br>BLK<br>8450                         | 0<br>0<br>0<br>Tes:                          | 96.0<br>91.3<br>85.9<br>tCode: <b>EF</b>                                                 | 85<br>85<br>85<br><b>PA Method</b><br>3450                               | 115<br>115<br>115                                                            | ved Metal         | s                    |      |
| Manganese Zinc  Sample ID: MB-A Client ID: PBW                                                | 0.48 0.020<br>0.46 0.0020<br>0.43 0.010<br>SampType: <b>ME</b><br>Batch ID: <b>A6</b>                               | 0.5000<br>0.5000<br>0.5000<br>BLK<br>8450<br>28/2020              | 0<br>0<br>0<br>Tes:                          | 96.0<br>91.3<br>85.9<br>tCode: <b>EF</b><br>RunNo: <b>68</b><br>SeqNo: <b>23</b>         | 85<br>85<br>85<br><b>PA Method</b><br>3450                               | 115<br>115<br>115<br><b>200.7: Dissol</b>                                    | ved Metal<br>%RPD | <b>s</b><br>RPDLimit | Qual |
| Manganese Zinc  Sample ID: MB-A Client ID: PBW Prep Date:                                     | 0.48 0.020<br>0.46 0.0020<br>0.43 0.010<br>SampType: ME<br>Batch ID: A6<br>Analysis Date: 4/                        | 0.5000<br>0.5000<br>0.5000<br>BLK<br>8450<br>28/2020              | 0<br>0<br>0<br>Tes:                          | 96.0<br>91.3<br>85.9<br>tCode: <b>EF</b><br>RunNo: <b>68</b><br>SeqNo: <b>23</b>         | 85<br>85<br>85<br>PA Method<br>3450<br>368467                            | 115<br>115<br>115<br><b>200.7: Dissol</b><br>Units: <b>mg/L</b>              |                   |                      | Qual |
| Manganese Zinc  Sample ID: MB-A Client ID: PBW Prep Date: Analyte                             | 0.48 0.020 0.46 0.0020 0.43 0.010  SampType: ME Batch ID: A6 Analysis Date: 4/ Result PQL ND 0.0060                 | 0.5000<br>0.5000<br>0.5000<br>BLK<br>8450<br>28/2020<br>SPK value | 0<br>0<br>0<br>Test<br>R<br>S<br>SPK Ref Val | 96.0<br>91.3<br>85.9<br>tCode: <b>EF</b><br>RunNo: <b>68</b><br>SeqNo: <b>23</b><br>%REC | 85<br>85<br>87 Method<br>8450<br>868467<br>LowLimit                      | 115<br>115<br>115<br><b>200.7: Dissol</b><br>Units: <b>mg/L</b>              | %RPD              | RPDLimit             | Qual |
| Manganese Zinc  Sample ID: MB-A Client ID: PBW Prep Date: Analyte Chromium                    | 0.48 0.020 0.46 0.0020 0.43 0.010  SampType: ME Batch ID: A6 Analysis Date: 4/ Result PQL ND 0.0060  A SampType: LC | 0.5000<br>0.5000<br>0.5000<br>BLK<br>8450<br>28/2020<br>SPK value | 0<br>0<br>0<br>Tes:<br>R<br>S<br>SPK Ref Val | 96.0<br>91.3<br>85.9<br>tCode: <b>EF</b><br>RunNo: <b>68</b><br>SeqNo: <b>23</b><br>%REC | 85<br>85<br>87 Method<br>8450<br>868467<br>LowLimit                      | 115<br>115<br>115<br><b>200.7: Dissol</b><br>Units: <b>mg/L</b><br>HighLimit | %RPD              | RPDLimit             | Qual |
| Manganese Zinc  Sample ID: MB-A Client ID: PBW Prep Date: Analyte Chromium  Sample ID: LLLCS- | 0.48 0.020 0.46 0.0020 0.43 0.010  SampType: ME Batch ID: A6 Analysis Date: 4/ Result PQL ND 0.0060  A SampType: LC | 0.5000<br>0.5000<br>0.5000<br>BLK<br>8450<br>28/2020<br>SPK value | O O O Tessi                                  | 96.0<br>91.3<br>85.9<br>tCode: EF<br>RunNo: 68<br>SeqNo: 23<br>%REC                      | 85<br>85<br>87 Method<br>8450<br>868467<br>LowLimit<br>PA Method<br>8450 | 115<br>115<br>115<br><b>200.7: Dissol</b><br>Units: <b>mg/L</b><br>HighLimit | %RPD              | RPDLimit             | Qual |

### Qualifiers:

Chromium

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded

0.0060

0.006000

- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

95.8

50

150

- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 4 of 14

## Hall Environmental Analysis Laboratory, Inc.

WO#: **2004A57** 

04-May-20

Client: Intera, Inc.

Project: COA Rail Yards

Sample ID: LCS SampType: LCS TestCode: EPA Method 200.7: Dissolved Metals

Client ID: LCSW Batch ID: A68450 RunNo: 68450

Prep Date: Analysis Date: 4/28/2020 SeqNo: 2368479 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Chromium 0.46 0.0060 0.5000 0 91.9 85 115

### Qualifiers:

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

### Hall Environmental Analysis Laboratory, Inc.

WO#: **2004A57** 

04-May-20

Client: Intera, Inc.
Project: COA Rail Yards

Sample ID: MB SampType: MBLK TestCode: EPA 200.8: Dissolved Metals

Client ID: PBW Batch ID: A68476 RunNo: 68476

Prep Date: Analysis Date: 4/28/2020 SegNo: 2369553 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

 Copper
 ND
 0.0010

 Lead
 ND
 0.00050

Sample ID: LLLCS SampType: LCSLL TestCode: EPA 200.8: Dissolved Metals

Client ID: BatchQC Batch ID: A68476 RunNo: 68476

Prep Date: Analysis Date: 4/28/2020 SeqNo: 2369554 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

 Copper
 ND
 0.0010
 0.001000
 0
 93.7
 50
 150

 Lead
 ND
 0.00050
 0.0005000
 0
 96.9
 50
 150

Sample ID: LCS SampType: LCS TestCode: EPA 200.8: Dissolved Metals

Client ID: LCSW Batch ID: A68476 RunNo: 68476

Prep Date: Analysis Date: 4/28/2020 SeqNo: 2369555 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

 Copper
 0.024
 0.0010
 0.02500
 0
 94.2
 85
 115

 Lead
 0.012
 0.00050
 0.01250
 0
 93.7
 85
 115

#### Qualifiers:

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 6 of 14

### Hall Environmental Analysis Laboratory, Inc.

WO#: **2004A57** 

04-May-20

Client: Intera, Inc.

Project: COA Rail Yards

1,2-Dibromoethane

Sample ID: MB-52123 SampType: MBLK TestCode: EPA Method 8011/504.1: EDB

Client ID: PBW Batch ID: 52123 RunNo: 68492

Prep Date: 4/28/2020 Analysis Date: 4/28/2020 SeqNo: 2369970 Units: μg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

1,2-Dibromoethane ND 0.010

Sample ID: LCS-52123 SampType: LCS TestCode: EPA Method 8011/504.1: EDB

Client ID: LCSW Batch ID: 52123 RunNo: 68492

Prep Date: 4/28/2020 Analysis Date: 4/28/2020 SeqNo: 2369971 Units: μg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

117

Sample ID: MB-52123 SampType: MBLK TestCode: EPA Method 8011/504.1: EDB

0.1000

Client ID: PBW Batch ID: 52123 RunNo: 68492

0.010

0.12

Prep Date: 4/28/2020 Analysis Date: 4/28/2020 SeqNo: 2369999 Units: μg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

1,2-Dibromoethane ND 0.010

#### Qualifiers:

Value exceeds Maximum Contaminant Level

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit
S Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 7 of 14

### Hall Environmental Analysis Laboratory, Inc.

WO#: **2004A57** 

04-May-20

Client: Intera, Inc.
Project: COA Rail Yards

 Sample ID:
 LCS-52065
 SampType:
 LCS
 TestCode:
 EPA Method 8015M/D:
 Diesel Range

 Client ID:
 LCSW
 Batch ID:
 52065
 RunNo:
 68435

 Prep Date:
 4/24/2020
 Analysis Date:
 4/27/2020
 SeqNo:
 2368094
 Units:
 mg/L

PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Analyte Result Diesel Range Organics (DRO) 0 5.4 1.0 5.000 108 70 130

Surr: DNOP 0.55 0.5000 110 70 130

Sample ID: MB-52065 SampType: MBLK TestCode: EPA Method 8015M/D: Diesel Range

Client ID: **PBW** Batch ID: **52065** RunNo: **68435** 

Prep Date: 4/24/2020 Analysis Date: 4/27/2020 SeqNo: 2368095 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Diesel Range Organics (DRO) ND 1.0

Surr: DNOP 1.1 1.000 111 70 130

#### Qualifiers:

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

## Hall Environmental Analysis Laboratory, Inc.

WO#: 2004A57

04-May-20

Client: Intera, Inc.
Project: COA Rail Yards

Sample ID: mb1 SampType: MBLK TestCode: EPA Method 8260B: VOLATILES

Client ID: PBW Batch ID: W68408 RunNo: 68408

| Client ID: PBW                 | Batc       | n ID: W  | 68408     | ŀ           | RunNo: 6 | 8408     |             |      |          |      |
|--------------------------------|------------|----------|-----------|-------------|----------|----------|-------------|------|----------|------|
| Prep Date:                     | Analysis D | Date: 4/ | 24/2020   | 9           | SeqNo: 2 | 366709   | Units: µg/L |      |          |      |
| Analyte                        | Result     | PQL      | SPK value | SPK Ref Val | %REC     | LowLimit | HighLimit   | %RPD | RPDLimit | Qual |
| Benzene                        | ND         | 1.0      |           |             |          |          |             |      |          |      |
| Toluene                        | ND         | 1.0      |           |             |          |          |             |      |          |      |
| Ethylbenzene                   | ND         | 1.0      |           |             |          |          |             |      |          |      |
| Methyl tert-butyl ether (MTBE) | ND         | 1.0      |           |             |          |          |             |      |          |      |
| 1,2,4-Trimethylbenzene         | ND         | 1.0      |           |             |          |          |             |      |          |      |
| 1,3,5-Trimethylbenzene         | ND         | 1.0      |           |             |          |          |             |      |          |      |
| 1,2-Dichloroethane (EDC)       | ND         | 1.0      |           |             |          |          |             |      |          |      |
| 1,2-Dibromoethane (EDB)        | ND         | 1.0      |           |             |          |          |             |      |          |      |
| Naphthalene                    | ND         | 2.0      |           |             |          |          |             |      |          |      |
| 1-Methylnaphthalene            | ND         | 4.0      |           |             |          |          |             |      |          |      |
| 2-Methylnaphthalene            | ND         | 4.0      |           |             |          |          |             |      |          |      |
| Acetone                        | ND         | 10       |           |             |          |          |             |      |          |      |
| Bromobenzene                   | ND         | 1.0      |           |             |          |          |             |      |          |      |
| Bromodichloromethane           | ND         | 1.0      |           |             |          |          |             |      |          |      |
| Bromoform                      | ND         | 1.0      |           |             |          |          |             |      |          |      |
| Bromomethane                   | ND         | 3.0      |           |             |          |          |             |      |          |      |
| 2-Butanone                     | ND         | 10       |           |             |          |          |             |      |          |      |
| Carbon disulfide               | ND         | 10       |           |             |          |          |             |      |          |      |
| Carbon Tetrachloride           | ND         | 1.0      |           |             |          |          |             |      |          |      |
| Chlorobenzene                  | ND         | 1.0      |           |             |          |          |             |      |          |      |
| Chloroethane                   | ND         | 2.0      |           |             |          |          |             |      |          |      |
| Chloroform                     | ND         | 1.0      |           |             |          |          |             |      |          |      |
| Chloromethane                  | ND         | 3.0      |           |             |          |          |             |      |          |      |
| 2-Chlorotoluene                | ND         | 1.0      |           |             |          |          |             |      |          |      |
| 4-Chlorotoluene                | ND         | 1.0      |           |             |          |          |             |      |          |      |
| cis-1,2-DCE                    | ND         | 1.0      |           |             |          |          |             |      |          |      |
| cis-1,3-Dichloropropene        | ND         | 1.0      |           |             |          |          |             |      |          |      |
| 1,2-Dibromo-3-chloropropane    | ND         | 2.0      |           |             |          |          |             |      |          |      |
| Dibromochloromethane           | ND         | 1.0      |           |             |          |          |             |      |          |      |
| Dibromomethane                 | ND         | 1.0      |           |             |          |          |             |      |          |      |
| 1,2-Dichlorobenzene            | ND         | 1.0      |           |             |          |          |             |      |          |      |
| 1,3-Dichlorobenzene            | ND         | 1.0      |           |             |          |          |             |      |          |      |
| 1,4-Dichlorobenzene            | ND         | 1.0      |           |             |          |          |             |      |          |      |
| Dichlorodifluoromethane        | ND         | 1.0      |           |             |          |          |             |      |          |      |
| 1,1-Dichloroethane             | ND         | 1.0      |           |             |          |          |             |      |          |      |
| 1,1-Dichloroethene             | ND         | 1.0      |           |             |          |          |             |      |          |      |
| 1,2-Dichloropropane            | ND         | 1.0      |           |             |          |          |             |      |          |      |
| 1,3-Dichloropropane            | ND         | 1.0      |           |             |          |          |             |      |          |      |
| 2,2-Dichloropropane            | ND         | 2.0      |           |             |          |          |             |      |          |      |
|                                |            |          |           |             |          |          |             |      |          |      |

### Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

# Hall Environmental Analysis Laboratory, Inc.

WO#: **2004A57** 

04-May-20

Client: Intera, Inc.
Project: COA Rail Yards

| Sample ID: mb1              | SampT      | уре: МЕ  | BLK       | Tes         | tCode: El | PA Method | 8260B: VOL  | ATILES |          |      |
|-----------------------------|------------|----------|-----------|-------------|-----------|-----------|-------------|--------|----------|------|
| Client ID: PBW              | Batch      | n ID: We | 68408     | F           | RunNo: 6  | 8408      |             |        |          |      |
| Prep Date:                  | Analysis D | oate: 4/ | 24/2020   | 5           | SeqNo: 2  | 366709    | Units: µg/L |        |          |      |
| Analyte                     | Result     | PQL      | SPK value | SPK Ref Val | %REC      | LowLimit  | HighLimit   | %RPD   | RPDLimit | Qual |
| 1,1-Dichloropropene         | ND         | 1.0      |           |             |           |           |             |        |          |      |
| Hexachlorobutadiene         | ND         | 1.0      |           |             |           |           |             |        |          |      |
| 2-Hexanone                  | ND         | 10       |           |             |           |           |             |        |          |      |
| Isopropylbenzene            | ND         | 1.0      |           |             |           |           |             |        |          |      |
| 4-Isopropyltoluene          | ND         | 1.0      |           |             |           |           |             |        |          |      |
| 4-Methyl-2-pentanone        | ND         | 10       |           |             |           |           |             |        |          |      |
| Methylene Chloride          | ND         | 3.0      |           |             |           |           |             |        |          |      |
| n-Butylbenzene              | ND         | 3.0      |           |             |           |           |             |        |          |      |
| n-Propylbenzene             | ND         | 1.0      |           |             |           |           |             |        |          |      |
| sec-Butylbenzene            | ND         | 1.0      |           |             |           |           |             |        |          |      |
| Styrene                     | ND         | 1.0      |           |             |           |           |             |        |          |      |
| tert-Butylbenzene           | ND         | 1.0      |           |             |           |           |             |        |          |      |
| 1,1,1,2-Tetrachloroethane   | ND         | 1.0      |           |             |           |           |             |        |          |      |
| 1,1,2,2-Tetrachloroethane   | ND         | 2.0      |           |             |           |           |             |        |          |      |
| Tetrachloroethene (PCE)     | ND         | 1.0      |           |             |           |           |             |        |          |      |
| trans-1,2-DCE               | ND         | 1.0      |           |             |           |           |             |        |          |      |
| trans-1,3-Dichloropropene   | ND         | 1.0      |           |             |           |           |             |        |          |      |
| 1,2,3-Trichlorobenzene      | ND         | 1.0      |           |             |           |           |             |        |          |      |
| 1,2,4-Trichlorobenzene      | ND         | 1.0      |           |             |           |           |             |        |          |      |
| 1,1,1-Trichloroethane       | ND         | 1.0      |           |             |           |           |             |        |          |      |
| 1,1,2-Trichloroethane       | ND         | 1.0      |           |             |           |           |             |        |          |      |
| Trichloroethene (TCE)       | ND         | 1.0      |           |             |           |           |             |        |          |      |
| Trichlorofluoromethane      | ND         | 1.0      |           |             |           |           |             |        |          |      |
| 1,2,3-Trichloropropane      | ND         | 2.0      |           |             |           |           |             |        |          |      |
| Vinyl chloride              | ND         | 1.0      |           |             |           |           |             |        |          |      |
| Xylenes, Total              | ND         | 1.5      |           |             |           |           |             |        |          |      |
| Surr: 1,2-Dichloroethane-d4 | 9.2        |          | 10.00     |             | 91.9      | 70        | 130         |        |          |      |
| Surr: 4-Bromofluorobenzene  | 10         |          | 10.00     |             | 101       | 70        | 130         |        |          |      |
| Surr: Dibromofluoromethane  | 9.7        |          | 10.00     |             | 97.0      | 70        | 130         |        |          |      |
| Surr: Toluene-d8            | 10         |          | 10.00     |             | 99.6      | 70        | 130         |        |          |      |

| Sample ID: 100ng lcs | SampT      | ype: <b>LC</b> | S         | Tes         | tCode: El | PA Method | 8260B: VOL  | ATILES |          |      |
|----------------------|------------|----------------|-----------|-------------|-----------|-----------|-------------|--------|----------|------|
| Client ID: LCSW      | Batch      | ı ID: We       | 8408      | F           | RunNo: 6  | 8408      |             |        |          |      |
| Prep Date:           | Analysis D | ate: <b>4/</b> | 24/2020   | 5           | SeqNo: 2: | 366710    | Units: µg/L |        |          |      |
| Analyte              | Result     | PQL            | SPK value | SPK Ref Val | %REC      | LowLimit  | HighLimit   | %RPD   | RPDLimit | Qual |
| Benzene              | 20         | 1.0            | 20.00     | 0           | 98.6      | 70        | 130         |        |          |      |
| Toluene              | 21         | 1.0            | 20.00     | 0           | 106       | 70        | 130         |        |          |      |
| Chlorobenzene        | 22         | 1.0            | 20.00     | 0           | 111       | 70        | 130         |        |          |      |

### Qualifiers:

- \* Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 10 of 14

# Hall Environmental Analysis Laboratory, Inc.

WO#: **2004A57** 

04-May-20

Client: Intera, Inc.
Project: COA Rail Yards

| Sample ID: 100ng Ics Client ID: LCSW | •          | ype: LC          |           |             | tCode: El |          | 8260B: VOL  | ATILES |          |      |
|--------------------------------------|------------|------------------|-----------|-------------|-----------|----------|-------------|--------|----------|------|
| Prep Date:                           | Analysis D | ate: <b>4/</b> 2 | 24/2020   | S           | SeqNo: 2: | 366710   | Units: µg/L |        |          |      |
| Analyte                              | Result     | PQL              | SPK value | SPK Ref Val | %REC      | LowLimit | HighLimit   | %RPD   | RPDLimit | Qual |
| 1,1-Dichloroethene                   | 21         | 1.0              | 20.00     | 0           | 106       | 70       | 130         |        |          |      |
| Trichloroethene (TCE)                | 19         | 1.0              | 20.00     | 0           | 94.3      | 70       | 130         |        |          |      |
| Surr: 1,2-Dichloroethane-d4          | 9.3        |                  | 10.00     |             | 93.0      | 70       | 130         |        |          |      |
| Surr: 4-Bromofluorobenzene           | 10         |                  | 10.00     |             | 101       | 70       | 130         |        |          |      |
| Surr: Dibromofluoromethane           | 9.5        |                  | 10.00     |             | 95.3      | 70       | 130         |        |          |      |
| Surr: Toluene-d8                     | 9.5        |                  | 10.00     |             | 95.0      | 70       | 130         |        |          |      |

### **Qualifiers:**

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

# Hall Environmental Analysis Laboratory, Inc.

WO#: **2004A57** 

04-May-20

Client: Intera, Inc.
Project: COA Rail Yards

| Sample ID: <b>MB-52095</b> | Samp       | Гуре: <b>МЕ</b>   | BLK       | Tes         | tCode: El       | PA Method | 8310: PAHs  |      |          |      |
|----------------------------|------------|-------------------|-----------|-------------|-----------------|-----------|-------------|------|----------|------|
| Client ID: PBW             | Batc       | h ID: <b>52</b> 0 | 095       | F           | RunNo: <b>6</b> | 8458      |             |      |          |      |
| Prep Date: 4/27/2020       | Analysis [ | Date: 4/          | 28/2020   | S           | SeqNo: 2        | 369419    | Units: µg/L |      |          |      |
| Analyte                    | Result     | PQL               | SPK value | SPK Ref Val | %REC            | LowLimit  | HighLimit   | %RPD | RPDLimit | Qual |
| Naphthalene                | ND         | 3.0               |           |             |                 |           |             |      |          |      |
| 1-Methylnaphthalene        | ND         | 3.0               |           |             |                 |           |             |      |          |      |
| 2-Methylnaphthalene        | ND         | 3.0               |           |             |                 |           |             |      |          |      |
| Acenaphthylene             | ND         | 3.0               |           |             |                 |           |             |      |          |      |
| Acenaphthene               | ND         | 3.0               |           |             |                 |           |             |      |          |      |
| Fluorene                   | ND         | 0.80              |           |             |                 |           |             |      |          |      |
| Phenanthrene               | ND         | 0.60              |           |             |                 |           |             |      |          |      |
| Anthracene                 | ND         | 0.60              |           |             |                 |           |             |      |          |      |
| Fluoranthene               | ND         | 0.40              |           |             |                 |           |             |      |          |      |
| Pyrene                     | ND         | 0.40              |           |             |                 |           |             |      |          |      |
| Benz(a)anthracene          | ND         | 0.070             |           |             |                 |           |             |      |          |      |
| Chrysene                   | ND         | 0.20              |           |             |                 |           |             |      |          |      |
| Benzo(b)fluoranthene       | ND         | 0.10              |           |             |                 |           |             |      |          |      |
| Benzo(k)fluoranthene       | ND         | 0.070             |           |             |                 |           |             |      |          |      |
| Benzo(a)pyrene             | ND         | 0.070             |           |             |                 |           |             |      |          |      |
| Dibenz(a,h)anthracene      | ND         | 0.12              |           |             |                 |           |             |      |          |      |
| Benzo(g,h,i)perylene       | ND         | 0.12              |           |             |                 |           |             |      |          |      |
| Indeno(1,2,3-cd)pyrene     | ND         | 0.25              |           |             |                 |           |             |      |          |      |
| Surr: Benzo(e)pyrene       | 10         |                   | 20.00     |             | 50.0            | 43.5      | 108         |      |          |      |

| Sample ID: LCS-52095 | SampT      | ype: <b>LC</b>    | S         | Tes         | tCode: El | PA Method | 8310: PAHs  |      |          |      |
|----------------------|------------|-------------------|-----------|-------------|-----------|-----------|-------------|------|----------|------|
| Client ID: LCSW      | Batcl      | n ID: <b>52</b> 0 | 095       | R           | RunNo: 68 | 3458      |             |      |          |      |
| Prep Date: 4/27/2020 | Analysis D | Date: 4/          | 28/2020   | S           | SeqNo: 23 | 369420    | Units: µg/L |      |          |      |
| Analyte              | Result     | PQL               | SPK value | SPK Ref Val | %REC      | LowLimit  | HighLimit   | %RPD | RPDLimit | Qual |
| Naphthalene          | 36         | 3.0               | 80.00     | 0           | 45.4      | 34        | 92.6        |      |          |      |
| 1-Methylnaphthalene  | 38         | 3.0               | 80.20     | 0           | 47.1      | 35.4      | 95.3        |      |          |      |
| 2-Methylnaphthalene  | 38         | 3.0               | 80.00     | 0           | 46.9      | 33.7      | 95.3        |      |          |      |
| Acenaphthylene       | 38         | 3.0               | 80.20     | 0           | 46.8      | 32.1      | 112         |      |          |      |
| Acenaphthene         | 38         | 3.0               | 80.00     | 0           | 47.2      | 38.5      | 103         |      |          |      |
| Fluorene             | 3.6        | 0.80              | 8.020     | 0           | 45.5      | 35        | 111         |      |          |      |
| Phenanthrene         | 2.0        | 0.60              | 4.020     | 0           | 50.7      | 35.4      | 112         |      |          |      |
| Anthracene           | 2.1        | 0.60              | 4.020     | 0           | 51.7      | 36.7      | 116         |      |          |      |
| Fluoranthene         | 4.4        | 0.40              | 8.020     | 0           | 54.7      | 26.8      | 121         |      |          |      |
| Pyrene               | 4.2        | 0.40              | 8.020     | 0           | 52.7      | 37.8      | 117         |      |          |      |
| Benz(a)anthracene    | 0.44       | 0.070             | 0.8020    | 0           | 54.9      | 36.1      | 122         |      |          |      |
| Chrysene             | 2.2        | 0.20              | 4.020     | 0           | 54.0      | 37.3      | 118         |      |          |      |
| Benzo(b)fluoranthene | 0.54       | 0.10              | 1.002     | 0           | 53.9      | 35.6      | 120         |      |          |      |
| Benzo(k)fluoranthene | 0.27       | 0.070             | 0.5000    | 0           | 54.0      | 36.2      | 118         |      |          |      |

### Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

# Hall Environmental Analysis Laboratory, Inc.

WO#: **2004A57** 

04-May-20

Client: Intera, Inc.
Project: COA Rail Yards

| Sample ID: LCS-52095   | SampT      | ype: <b>LC</b>    | S         | Tes         | tCode: El | PA Method | 8310: PAHs  |      |          |      |
|------------------------|------------|-------------------|-----------|-------------|-----------|-----------|-------------|------|----------|------|
| Client ID: LCSW        | Batch      | n ID: <b>52</b> 0 | 095       | R           | RunNo: 6  | 8458      |             |      |          |      |
| Prep Date: 4/27/2020   | Analysis D | ate: <b>4/</b> 2  | 28/2020   | S           | SeqNo: 2  | 369420    | Units: µg/L |      |          |      |
| Analyte                | Result     | PQL               | SPK value | SPK Ref Val | %REC      | LowLimit  | HighLimit   | %RPD | RPDLimit | Qual |
| Benzo(a)pyrene         | 0.26       | 0.070             | 0.5020    | 0           | 51.8      | 37.3      | 115         |      |          |      |
| Dibenz(a,h)anthracene  | 0.52       | 0.12              | 1.002     | 0           | 51.9      | 32.7      | 125         |      |          |      |
| Benzo(g,h,i)perylene   | 0.52       | 0.12              | 1.000     | 0           | 52.0      | 34.8      | 123         |      |          |      |
| Indeno(1,2,3-cd)pyrene | 1.1        | 0.25              | 2.004     | 0           | 52.9      | 33.3      | 123         |      |          |      |
| Surr: Benzo(e)pyrene   | 11         |                   | 20.00     |             | 55.7      | 43.5      | 108         |      |          |      |

| Sample ID: MB-52095    | SampT      | уре: МЕ           | BLK       | Tes         | tCode: El | PA Method | 8310: PAHs  |      |          |      |
|------------------------|------------|-------------------|-----------|-------------|-----------|-----------|-------------|------|----------|------|
| Client ID: PBW         | Batch      | n ID: <b>52</b> 0 | 095       | F           | RunNo: 6  | 8458      |             |      |          |      |
| Prep Date: 4/27/2020   | Analysis D | ate: <b>4/</b> 2  | 28/2020   | \$          | SeqNo: 2  | 370355    | Units: µg/L |      |          |      |
| Analyte                | Result     | PQL               | SPK value | SPK Ref Val | %REC      | LowLimit  | HighLimit   | %RPD | RPDLimit | Qual |
| Naphthalene            | ND         | 3.0               |           |             |           |           |             |      |          |      |
| 1-Methylnaphthalene    | ND         | 3.0               |           |             |           |           |             |      |          |      |
| 2-Methylnaphthalene    | ND         | 3.0               |           |             |           |           |             |      |          |      |
| Acenaphthylene         | ND         | 3.0               |           |             |           |           |             |      |          |      |
| Acenaphthene           | ND         | 3.0               |           |             |           |           |             |      |          |      |
| Fluorene               | ND         | 0.80              |           |             |           |           |             |      |          |      |
| Phenanthrene           | ND         | 0.60              |           |             |           |           |             |      |          |      |
| Anthracene             | ND         | 0.60              |           |             |           |           |             |      |          |      |
| Fluoranthene           | ND         | 0.40              |           |             |           |           |             |      |          |      |
| Pyrene                 | ND         | 0.40              |           |             |           |           |             |      |          |      |
| Benz(a)anthracene      | ND         | 0.070             |           |             |           |           |             |      |          |      |
| Chrysene               | ND         | 0.20              |           |             |           |           |             |      |          |      |
| Benzo(b)fluoranthene   | ND         | 0.10              |           |             |           |           |             |      |          |      |
| Benzo(k)fluoranthene   | ND         | 0.070             |           |             |           |           |             |      |          |      |
| Benzo(a)pyrene         | ND         | 0.070             |           |             |           |           |             |      |          |      |
| Dibenz(a,h)anthracene  | ND         | 0.12              |           |             |           |           |             |      |          |      |
| Benzo(g,h,i)perylene   | ND         | 0.12              |           |             |           |           |             |      |          |      |
| Indeno(1,2,3-cd)pyrene | ND         | 0.25              |           |             |           |           |             |      |          |      |
| Surr: Benzo(e)pyrene   | 9.9        |                   | 20.00     |             | 49.7      | 43.5      | 108         |      |          |      |

### Qualifiers:

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

### Hall Environmental Analysis Laboratory, Inc.

WO#: **2004A57** 

04-May-20

Client: Intera, Inc.

Project: COA Rail Yards

Sample ID: mb1 SampType: MBLK TestCode: EPA Method 8015D: Gasoline Range

Client ID: PBW Batch ID: GW68408 RunNo: 68408

Prep Date: Analysis Date: 4/24/2020 SeqNo: 2366742 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Gasoline Range Organics (GRO) ND 0.050

Surr: BFB 9.9 10.00 98.9 70 130

Sample ID: 2.5ug gro Ics SampType: LCS TestCode: EPA Method 8015D: Gasoline Range

Client ID: LCSW Batch ID: GW68408 RunNo: 68408

Prep Date: Analysis Date: 4/24/2020 SeqNo: 2366743 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Gasoline Range Organics (GRO) 70 0.51 0.050 0.5000 0 101 130 Surr: BFB 10 101 70 130 10.00

#### Qualifiers:

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

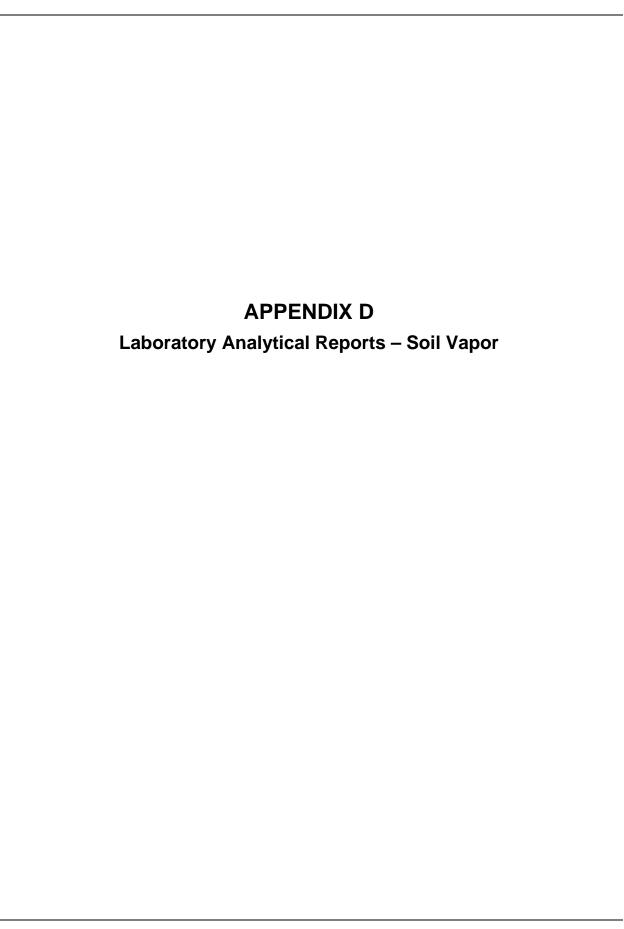
B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit




Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

# Sample Log-In Check List

| Client Name:                  | INT                                                           | Work Order                  | Number: 2004A | 57        | RcptN                                        | o: 1                |
|-------------------------------|---------------------------------------------------------------|-----------------------------|---------------|-----------|----------------------------------------------|---------------------|
| Received By:                  | Juan Rojas                                                    | 4/24/2020 10:0              | 05:00 AM      | Juan Eng  | si i                                         |                     |
| Completed By:                 | Desiree Dominguez                                             | 4/24/2020 10:4              | 14:42 AM      | TA        |                                              |                     |
| Reviewed By:                  | LB                                                            | 4/24/2                      |               | 113       |                                              |                     |
| Chain of Cus                  | <u>tody</u>                                                   |                             |               |           |                                              |                     |
| 1. Is Chain of C              | ustody sufficiently complete?                                 |                             | Yes V         | No 🗆      | Not Present                                  |                     |
| 2. How was the                | sample delivered?                                             |                             | Client        |           |                                              |                     |
| Log In                        |                                                               |                             |               |           |                                              |                     |
|                               | npt made to cool the samples                                  | ?                           | Yes 💌         | No 🗆      | NA 🗆                                         |                     |
| 4. Were all samp              | ples received at a temperatur                                 | e of >0° C to 6.0°          | Yes 🔽         | No 🗆      | NA 🗆                                         |                     |
| 5. Sample(s) in               | proper container(s)?                                          |                             | Yes 🔽         | No 🗆      |                                              |                     |
| 6. Sufficient sam             | ple volume for indicated test                                 | s)?                         | Yes V         | No 🗆      |                                              |                     |
|                               | except VOA and ONG) prope                                     |                             | Yes 🗸         |           |                                              |                     |
|                               | tive added to bottles?                                        | PA TOWNS CONTROL            | Yes           |           | NA 🗌                                         |                     |
| 9. Received at le             | east 1 vial with headspace <1.                                | 4" for AQ VOA?              | Yes 🗸         | No 🗆      | NA 🗆                                         |                     |
| 10. Were any sar              | mple containers received brok                                 | en?                         | Yes -         | No 🗸      | # of assessed                                |                     |
|                               | ork match bottle labels?                                      |                             | Yes 🗸         | No 🗆      | # of preserved<br>bottles checked<br>for pH: |                     |
|                               | ancies on chain of custody)                                   | I VANE                      | .843          |           | Adjusted?                                    | r >12 unless noted) |
|                               | correctly identified on Chain o<br>t analyses were requested? | t Custody?                  | Yes V         |           | Adjusted                                     | No                  |
| 14. Were all holdi            | ng times able to be met? ustomer for authorization.)          |                             | Yes Yes       |           | Checked by:                                  | SPA 4/24/2          |
| Special Handl                 | ing (if applicable)                                           |                             |               |           |                                              |                     |
|                               | otified of all discrepancies with                             | this order?                 | Yes [         | □ No □    | NA 🗹                                         |                     |
| Person                        | Notified:                                                     |                             | Date:         |           |                                              |                     |
| By Who                        | om:                                                           |                             | Via: eMail    | Phone Fax | ☐ In Person                                  |                     |
| Regard                        | ing;                                                          |                             |               |           |                                              |                     |
| Client I                      | nstructions:                                                  |                             |               |           |                                              |                     |
| 16. Additional re             | marks:                                                        |                             |               |           |                                              |                     |
| 17. Cooler Infor<br>Cooler No | Temp °C Condition                                             | Seal Intact Seal of Present | No Seal Date  | Signed By |                                              |                     |

| Chai           | Chain-of-Custody Record                                                                                                                                                                                                          | Turn-Around Time:          | Time:                 |                                   |                                         |                   | -                         |                         | -          |                       |                                                      |        |    |
|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|-----------------------|-----------------------------------|-----------------------------------------|-------------------|---------------------------|-------------------------|------------|-----------------------|------------------------------------------------------|--------|----|
| Client:        | Intera Inc                                                                                                                                                                                                                       | Standard                   | □ Rush                |                                   |                                         |                   | MAI                       | YST                     | Z Z        | ABO                   | ANALYSTS LABORATORY                                  | ORY    |    |
|                | 7.0                                                                                                                                                                                                                              | Project Name:              |                       |                                   |                                         | _                 | www.hallenvironmental.com | enviror                 | menta      | l.com                 |                                                      |        |    |
| Mailing Addre  | Mailing Address: 6000 Optown Blud NE Suik 220                                                                                                                                                                                    | COM                        |                       | Rail Yards                        | 4901                                    | 4901 Hawkins NE   | - NE -                    | Albuqu                  | erque      | Albuquerque, NM 87109 | 7109                                                 |        |    |
|                | Albuquerque Non 87110                                                                                                                                                                                                            | Project #:                 |                       |                                   | Tel.                                    | Tel. 505-345-3975 | 5-3975                    | Fax                     | 505-3      | Fax 505-345-4107      | 71                                                   |        |    |
| Phone #:       | 505-246-1600                                                                                                                                                                                                                     |                            |                       |                                   |                                         |                   | A                         | <b>Analysis Request</b> | Requ       | est                   | 4                                                    |        |    |
| email or Fax#: | : Stracy @ Interactor                                                                                                                                                                                                            | Project Manager:           | ger:                  |                                   | (0)                                     |                   |                           | †O5                     |            | (ju                   |                                                      |        |    |
| QA/QC Package: | le:<br>☐ Level 4 (Full Validation)                                                                                                                                                                                               | Jo                         | se Tra                | 64                                | 208) e'8<br>RM(`O?                      | LCB,2             | SMIS0                     | , PO₄, 5                |            | əsdAVin<br>21,54.5    |                                                      |        |    |
| Accreditation: | ☐ Az Compliance<br>☐ Other                                                                                                                                                                                                       | Sampler:<br>On Ice:        | (Conrad               | Clark                             | O / DE                                  | (1.40             |                           | ' <sup>z</sup> ON       | (A         | Presei<br>M           |                                                      |        |    |
| □ EDD (Type)   |                                                                                                                                                                                                                                  | olers:                     |                       |                                   | GR<br>(GR                               | g po              |                           |                         |            | ) m.                  |                                                      |        |    |
|                |                                                                                                                                                                                                                                  | Cooler Temp(including CF): | (including CF):       | (+0.1= 1.2 (°C)                   | विदा                                    | Jetho             |                           |                         |            | 1                     |                                                      |        |    |
| Date Time      | Matrix Sample Name                                                                                                                                                                                                               | Container<br>Type and #    | Preservative<br>Type  | 2004 AST                          | 08:H9T                                  | EDB (N            | PAHs t                    | Cl' E' E                | S) 07S8    | -0                    |                                                      |        |    |
| 0              | , 1720                                                                                                                                                                                                                           | bi                         | HCL Na.25204<br>H2504 | 100-                              | X                                       | X                 |                           |                         |            | X                     |                                                      |        |    |
|                |                                                                                                                                                                                                                                  |                            |                       |                                   |                                         |                   |                           |                         |            |                       |                                                      |        |    |
|                |                                                                                                                                                                                                                                  |                            |                       |                                   |                                         |                   |                           |                         |            |                       |                                                      |        |    |
|                |                                                                                                                                                                                                                                  |                            |                       |                                   |                                         |                   |                           | +                       |            |                       |                                                      |        |    |
|                |                                                                                                                                                                                                                                  |                            |                       |                                   |                                         |                   |                           | -                       |            | -                     |                                                      |        |    |
| 48.4           |                                                                                                                                                                                                                                  |                            |                       |                                   |                                         |                   |                           |                         |            |                       |                                                      |        |    |
|                |                                                                                                                                                                                                                                  |                            |                       |                                   |                                         |                   |                           |                         |            |                       |                                                      |        |    |
|                |                                                                                                                                                                                                                                  |                            |                       |                                   |                                         |                   |                           |                         |            |                       |                                                      |        |    |
|                |                                                                                                                                                                                                                                  |                            |                       |                                   |                                         |                   |                           |                         |            |                       |                                                      |        |    |
|                | Relinquished by:                                                                                                                                                                                                                 | Received by:               | Via:                  | Date Time                         | Remarks:                                | , ,,              | - 3                       | - 0                     |            | 1/100                 |                                                      |        |    |
| 3              | -                                                                                                                                                                                                                                | try                        | 007                   | 0                                 | Dissolved metals 6010 / 2001/6020/20018 | d met             | 912 61                    | 500                     | 1007       | 1,607                 | 2007                                                 | ~      |    |
| Date: Time:    | Relinquished by:                                                                                                                                                                                                                 | Received by:               | Via:                  | Date Time                         | Bertom                                  | Chrom             | (um, Co)                  | per, 11                 | 7100       | end, 11               | Bartom, Chromium, Copper, Iron, Load, Mangonese, Zin | 1 2 ml | -1 |
| If necessi     | If necessary, samples submitted to Hall Environmental may be subcontracted to other accredited laboratories. This serves as notice of this possibility. Any sub-contracted data will be clearly notated on the analytical report | contracted to other ac     | scredited laboratori  | es. This serves as notice of this | s possibility. Any                      | sub-contr         | acted data                | vill be clea            | oteton vir | t of                  | nelytical ren                                        | ţ      |    |





Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

July 30, 2018

Ken Ziegler City of Albuquerque 1 Civic Plaza, Room 3023 Albuquerque, NM 87103 TEL: FAX

RE: COA Q03 2018 VP\_07\_19\_2018 OrderNo.: 1807A94

### Dear Ken Ziegler:

Hall Environmental Analysis Laboratory received 14 sample(s) on 7/19/2018 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to <a href="www.hallenvironmental.com">www.hallenvironmental.com</a> or the state specific web sites. In order to properly interpret your results, it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifiers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0901

Sincerely,

Andy Freeman

Laboratory Manager

4901 Hawkins NE

Albuquerque, NM 87109

1807A94-001A RYSV0701-20180719-AE

Collected date/time: 07/19/18 10:34

# SAMPLE RESULTS - 01

ONE LAB. NATIONWIDE,

| <u> </u>                            | CAS #              | Mol. Wt. | RDL1  | RDL2  | Docult      | Daaulk     | 0                | Dibates  | Datah        |
|-------------------------------------|--------------------|----------|-------|-------|-------------|------------|------------------|----------|--------------|
| Analyte                             | CAS#               | MOI. W.  |       |       | Result      | Result     | <u>Qualifier</u> | Dilution | <u>Batch</u> |
| •                                   | 67.64.4            | CO 10    | ppbv  | ug/m3 | ppbv        | ug/m3      |                  |          |              |
| Acetone                             | 67-64-1            | 58.10    | 2.50  | 5.94  | 16.9        | 40.2       |                  | 2        | WG1144023    |
| Allyl chloride                      | 107-05-1           | 76.53    | 0.400 | 1.25  | ND          | ND         |                  | 2        | WG1144023    |
| Benzene                             | 71-43-2            | 78.10    | 0.400 | 1.28  | ND          | ND         |                  | 2        | WG1144023    |
| Benzyl Chloride                     | 100-44-7           | 127      | 0.400 | 2.08  | ND          | ND         |                  | 2        | WG1144023    |
| Bromodichloromethane                | 75-27-4            | 164      | 0.400 | 2.68  | ND          | ND         |                  | 2        | WG1144023    |
| Bromoform                           | 75-25-2            | 253      | 1.20  | 12.4  | ND          | ND         |                  | 2        | WG1144023    |
| Bromomethane                        | 74-83-9            | 94.90    | 0.400 | 1.55  | ND          | ND         |                  | 2        | WG1144023    |
| 1,3-Butadiene                       | 106-99-0           | 54.10    | 4.00  | 8.85  | ND          | ND         |                  | 2        | WG1144023    |
| Carbon disulfide                    | 75-15-0            | 76.10    | 0.400 | 1.24  | 1.11        | 3.45       |                  | 2        | WG1144023    |
| Carbon tetrachloride                | 56-23-5            | 154      | 0.400 | 2.52  | ND          | ND         |                  | 2        | WG1144023    |
| Chlorobenzene                       | 108-90-7           | 113      | 0.400 | 1.85  | ND          | ND         |                  | 2        | WG1144023    |
| Chloroethane                        | 75-00-3            | 64.50    | 0.400 | 1.06  | ND          | ND         |                  | 2        | WG1144023    |
| Chloroform                          | 67-66-3            | 119      | 0.400 | 1.95  | ND          | ND         |                  | 2        | WG1144023    |
| Chloromethane                       | 74-87-3            | 50.50    | 0.400 | 0.826 | 0.478       | 0.987      |                  | 2        | WG1144023    |
| 2-Chlorotoluene                     | 95-49-8            | 126      | 0.400 | 2.06  | ND          | ND         |                  | 2        | WG1I44023    |
| Cyclohexane                         | 110-82-7           | 84.20    | 0.400 | 1.38  | ND          | ND         |                  | 2        | WG1144023    |
| Dibromochloromethane                | 124-48-1           | 208      | 0.400 | 3.40  | ND          | ND         |                  | 2        | WG1144023    |
| 1,2-Dibromoethane                   | 106-93-4           | 188      | 0.400 | 3.08  | ND          | ND         |                  | 2        | WG1144023    |
| 1,2-Dichlorobenzene                 | 95-50-1            | 147      | 0.400 | 2.40  | ND          | ND         |                  | 2        | WG1144023    |
| 1,3-Dichlorobenzene                 | 541-73-1           | 147      | 0.400 | 2.40  | ND          | ND         |                  | 2        | WG1144023    |
| 1,4-Dichlorobenzene                 | 106-46-7           | 147      | 0.400 | 2.40  | ND          | ND         | <u>_14</u>       | 2        | WG1144023    |
| 1,2-Dichloroethane                  | 107-06-2           | 99       | 0.400 | 1.62  | ND          | ND         |                  | 2        | WG1144023    |
| 1,1-Dichloroethane                  | 75-34-3            | 98       | 0.400 | 1.60  | ND          | ND         |                  | 2        | WG1144023    |
| 1,1-Dichloroethene                  | 75-35-4            | 96.90    | 0.400 | 1.59  | ND          | ND         |                  | 2        | WG1144023    |
| cis-1,2-Dichloroethene              | 156-59-2           | 96.90    | 0.400 | 1.59  | ND          | ND         |                  | 2        | WG1144023    |
| trans-1,2-Dichloroethene            | 156-60-5           | 96.90    | 0.400 | 1.59  | ND          | ND         |                  | 2 .      | WG1144023    |
| 1,2-Dichloropropane                 | 78-87-5            | 113      | 0.400 | 1.85  | ND          | ND         |                  | 2        | WG1I44023    |
| cis-1,3-Dichloropropene             | 10061-01-5         | 111      | 0.400 | 1.82  | ND          | ND         |                  | 2        | WG1144023    |
| trans-1,3-Dichloropropene           | 10061-02-6         | 111      | 0.400 | 1.82  | ND          | ND         |                  | 2        | WG1144023    |
| 1,4-Dioxane                         | 123-91-1           | 88.10    | 0.400 | 1.44  | ND          | ND         |                  | 2        | WG1144023    |
| Ethanol                             | 64-17-5            | 46.10    | 1.26  | 2.38  | 128         | 242        | E.               | 2        | WG1144023    |
| Ethylbenzene                        | 100-41-4           | 106      | 0.400 | 1.73  | ND          | ND         |                  | 2        | WG1144023    |
| 4-Ethyltoluene                      | 622-96-8           | 120      | 0.400 | 1.96  | ND          | ND         |                  | 2        |              |
| Trichlorofluoromethane              | 75-69-4            | 137.40   | 0.400 | 2.25  | ND          | ND<br>ND   |                  | 2        | WG1144023    |
| Dichlorodifluoromethane             | 75-71-8            | 120.92   | 0.400 | 1.98  | ND          | ND<br>ND   |                  | 2        | WG1144023    |
| 1,1,2-Trichlorotrifluoroethane      | 76-13-1            | 187.40   | 0.400 | 3.07  | ND          | ND         |                  | 2        | WG1144023    |
| 1,2-Dichlorotetrafluoroethane       | 76-13-1<br>76-14-2 | 171      | 0.400 | 2.80  |             |            |                  |          | WG1144023    |
| Heptane                             | 142-82-5           | 100      | 0.400 |       | ND          | ND<br>ND   |                  | 2        | WG1144023    |
| Hexachloro-1,3-butadiene            | 87-68-3            | 261      |       | 1.64  | ND          | ND         |                  | 2        | WG1144023    |
|                                     | 110-54-3           |          | 1.26  | 13.5  | ND<br>o con | ND         |                  | 2        | WG1144023    |
| n-Hexane                            |                    | 86.20    | 0.400 | 1.41  | 0.528       | 1.86       |                  | 2        | WG1144023    |
| Isopropylbenzene Methylana Chlorida | 98-82-8            | 120.20   | 0.400 | 1.97  | ND          | ND<br>4.27 |                  | 2        | WG1144023    |
| Methylene Chloride                  | 75-09-2            | 84.90    | 0.400 | 1.39  | 1.23        | 4,27       |                  | 2        | WG1144023    |
| Methyl Butyl Ketone                 | 591-78-6           | 100      | 2.50  | 10.2  | ND          | ND         |                  | 2        | WG1144023    |
| 2-Butanone (MEK)                    | 78-93-3            | 72.10    | 2.50  | 7.37  | 2.75        | 8.11       |                  | 2        | WG1144D23    |
| 4-Methyl-2-pentanone (MIBK)         | 108-10-1           | 100.10   | 2.50  | 10.2  | ND          | ND         |                  | 2        | WG1144023    |
| Methyl methacrylate                 | 80-62-6            | 100.12   | 0.400 | 1.64  | ND          | ND         |                  | 2        | WG1144023    |
| MTBE                                | 1634-04-4          | 88.10    | 0.400 | 1.44  | ND          | ND         |                  | 2        | WG1144023    |
| Naphthalene                         | 91-20-3            | 128      | 1.26  | 6.60  | ND          | ND         |                  | 2        | WG1144023    |
| 2-Propanol                          | 67-63-0            | 60.10    | 2.50  | 6.15  | 19.7        | 48.3       |                  | 2        | WG1144023    |
| Propene                             | 115-07-1           | 42.10    | 0.800 | 1.38  | 0.895       | 1.54       |                  | 2        | WG1144023    |
| Styrene                             | 100-42-5           | 104      | 0.400 | 1.70  | ND          | ND         |                  | 2        | WG1144023    |
| 1,1,2,2-Tetrachloroethane           | 79-34-5            | 168      | 0.400 | 2.75  | ND          | ND         |                  | 2        | WG1144023    |
| Tetrachloroethylene                 | 127-18-4           | 166      | 0.400 | 2.72  | 1.58        | 10.7       |                  | 2        | WG1144023    |
| Tetrahydrofuran                     | 109-99-9           | 72.10    | 0.400 | 1.18  | 1.55        | 4.57       |                  | 2        | W61144023    |
| Toluene                             | 108-88-3           | 92.10    | 0.400 | 1.51  | 0.645       | 2.43       |                  | 2        | WG1144023    |
| 1,2,4-Trichlorobenzene              | 120-82-1           | 181      | 1.26  | 9.33  | ND          | ND         |                  | 2        | WG1144023    |
|                                     |                    |          |       |       |             |            |                  |          |              |

1807A94-001A RYSV0701-20180719-AE

# SAMPLE RESULTS - 01

ONE LAB. NATIONWIDE.

Collected date/time: 07/19/18 10:34

|                            | CAS #     | Mol. Wt. | RDL1     | RDL2  | Result | Result | Qualifier | Dilution | <u>Batch</u> |
|----------------------------|-----------|----------|----------|-------|--------|--------|-----------|----------|--------------|
| Analyte                    |           |          | ppbv     | ug/m3 | ppbv   | ug/m3  |           |          | <del></del>  |
| 1,1,1-Trichloroethane      | 71-55-6   | 133      | 0.400    | 2.18  | 0.885  | 4.82   |           | 2        | WG1144023    |
| 1,1,2-Trichloroethane      | 79-00-5   | 133      | 0.400    | 2.18  | ND     | ND     |           | 2        | WG1144023    |
| Trichloroethylene          | 79-01-6   | 131      | 0.400    | 2.14  | ND     | ND     |           | 2        | WG1144023    |
| 1,2,4-Trimethylbenzene     | 95-63-6   | 120      | 0.400    | 1.96  | ND     | ND     |           | 2        | WG1144023    |
| 1,3,5-Trimethylbenzene     | 108-67-8  | 120      | 0.400    | 1.96  | ND     | ND     |           | 2        | WG1144023    |
| 2,2,4-Trimethylpentane     | 540-84-1  | 114.22   | 0.400    | 1.87  | ND     | ND     |           | 2        | WG1144023    |
| Vinyl chloride             | 75-01-4   | 62.50    | 0.400    | 1.02  | ND     | ND     |           | 2        | WG1144023    |
| Vinyl Bromide              | 593-60-2  | 106.95   | 0.400    | 1.75  | ND     | ND     |           | 2        | WG1144023    |
| Vinyl acetate              | 108-05-4  | 86.10    | 0.400    | 1,41  | ND     | ND     |           | 2        | WG1144023    |
| m&p-Xylene                 | 1330-20-7 | 106      | 0.800    | 3.47  | ND     | ND     |           | 2        | WG1144023    |
| o-Xylene                   | 95-47-6   | 106      | 0.400    | 1.73  | ND     | ND     |           | 2        | WG1144023    |
| TPH (GC/MS) Low Fraction   | 8006-61-9 | 101      | 100      | 413   | ND     | ND     |           | 2        | WG1144023    |
| (S) 1,4-Bromofluorobenzene | 460-00-4  | 175      | 60.0-140 |       | 101    |        |           |          | WG1144023    |

















1807A94-002A RYSV0702-20180719-AE

# SAMPLE RESULTS - 02

ONE LAB. NATIONWIDE.

Collected date/time: 07/19/18 10:24

| Analyte                                | CAS #      | Mol. Wt.     | RDL1<br>ppbv   | RDL2<br>ug/m3 | Result<br>ppbv | Result<br>ug/m3 | Qualifier | Dilution | <u>Batch</u> |
|----------------------------------------|------------|--------------|----------------|---------------|----------------|-----------------|-----------|----------|--------------|
| Acetone                                | 67-64-1    | 58.10        | 2.50           | 5.94          | 42.6           | 101             |           | 2        | WG1144023    |
| Allyl chloride                         | 107-05-1   | 76.53        | 0.400          | 1.25          | ND             | ND              |           | 2        | WG1144023    |
| Benzene                                | 71-43-2    | 78.10        | 0.400          | 1.28          | ND             | ND              |           | 2        | WG1144023    |
| Benzyl Chloride                        | 100-44-7   | 127          | 0.400          | 2.08          | ND             | ND              |           | 2        | WG1144023    |
| Bromodichloromethane                   | 75-27-4    | 164          | 0.400          | 2.68          | ND             | ND              |           | 2        | WG1144023    |
| Bromoform                              | 75-25-2    | 253          | 1.20           | 12.4          | ND             | ND              |           | 2        | WG1144023    |
| Bromomethane                           | 74-83-9    | 94.90        | 0.400          | 1.55          | ND             | ND              |           | 2        | WG1144023    |
| 1,3-Butadiene                          | 106-99-0   | 54.10        | 4.00           | 8.85          | ND             | ND              |           | 2        | WG1144023    |
| Carbon disulfide                       | 75-15-0    | 76.10        | 0.400          | 1.24          | ND             | ND              |           | 2        | WG1144023    |
| Carbon tetrachloride                   | 56-23-5    | 154          | 0.400          | 2.52          | ND             | ND              |           | 2        | WG1144023    |
| Chlorobenzene                          | 108-90-7   | 113          | 0.400          | 1.85          | ND             | ND              |           | 2        | WG1144023    |
| Chloroethane                           | 75-00-3    | 64.50        | 0.400          | 1.06          | ND             | ND              |           | 2        | WG1144023    |
| Chloroform                             | 67-66-3    | 119          | 0.400          | 1.95          | ND             | ND              |           | 2        | WG1144023    |
| Chloromethane                          | 74-87-3    | 50.50        | 0.400          | 0.826         | 0.585          | 1.21            |           | 2        | WG1144023    |
| 2-Chlorotoluene                        | 95-49-8    | 126          | 0.400          | 2.06          | ND             | ND              |           | 2        | WG1144023    |
| Cyclohexane                            | 110-82-7   | 84.20        | 0.400          | 1.38          | ND             | ND              |           | 2        | WG1144023    |
| Dibromochloromethane                   | 124-48-1   | 208          | 0.400          | 3.40          | ND             | ND              |           | 2        | WG1144023    |
| 1,2-Dibromoethane                      | 106-93-4   | 188          | 0.400          | 3.08          | ND             | ND              |           | 2        | WG1144023    |
| 1,2-Dichlorobenzene                    | 95-50-1    | 147          | 0.400          | 2.40          | ND             | ND              |           | 2        | WG1I44023    |
| 1,3-Dichlorobenzene                    | 541-73-1   | 147          | 0.400          | 2,40          | ND             | ND              |           | 2        | WG1144023    |
| 1,4-Dichlorobenzene                    | 106-46-7   | 147          | 0.400          | 2.40          | ND             | ND              | <u>J4</u> | 2        | WG1144023    |
| 1,2-Dichloroethane                     | 107-06-2   | 99           | 0.400          | 1.62          | ND             | ND              |           | 2        | WG1144023    |
| 1,1-Dichloroethane                     | 75-34-3    | 98           | 0.400          | 1.60          | ND             | ND              |           | 2        | WG1144023    |
| 1,1-Dichloroethene                     | 75-35-4    | 96.90        | 0.400          | 1.59          | ND             | ND              |           | 2        | WG1144023    |
| cis-1,2-Dichloroethene                 | 156-59-2   | 96.90        | 0.400          | 1.59          | ND             | ND              |           | 2        | WG1144023    |
| trans-1,2-Dichloroethene               | 156-60-5   | 96.90        | 0.400          | 1.59          | ND             | ND              |           | 2        | WG1144023    |
| 1,2-Dichloropropane                    | 78-87-5    | 113          | 0.400          | 1.85          | ND             | ND              |           | 2        | WG1144023    |
| cis-1,3-Dichloropropene                | 10061-01-5 | 111          | 0.400          | 1.82          | ND             | ND              |           | 2        | WG1144023    |
| trans-1,3-Dichloropropene              | 10061-02-6 | 111          | 0.400          | 1.82          | ND             | ND              |           | 2        | WG1144023    |
| 1,4-Dioxane                            | 123-91-1   | 88.10        | 0.400          | 1.44          | ND             | ND              |           | 2        | WG1144023    |
| Ethanol                                | 64-17-5    | 46.10        | 1.26           | 2.38          | 9.66           | 18.2            |           | 2        | WG1144023    |
| Ethylbenzene                           | 100-41-4   | 106          | 0.400          | 1.73          | ND             | ND              |           | 2        | WG1144023    |
| 4-Ethyltoluene                         | 622-96-8   | 120          | 0.400          | 1.96          | ND             | ND              |           | 2        | WG1144023    |
| Trichlorofluoromethane                 | 75-69-4    | 137.40       | 0.400          | 2,25          | ND             | ND              |           | 2        | WG1144023    |
| Dichlorodifluoromethane                | 75-71-8    | 120.92       | 0.400          | 1.98          | 0.402          | 1.99            |           | 2        | WG1144023    |
| 1,1,2-Trichlorotrifluoroethane         | 76-13-1    | 187.40       | 0.400          | 3.07          | ND             | ND              |           | 2        | WG1144023    |
| 1,2-Dichlorotetrafluoroethane          | 76-14-2    | 171          | 0.400          | 2.80          | ND             | ND              |           | 2        | WG1144023    |
| Heptane                                | 142-82-5   | 100          | 0.400          | 1.64          | ND             | ND              |           | 2        | WG1144023    |
| Hexachloro-1,3-butadiene               | 87-68-3    | 261          | 1.26           | 13.5          | ND             | ND              |           | 2        | WG1144023    |
| n-Hexane                               | 110-54-3   | 86.20        | 0.400          | 1.41          | ND             | ND              |           | 2        | WG1144023    |
| Isopropylbenzene                       | 98-82-8    | 120.20       | 0.400          | 1.97          | ND             | ND              |           | 2        | WG1144023    |
| Methylene Chloride                     | 75-09-2    | 84.90        | 0.400          | 1.39          | 1.03           | 3.59            |           | 2        | WG1144023    |
| Methyl Butyl Ketone                    | 591-78-6   | 100          | 2.50           | 10.2          | 6.45           | 26.4            |           | 2        | WG1144023    |
| 2-Butanone (MEK)                       | 78-93-3    | 72.10        | 2.50           | 7.37          | 11.9           | 35.2            |           | 2        | WG1144023    |
| 4-Methyl-2-pentanone (MIBK)            | 108-10-1   | 100.10       | 2.50           | 10.2          | ND             | ND              |           | 2        | WG1144023    |
| Methyl methacrylate                    | 80-62-6    | 100.10       |                | 1.64          |                |                 |           |          |              |
| MTBE                                   | 1634-04-4  | 88.10        | 0.400<br>0.400 |               | 0.470<br>ND    | 1.93<br>ND      |           | 2        | WG1144023    |
| Naphthalene                            | 91-20-3    | 128          | 1.26           | 1,44<br>6.60  | ND<br>ND       | ND<br>ND        |           | 2<br>2   | WG1144023    |
| 2-Propanol                             | 67-63-0    | 60.10        | 2.50           | 6.60<br>6.15  | ND<br>12.3     | ND<br>30.2      |           |          | WG1144023    |
| z-Propanoi<br>Propene                  | 115-07-1   | 42.10        |                | 6.15          | 12.3<br>ND     | 30.2            |           | 2        | WG1144023    |
| •                                      | 100-42-5   | 42.10<br>104 | 0.800          | 1.38          |                | ND<br>ND        |           | 2        | WG!144023    |
| Styrene 112 2-Tetrachloroothano        | 79-34-5    |              | 0.400          | 1,70          | ND<br>ND       | ND<br>NO        |           | 2        | WG!144023    |
| 1,1,2,2-Tetrachloroethane              |            | 168          | 0.400          | 2.75          | ND<br>0.403    | ND<br>3.34      |           | 2        | W61144023    |
| Tetrachloroethylene<br>Tetrahydrofuran | 127-18-4   | 166<br>73.10 | 0.400          | 2.72          | 0.493          | 3.34            |           | 2        | WG1144023    |
| Tetrahydrofuran<br>Teknapa             | 109-99-9   | 72.10        | 0.400          | 1.18          | 0.777<br>ND    | 2.29            |           | 2        | W61144023    |
| Toluene                                | 108-88-3   | 92.10        | 0.400          | 1.51          | ND<br>ND       | ND<br>ND        |           | 2        | WG1144023    |
| 1,2,4-Trichlorobenzene                 | 120-82-1   | 181          | 1.26           | 9.33          | ND             | ND              |           | 2        | WG1144023    |

















1807A94-002A RYSV0702-20180719-AE

# SAMPLE RESULTS - 02

ONE LAB. NATIONWIDE.

Collected date/time: 07/19/18 10:24

|                            | CAS#      | Mol. Wt. | RDL1     | RDL2  | Result | Result | Qualifier | Dilution | Batch     |  |
|----------------------------|-----------|----------|----------|-------|--------|--------|-----------|----------|-----------|--|
| Analyte                    |           |          | ppbv     | ug/m3 | ppbv   | ug/m3  |           |          | <u> </u>  |  |
| 1,1,1-Trichloroethane      | 71-55-6   | 133      | 0.400    | 2.18  | 11.3   | 61.6   |           | 2        | WG1144023 |  |
| 1,1,2-Trichloroethane      | 79-00-5   | 133      | 0.400    | 2.18  | ND     | ND     |           | 2        | WG1144023 |  |
| Trichloroethylene          | 79-01-6   | 131      | 0.400    | 2.14  | ND     | ND     |           | 2        | WG1144023 |  |
| 1,2,4-Trimethylbenzene     | 95-63-6   | 120      | 0.400    | 1.96  | ND     | ND     |           | 2        | WG1144023 |  |
| 1,3,5-Trimethylbenzene     | 108-67-8  | 120      | 0.400    | 1.96  | ND     | ND     |           | 2        | WG1144023 |  |
| 2,2,4-Trimethylpentane     | 540-84-1  | 114.22   | 0.400    | 1.87  | ND     | ND     |           | 2        | WG1144023 |  |
| Vinyl chloride             | 75-01-4   | 62.50    | 0.400    | 1.02  | ND     | ND     |           | 2        | WG1144023 |  |
| Vinyl Bromide              | 593-60-2  | 106.95   | 0.400    | 1.75  | ND     | ND     |           | 2        | WG1144023 |  |
| Vinyl acetate              | 108-05-4  | 86.10    | 0.400    | 1.41  | ND     | ND     |           | 2        | WG1144023 |  |
| m&p-Xylene                 | 1330-20-7 | 106      | 0.800    | 3.47  | ND     | ND     |           | 2        | WG1144023 |  |
| o-Xylene                   | 95-47-6   | 106      | 0.400    | 1.73  | ND     | ND     |           | 2        | WG1144023 |  |
| TPH (GC/MS) Low Fraction   | 8006-61-9 | 101      | 100      | 413   | 107    | 442    |           | 2        | WG1144023 |  |
| (S) 1,4-Bromofluorobenzene | 460-00-4  | 175      | 60.0-140 |       | 101    |        |           |          | WG1144023 |  |

















1807A94-003A RYSV0703-20180719-AE

Collected date/time: 07/19/18 10:12

# SAMPLE RESULTS - 03

ONE LAB. NATIONWIDE.

Volatile Organic Compounds (MS) by Method TO-15

|                                | CAS#       | Mol. Wt. | RDL1  | RDL2  | Result | Result | Qualifier                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Dilution | Batch     |
|--------------------------------|------------|----------|-------|-------|--------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----------|
| Analyte                        |            |          | ppbv  | ug/m3 | ppbv   | ug/m3  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |           |
| Acetone                        | 67-64-1    | 58.10    | 2.50  | 5.94  | 8.02   | 19.1   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2        | WG1144023 |
| Allyl chloride                 | 107-05-1   | 76.53    | 0.400 | 1.25  | ND     | ND     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2        | WG1144023 |
| Benzene                        | 71-43-2    | 78.10    | 0.400 | 1.28  | ND     | ND     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2        | WG1144023 |
| Benzyl Chloride                | 100-44-7   | 127      | 0.400 | 2.08  | ND     | ND     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2        | WG1144023 |
| Bromodichloromethane           | 75-27-4    | 164      | 0.400 | 2.68  | ND     | NĐ     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2        | WG1144023 |
| Bromoform                      | 75-25-2    | 253      | 1.20  | 12.4  | ND     | ND     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2        | WG1144023 |
| Bromomethane                   | 74-83-9    | 94.90    | 0.400 | 1.55  | ND     | ND     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2        | WG1144023 |
| 1,3-Butadiene                  | 106-99-0   | 54.10    | 4.00  | 8.85  | ND     | ND     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2        | WG1144023 |
| Carbon disulfide               | 75-15-0    | 76.10    | 0.400 | 1.24  | ND     | ND     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2        | WG1144023 |
| Carbon tetrachloride           | 56-23-5    | 154      | 0.400 | 2.52  | ND     | ND     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2        | WG1144023 |
| Chlorobenzene                  | 108-90-7   | 113      | 0.400 | 1.85  | ND     | ND     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2        | WG1144023 |
| Chloroethane                   | 75-00-3    | 64.50    | 0.400 | 1.06  | ND     | ND     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2        | WG1144023 |
| Chloroform                     | 67-66-3    | 119      | 0.400 | 1.95  | ND     | ND     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2        | WG1I44023 |
| Chloromethane                  | 74-87-3    | 50.50    | 0.400 | 0.826 | ND     | ND     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2        | WG1144023 |
| 2-Chlorotoluene                | 95-49-8    | 126      | 0.400 | 2.06  | ND     | ND     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2        | WG1144023 |
| Cyclohexane                    | 110-82-7   | 84.20    | 0.400 | 1.38  | ND     | ND     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2        | WG1144023 |
| Dibromochloromethane           | 124-48-1   | 208      | 0.400 | 3.40  | ND     | ND     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2        | WG1144023 |
| 1,2-Dibromoethane              | 106-93-4   | 188      | 0.400 | 3.08  | ND     | ND     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2        | WG1144023 |
| 1,2-Dichlorobenzene            | 95-50-1    | 147      | 0.400 | 2.40  | ND     | ND     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2        | WG1144023 |
| 1,3-Dichlorobenzene            | 541-73-1   | 147      | 0.400 | 2.40  | ND     | ND     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2        | WG1144023 |
| 1,4-Dichlorobenzene            | 106-46-7   | 147      | 0.400 | 2.40  | ND     | ND     | <u>J4</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2        | WG1144023 |
| 1,2-Dichloroethane             | 107-06-2   | 99       | 0.400 | 1.62  | ND     | ND     | NAME OF THE OWNER OWNER OF THE OWNER | 2        | WG1144023 |
| 1,1-Dichloroethane             | 75-34-3    | 98       | 0.400 | 1.60  | ND     | ND     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2        | WG1144023 |
| 1,1-Dichloroethene             | 75-35-4    | 96.90    | 0.400 | 1.59  | ND     | ND     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2        | WG1144023 |
| cis-1,2-Dichloroethene         | 156-59-2   | 96.90    | 0.400 | 1.59  | 16.9   | 67.1   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2        | WG1144023 |
| trans-1,2-Dichloroethene       | 156-60-5   | 96.90    | 0.400 | 1.59  | ND     | ND     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2        | WG1144023 |
| 1,2-Dichloropropane            | 78-87-5    | 113      | 0.400 | 1.85  | ND     | ND     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2        | WG1I44023 |
| cis-1,3-Dichloropropene        | 10061-01-5 | 111      | 0.400 | 1.82  | ND     | ND     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2        | WG1144023 |
| trans-1,3-Dichloropropene      | 10061-02-6 | 111      | 0.400 | 1.82  | ND     | ND     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2        | WG1144023 |
| 1,4-Dioxane                    | 123-91-1   | 88.10    | 0.400 | 1.44  | ND     | ND     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2        | WG1144023 |
| Ethanol                        | 64-17-5    | 46.10    | 1.26  | 2.38  | 10.1   | 19.1   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2        | WG1144023 |
| Ethylbenzene                   | 100-41-4   | 106      | 0.400 | 1.73  | ND     | ND     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2        | WG1144023 |
| 4-Ethyltofuene                 | 622-96-8   | 120      | 0.400 | 1.96  | 0.455  | 2.24   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2        | WG1144023 |
| Trichlorofluoromethane         | 75-69-4    | 137.40   | 0.400 | 2.25  | ND     | ND     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2        | WG1144023 |
| Dichlorodifluoromethane        | 75-71-8    | 120.92   | 0.400 | 1.98  | ND     | ND     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2        | WG1144023 |
| 1,1,2-Trichlorotrifluoroethane | 76-13-1    | 187.40   | 0.400 | 3.07  | ND     | ND     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2        | WG1144023 |
| 1,2-Dichlorotetrafluoroethane  | 76-14-2    | 171      | 0.400 | 2.80  | ND     | ND     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2        | WG1144023 |
| Heptane                        | 142-82-5   | 100      | 0.400 | 1,64  | ND     | ND     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2        | WG1144023 |
| Hexachloro-1,3-butadiene       | 87-68-3    | 261      | 1.26  | 13.5  | ND     | ND     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2        | WG1144023 |
| n-Hexane                       | 110-54-3   | 86.20    | 0.400 | 1.41  | ND     | ND     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2        | WG1144023 |
| Isopropylbenzene               | 98-82-8    | 120.20   | 0.400 | 1.97  | ND     | ND     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2        | WG1144023 |
| Methylene Chloride             | 75-09-2    | 84.90    | 0.400 | 1.39  | 1.17   | 4.07   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2        | WG1144023 |
| Methyl Butyl Ketone            | 591-78-6   | 100      | 2.50  | 10.2  | ND     | ND     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2        | WG1144023 |
| 2-8utanone (MEK)               | 78-93-3    | 72.10    | 2.50  | 7.37  | ND     | ND     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2        | WG1144023 |
| 4-Methyl-2-pentanone (MIBK)    | 108-10-1   | 100.10   | 2.50  | 10.2  | ND     | ND     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2        | WG1144023 |
| Methyl methacrylate            | 80-62-6    | 100.12   | 0.400 | 1.64  | ND     | ND     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2        | WG1144023 |
| MT8E                           | 1634-04-4  | 88.10    | 0.400 | 1,44  | ND     | ND     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2        | WG1144023 |
| Naphthalene                    | 91-20-3    | 128      | 1.26  | 6.60  | ND     | ND     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2        | WG1144023 |
| 2-Propanol                     | 67-63-0    | 60.10    | 2.50  | 6.15  | ND     | ND     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2        | WG1144023 |
| Propene                        | 115-07-1   | 42.10    | 0.800 | 1.38  | ND     | ND     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2        | WG1144023 |
| Styrene                        | 100-42-5   | 104      | 0.400 | 1.70  | ND     | ND     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2        | WG1144023 |
| 1,1,2,2-Tetrachloroethane      | 79-34-5    | 168      | 0.400 | 2,75  | ND     | ND     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2        | WG1144023 |
| Tetrachloroethylene            | 127-18-4   | 166      | 0.400 | 2.72  | 4.47   | 30.4   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2        | WG1144023 |
| Tetrahydrofuran                | 109-99-9   | 72.10    | 0.400 | 1.18  | ND     | ND     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2        | WG1144023 |
| Toluene                        | 108-88-3   | 92.10    | 0.400 | 1.51  | 0.574  | 2.16   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2        | WG1144023 |
| 1,2,4-Trichtorobenzene         | 120-82-1   | 181      | 1.26  | 9.33  | ND     | ND     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2        | WG1144023 |
|                                |            |          |       |       |        |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |           |

ACCOUNT: Hall Environmental Analysis Laboratory PROJECT:

SDG: L1011512

DATE/TIME: 07/30/18 17:19



















1807A94-003A RYSV0703-20180719-AE

# SAMPLE RESULTS - 03

ONE LAB. NATIONWIDE.

Collected date/time: 07/19/18 10:12

|                            | CAS #     | Mol. Wt. | RDL1     | RDL2  | Result | Result | Qualifier | Dilution | Batch     |
|----------------------------|-----------|----------|----------|-------|--------|--------|-----------|----------|-----------|
| Analyte                    |           |          | ppbv     | ug/m3 | ppbv   | ug/m3  |           |          |           |
| 1,1,1-Trichloroethane      | 71-55-6   | 133      | 0.400    | 2.18  | 0.642  | 3.49   |           | 2        | WG1144023 |
| 1,1,2-Trichloroethane      | 79-00-5   | 133      | 0.400    | 2.18  | ND     | ND     |           | 2        | WG1144023 |
| Frichloroethylene          | 79-01-6   | 131      | 0.400    | 2.14  | 67.0   | 359    |           | 2        | WG1144023 |
| ,2,4-Trimethylbenzene      | 95-63-6   | 120      | 0.400    | 1.96  | 2.22   | 10.9   |           | 2        | WG1144023 |
| .3.5-Trimethylbenzene      | 108-67-8  | 120      | 0.400    | 1.96  | ND     | ND     |           | 2        | WG1144023 |
| 2,2,4-Trimethylpentane     | 540-84-1  | 114.22   | 0.400    | 1.87  | ND     | ND     |           | 2        | WG1144023 |
| /inyl chloride             | 75-01-4   | 62.50    | 0.400    | 1.02  | ND     | ND     |           | 2        | WG1144023 |
| /inyl Bromide              | 593-60-2  | 106.95   | 0.400    | 1.75  | ND     | ND     |           | 2        | WG1144023 |
| /inyl acetate              | 108-05-4  | 86.10    | 0.400    | 1.41  | ND     | ND     |           | 2        | WG1144023 |
| n&p-Xylene                 | 1330-20-7 | 106      | 0.800    | 3.47  | 1.41   | 6.09   |           | 2        | WG1144023 |
| o-Xylene                   | 95-47-6   | 106      | 0.400    | 1.73  | 0.644  | 2.79   |           | 2        | WG1144023 |
| PH (GC/MS) Low Fraction    | 8006-61-9 | 101      | 100      | 413   | 155    | 641    |           | 2        | WG1144023 |
| (S) 1,4-Bromofluorobenzene | 460-00-4  | 175      | 60.0-140 |       | 99.6   |        |           |          | WG1144023 |

















1807A94-004A RYSV0704-20180719-AE

Collected date/time: 07/19/18 10:29

# SAMPLE RESULTS - 04

ONE LAB, NATIONWIDE.

| Analyte                       | CAS#       | Mol. Wt. | RDL1<br>ppbv | RDL2<br>ug/m3   | Result<br>ppbv | Result<br>ug/m3 | Qualifier  | Dilution | Batch            |
|-------------------------------|------------|----------|--------------|-----------------|----------------|-----------------|------------|----------|------------------|
| Acetone                       | 67-64-1    | 58.10    | 2.50         | ug/iii3<br>5.94 | 6.69           | 15.9            |            | 2        | MCMAAAA          |
| Allyl chloride                | 107-05-1   |          | 0.400        |                 |                |                 |            | 2        | WG1144023        |
| •                             | 71-43-2    | 76.53    |              | 1.25            | ND<br>ND       | ND<br>ND        |            | 2        | WG1144023        |
| Benzene<br>Banad Oblasida     |            | 78.10    | 0.400        | 1.28            | ND<br>NB       | ND              |            | 2        | WG1144023        |
| Benzyl Chloride               | 100-44-7   | 127      | 0.400        | 2.08            | ND             | ND              |            | 2        | WG1144023        |
| Bromodichloromethane          | 75-27-4    | 164      | 0.400        | 2.68            | ND             | ND              |            | 2        | <u>WG1144023</u> |
| Bromoform                     | 75-25-2    | 253      | 1.20         | 12.4            | ND             | ND              |            | 2        | WG1144023        |
| Bromomethane                  | 74-83-9    | 94.90    | 0.400        | 1.55            | ND             | ND              |            | 2        | WG1144023        |
| 1,3-Butadiene                 | 106-99-0   | 54.10    | 4.00         | 8.85            | ND             | ND              |            | 2        | WG1144023        |
| Carbon disulfide              | 75-15-0    | 76.10    | 0.400        | 1.24            | ND             | ND              |            | 2        | WG1144023        |
| Carbon tetrachloride          | 56-23-5    | 154      | 0.400        | 2.52            | ND             | ND              |            | 2        | WG1144023        |
| Chlorobenzene                 | 108-90-7   | 113      | 0.400        | 1.85            | ND             | ND              |            | 2        | WG1144023        |
| Chloroethane                  | 75-00-3    | 64.50    | 0.400        | 1.06            | ND             | ND              |            | 2        | WG1144023        |
| Chloroform                    | 67-66-3    | 119      | 0.400        | 1.95            | ND             | ND              |            | 2        | WG1I44023        |
| Chloromethane                 | 74-87-3    | 50.50    | 0.400        | 0.826           | ND             | ND              |            | 2        | WG1I44023        |
| 2-Chlorotoluene               | 95-49-8    | 126      | 0.400        | 2.06            | ND             | ND              |            | 2        | WG1144023        |
| Cyclohexane                   | 110-82-7   | 84.20    | 0.400        | 1.38            | ND             | ND              |            | 2        | WG1144023        |
| Dibromochloromethane          | 124-48-1   | 208      | 0.400        | 3.40            | ND             | ND              |            | 2        | WG1144023        |
| ,2-Dibromoethane              | 106-93-4   | 188      | 0.400        | 3.08            | ND             | ND              |            | 2        | WG1144023        |
| ,2-Dichlorobenzene            | 95-50-1    | 147      | 0.400        | 2.40            | ND             | ND              |            | 2        | WG1144023        |
| ,3-Dichlorobenzene            | 541-73-1   | 147      | 0.400        | 2.40            | ND             | ND              |            | 2        | WG1144023        |
| ,4-Dichlorobenzene            | 106-46-7   | 147      | 0.400        | 2.40            | ND             | ND              | <u>.i4</u> | 2        | WG1144023        |
| ,2-Dichloroethane             | 107-06-2   | 99       | 0.400        | 1.62            | ND             | ND              |            | 2        | WG1144023        |
| ,1-Dichloroethane             | 75-34-3    | 98       | 0.400        | 1.60            | ND             | ND              |            | 2        | WG1144023        |
| ,1-Dichloroethene             | 75-35-4    | 96.90    | 0.400        | 1.59            | ND             | ND              |            | 2        | WG1144023        |
| is-1,2-Dichloroethene         | 156-59-2   | 96.90    | 0.400        | 1.59            | ND             | ND              |            | 2        | WG1144023        |
| rans-1,2-Dichloroethene       | 156-60-5   | 96.90    | 0.400        | 1.59            | ND             | ND              |            | 2        | WG1144023        |
| ,2-Dichloropropane            | 78-87-5    | 113      | 0.400        | 1.85            | ND             | ND              |            | 2        | WG1144023        |
| is-1,3-Dichloropropene        | 10061-01-5 | 111      | 0.400        | 1.82            | ND             | ND              |            | 2        | WG1144023        |
| rans-1,3-Dichloropropene      | 10061-02-6 | 111      | 0.400        | 1.82            | ND             | ND              |            | 2        | WG1144023        |
| 4-Dioxane                     | 123-91-1   | 88.10    | 0.400        | 1.44            | ND             | ND              |            | 2        | WG1144023        |
| Ethanol                       | 64-17-5    | 46.10    | 1.26         | 2.38            | 9.09           | 17.1            |            | 2        | WG1144023        |
| thylbenzene                   | 100-41-4   | 106      | 0.400        | 1.73            | ND             | ND              |            | 2        | WG1144023        |
| I-Ethyltoluene                | 622-96-8   | 120      | 0.400        | 1.96            | ND             | ND              |            | 2        | WG1144023        |
| richlorofluoromethane         | 75-69-4    | 137.40   | 0.400        | 2.25            | ND             | ND              |            | 2        | WG1144023        |
| Dichlorodifluoromethane       | 75-71-8    | 120.92   | 0.400        | 1.98            | ND             | ND              |            | 2        | WG1144023        |
| ,1,2-Trichlorotrifluoroethane | 76-13-1    | 187.40   | 0.400        | 3.07            | ND             | ND              |            | 2        | WG1144023        |
| ,2-Dichlorotetrafluoroethane  | 76-14-2    | 171      | 0.400        | 2.80            | ND             | ND              |            | 2        | WG1144023        |
| leptane                       | 142-82-5   | 100      | 0.400        | 1.64            | ND             | ND              |            | 2        | WG1144023        |
| lexachloro-1,3-butadiene      | 87-68-3    | 261      | 1.26         | 13.5            | ND             | ND              |            | 2        | WG1144023        |
| -Hexane                       | 110-54-3   | 86.20    | 0.400        | 1.41            | 0.507          | 1.79            |            | 2        | WG1144023        |
| opropylbenzene                | 98-82-8    | 120.20   | 0.400        | 1.97            | ND             | ND              |            | 2        | WG1144023        |
| fethylene Chloride            | 75-09-2    | 84.90    | 0.400        | 1.39            | 1.20           | 4.16            |            | 2        | WG1144023        |
| Methyl Butyl Ketone           | 591-78-6   | 100      | 2.50         | 10.2            | ND             | ND              |            | 2        | WG1144023        |
| -Butanone (MEK)               | 78-93-3    | 72.10    | 2.50         | 7.37            | ND             | ND              |            | 2        | WG1144023        |
| -Methyl-2-pentanone (MIBK)    | 108-10-1   | 100.10   | 2.50         | 10.2            | ND             | ND              |            | 2        | WG1144023        |
| lethyl methacrylate           | 80-62-6    | 100.12   | 0.400        | 1.64            | ND             | ND              |            | 2        | WG1144023        |
| TBE                           | 1634-04-4  | 88.10    | 0.400        | 1.44            | ND             | ND              |            | 2        | WG1144023        |
| laphthalene                   | 91-20-3    | 128      | 1.26         | 6.60            | ND             | ND              |            | 2        | WG1144023        |
| -Propanol                     | 67-63-0    | 60.10    | 2.50         | 6.15            | ND             | ND              |            | 2        | WG1144023        |
| ropene                        | 115-07-1   | 42.10    | 0.800        | 1.38            | ND             | ND              |            | 2        | WG1144023        |
| ityrene                       | 100-42-5   | 104      | 0.400        | 1.70            | ND             | ND<br>ND        |            | 2        | WG1144023        |
| 1,2,2-Tetrachloroethane       | 79-34-5    |          | 0.400        | 2.75            | ND             | ND<br>ND        |            |          | <del></del>      |
|                               |            | 168      |              |                 |                |                 |            | 2        | WG1144023        |
| etrachloroethylene            | 127-18-4   | 166      | 0.400        | 2.72            | 0.710          | 4.82            |            | 2        | WG1144023        |
| etrahydrofuran                | 109-99-9   | 72.10    | 0.400        | 1.18            | ND             | ND              |            | 2        | WG1144023        |
| oluene                        | 108-88-3   | 92.10    | 0.400        | 1.51            | ND             | ND              |            | 2        | WG!144023        |
| ,2,4-Trichlorobenzene         | 120-82-1   | 181      | 1.26         | 9.33            | ND             | ND              |            | 2        | WG1144023        |
|                               |            |          |              |                 |                |                 |            |          |                  |



















1807A94-004A RYSV0704-20180719-AE

# SAMPLE RESULTS - 04

ONE LAB. NATIONWIDE.

Collected date/time: 07/19/18 10:29

|                            | CAS #     | Mol. Wt. | RDL1     | RDL2  | Result | Result | Qualifier | Dilution | <u>Batch</u> |
|----------------------------|-----------|----------|----------|-------|--------|--------|-----------|----------|--------------|
| Analyte                    |           |          | ppbv     | ug/m3 | ppbv   | ug/m3  |           |          |              |
| 1,1,1-Trichloroethane      | 71-55-6   | 133      | 0.400    | 2.18  | ND     | ND     |           | 2        | WG1144023    |
| 1,1,2-Trichloroethane      | 79-00-5   | 133      | 0.400    | 2.18  | ND     | ND     |           | 2        | WG1144023    |
| Trichloroethylene          | 79-01-6   | 131      | 0.400    | 2.14  | ND     | ND     |           | 2        | WG1144023    |
| 1,2,4-Trimethylbenzene     | 95-63-6   | 120      | 0.400    | 1.96  | ND     | ND     |           | 2        | WG1144023    |
| 1,3,5-Trimethylbenzene     | 108-67-8  | 120      | 0.400    | 1.96  | ND     | ND     |           | 2        | WG1144023    |
| 2,2,4-Trimethylpentane     | 540-84-1  | 114.22   | 0.400    | 1.87  | ND     | ND     |           | 2        | WG1144023    |
| Vinyl chloride             | 75-01-4   | 62.50    | 0.400    | 1.02  | ND     | ND     |           | 2        | WG1144023    |
| Vinyl Bromide              | 593-60-2  | 106.95   | 0.400    | 1.75  | ND     | ND     |           | 2        | WG1144023    |
| Vinyl acetate              | 108-05-4  | 86.10    | 0.400    | 1.41  | ND     | ND     |           | 2        | WG1144023    |
| m&p-Xylene                 | 1330-20-7 | 106      | 0.800    | 3.47  | ND     | ND     |           | 2        | WG1144023    |
| o-Xylene                   | 95-47-6   | 106      | 0.400    | 1.73  | ND     | ND     |           | 2        | WG1144023    |
| TPH (GC/MS) Low Fraction   | 8006-61-9 | 101      | 100      | 413   | ND     | ND     |           | 2        | WG1144023    |
| (S) 1,4-Bromofluorobenzene | 460-00-4  | 175      | 60.0-140 |       | 99.6   |        |           |          | WG1144023    |

















1807A94-005A RYSV801R-20180719-AE

Collected date/time: 07/19/18 11:19

# SAMPLE RESULTS - 05

ONE LAB. NATIONWIDE.

| l. a.                                  | CAS #           | Mol. Wt.   | RDL1  | RDL2  | Result    | Result     | Qualifier  | Dilution | Batch                  |
|----------------------------------------|-----------------|------------|-------|-------|-----------|------------|------------|----------|------------------------|
| Analyte                                |                 |            | ppbv  | ug/m3 | ppbv      | ug/m3      |            |          |                        |
| Acetone                                | 67-64-1         | 58.10      | 2.50  | 5.94  | 5.90      | 14.0       |            | 2        | <u>WG1144023</u>       |
| Allyl chloride                         | 107-05-1        | 76.53      | 0.400 | 1.25  | ND        | ND         |            | 2        | WG1144023              |
| Benzene                                | 71-43-2         | 78.10      | 0.400 | 1.28  | ND        | ND         |            | 2        | WG1144023              |
| Benzyl Chloride                        | 100-44-7        | 127        | 0.400 | 2.08  | ND        | ND         |            | 2        | WG1144023              |
| Bromodichloromethane                   | 75-27-4         | 164        | 0.400 | 2.68  | ND        | ND         |            | 2        | WG1144023              |
| Bromoform                              | <b>7</b> 5-25-2 | 253        | 1.20  | 12.4  | ND        | ND         |            | 2        | WG1144023              |
| Bromomethane                           | 74-83-9         | 94.90      | 0.400 | 1.55  | ND        | ND         |            | 2        | WG1144023              |
| 1,3-Butadiene                          | 106-99-0        | 54.10      | 4.00  | 8.85  | ND        | ND         |            | 2        | WG1144023              |
| Carbon disulfide                       | 75-15-0         | 76.10      | 0.400 | 1.24  | ND        | ND         |            | 2        | WG1144023              |
| Carbon tetrachloride                   | 56-23-5         | 154        | 0.400 | 2.52  | ND        | ND         |            | 2        | WG1144023              |
| Chlorobenzene                          | 108-90-7        | 113        | 0.400 | 1.85  | ND        | ND         |            | 2        | WG1144023              |
| Chloroethane                           | 75-00-3         | 64.50      | 0.400 | 1.06  | ND        | ND         |            | 2        | WG1144023              |
| Chloroform                             | 67-66-3         | 119        | 0.400 | 1.95  | ND        | ND         |            | 2        | WG1144023              |
| Chloromethane                          | 74-87-3         | 50.50      | 0.400 | 0.826 | ND        | ND         |            | 2        | WG1144023              |
| 2-Chlorotoluene                        | 95-49-8         | 126        | 0.400 | 2.06  | ND        | ND         |            | 2        | WG1I44023              |
| Cyclohexane                            | 110-82-7        | 84.20      | 0.400 | 1.38  | ND        | ND         |            | 2        | WG1144023              |
| Dibromochloromethane                   | 124-48-1        | 208        | 0.400 | 3.40  | ND        | ΝĐ         |            | 2        | WG1144023              |
| 1,2-Dibromoethane                      | 106-93-4        | 188        | 0.400 | 3.08  | ND        | ND         |            | 2        | WG1144023              |
| 1,2-Dichlorobenzene                    | 95-50-1         | 147        | 0.400 | 2.40  | ND        | ND         |            | 2        | WG1144023              |
| 1,3-Dichlorobenzene                    | 541-73-1        | 147        | 0.400 | 2.40  | ND        | ND         |            | 2        | WG1144023              |
| 1,4-Dichlorobenzene                    | 106-46-7        | 147        | 0.400 | 2.40  | ND        | ND         | <u>.i4</u> | 2        | WG1144023              |
| 1,2-Dichloroethane                     | 107-06-2        | 99         | 0.400 | 1.62  | ND        | ND         |            | 2        | WG1144023              |
| 1,1-Dichloroethane                     | 75-34-3         | 98         | 0.400 | 1.60  | ND        | ND         |            | 2        | WG1144023              |
| 1,1-Dichloroethene                     | 75-35-4         | 96.90      | 0.400 | 1.59  | ND        | ND         |            | 2        | WG1I44023              |
| cis-1,2-Dichloroethene                 | 156-59-2        | 96.90      | 0.400 | 1.59  | ND        | ND         |            | 2        | WG1144023              |
| trans-1,2-Dichloroethene               | 156-60-5        | 96.90      | 0.400 | 1.59  | ND        | ND         |            | 2        | WG1144023              |
| 1,2-Dichloropropane                    | 78-87-5         | 113        | 0.400 | 1.85  | ND        | ND         |            | 2        | WG1I44023              |
| cis-1,3-Dichloropropene                | 10061-01-5      | 111        | 0.400 | 1.82  | ND        | ND         |            | 2        | WG1144023              |
| trans-1,3-Dichloropropene              | 10061-02-6      | 111        | 0.400 | 1.82  | ND        | ND         |            | 2        | WG1144023              |
| 1,4-Dioxane                            | 123-91-1        | 88.10      | 0.400 | 1.44  | ND        | ND         |            | 2        | WG1144023              |
| Ethanol                                | 64-17-5         | 46.10      | 1.26  | 2.38  | 17.7      | 33.3       |            | 2        | WG1144023              |
| Ethylbenzene                           | 100-41-4        | 106        | 0.400 | 1.73  | ND        | ND         |            | 2        | WG1144023              |
| 4-Ethyltoluene                         | 622-96-8        | 120        | 0.400 | 1.96  | ND        | ND         |            | 2        | WG1144023              |
| Trichlorofluoromethane                 | 75-69-4         | 137.40     | 0.400 | 2.25  | ND        | ND         |            | 2        | WG1144023              |
| Dichlorodifluoromethane                | 75-71-8         | 120.92     | 0.400 | 1.98  | ND        | ND         |            | 2        | WG1144023              |
| 1,1,2-Trichlorotrifluoroethane         | 76-13-1         | 187.40     | 0.400 | 3.07  | ND        | ND         |            | 2        | WG1144023              |
| 1,2-Dichlorotetrafluoroethane          | 76-14-2         | 171        | 0.400 | 2.80  | ND        | ND         |            | 2        | WG1144023              |
| Heptane                                | 142-82-5        | 100        | 0.400 | 1.64  | ND        | ND         |            | 2        | WG1144023              |
| Hexachloro-1,3-butadiene               | 87-68-3         | 261        | 1.26  | 13.5  | ND        | ND         |            | 2        | W61144023              |
| n-Hexane                               | 110-54-3        | 86.20      | 0.400 | 1.41  | ND        | ND         |            | 2        | WG1144023              |
| Isopropylbenzene                       | 98-82-8         | 120.20     | 0.400 | 1.97  | ND        | ND         |            | 2        | WG1144023              |
| Methylene Chloride                     | 75-09-2         | 84.90      | 0.400 | 1.39  | 0.465     | 1.61       |            | 2        | WG1144023              |
| Methyl Butyl Ketone                    | 591-78-6        | 100        | 2.50  | 10.2  | ND        | ND         |            | 2        | WG1144023              |
| 2-Butanone (MEK)                       | 78-93-3         | 72.10      | 2.50  | 7.37  | ND        | ND         |            | 2        | WG1144023              |
| 4-Methyl-2-pentanone (MIBK)            | 108-10-1        | 100.10     | 2.50  | 10.2  | ND        | ND         |            | 2        | WG1144023              |
| Methyl methacrylate                    | 80-62-6         | 100.12     | 0.400 | 1.64  | ND        | ND         |            | 2        | WG1144023              |
| MTBE                                   | 1634-04-4       | 88.10      | 0.400 | 1.44  | ND        | ND         |            | 2        | WG1144023              |
| Naphthalene                            | 91-20-3         | 128        | 1.26  | 6.60  | ND        | ND         |            | 2        | WG1144023              |
| 2-Propanol                             | 67-63-0         | 60.10      | 2.50  | 6.15  | ND        | ND         |            | 2        | WG1144023              |
| Propene                                | 115-07-1        | 42.10      | 0.800 | 1.38  | ND        | ND         |            | 2        | WG1144023              |
| Propene<br>Styrene                     | 100-42-5        | 104        | 0.400 | 1.70  | ND<br>ND  | ND         |            | 2        |                        |
| *                                      |                 |            |       |       |           |            |            |          | WG1144023<br>WG1144022 |
| 1,1,2,2-Tetrachloroethane              | 79-34-5         | 168<br>166 | 0.400 | 2.75  | ND<br>150 | ND<br>10.7 |            | 2        | WG1144023              |
| Tetrachloroethylene<br>Tetrahydrofyran | 127-18-4        | 166        | 0.400 | 2.72  | 1.58      | 10.7       |            | 2        | WG1144023              |
| Tetrahydrofuran<br>Tetrana             | 109-99-9        | 72.10      | 0.400 | 1.18  | ND        | ND         |            | 2        | WG1144023              |
| Toluene                                | 108-88-3        | 92.10      | 0.400 | 1.51  | ND        | ND         |            | 2        | WG1144023              |
| 1,2,4-Trichlorobenzene                 | 120-82-1        | 181        | 1.26  | 9.33  | ND        | ND         |            | 2        | WG1144023              |



















1807A94-005A RYSV801R-20180719-AE

# SAMPLE RESULTS - 05

ONE LAB. NATIONWIDE.

Collected date/time: 07/19/18 11:19

|                            | CAS#      | Mol. Wt. | RDL1     | RDL2  | Result | Result | Qualifier | Dilution | Batch     |
|----------------------------|-----------|----------|----------|-------|--------|--------|-----------|----------|-----------|
| Analyte                    |           |          | ppbv     | ug/m3 | ppbv   | ug/m3  |           |          |           |
| 1,1,1-Trichloroethane      | 71-55-6   | 133      | 0.400    | 2.18  | ND     | ND     |           | 2        | WG1144023 |
| ,1,2-Trichloroethane       | 79-00-5   | 133      | 0.400    | 2.18  | ND     | ND     |           | 2        | WG1144023 |
| richloroethylene           | 79-01-6   | 131      | 0.400    | 2.14  | ND     | ND     |           | 2        | WG1144023 |
| ,2,4-Trimethylbenzene      | 95-63-6   | 120      | 0.400    | 1.96  | 1.26   | 6.18   |           | 2        | WG1144023 |
| ,3,5-Trimethylbenzene      | 108-67-8  | 120      | 0.400    | 1.96  | 0.490  | 2.40   |           | 2        | WG1144023 |
| ,2,4-Trimethylpentane      | 540-84-1  | 114.22   | 0.400    | 1.87  | ND     | ND     |           | 2        | WG1144023 |
| 'inyl chloride             | 75-01-4   | 62.50    | 0.400    | 1.02  | ND     | ND     |           | 2        | WG1144023 |
| 'inyl Bromide              | 593-60-2  | 106.95   | 0.400    | 1.75  | ND     | ND     |           | 2        | WG1144023 |
| 'inyl acetate              | 108-05-4  | 86.10    | 0.400    | 1.41  | ND     | ND     |           | 2        | WG1144023 |
| n&p-Xylene                 | 1330-20-7 | 106      | 0.800    | 3.47  | ND     | ND     |           | 2        | WG1144023 |
| -Xylene                    | 95-47-6   | 106      | 0.400    | 1.73  | ND     | ND     |           | 2        | WG1144023 |
| PH (GC/MS) Low Fraction    | 8006-61-9 | 101      | 100      | 413   | 112    | 461    |           | 2        | WG1144023 |
| (S) 1,4-Bromofluorobenzene | 460-00-4  | 175      | 60.0-140 |       | 101    |        |           |          | WG1144023 |

















1807A94-006A RYSV0802R-20180719-AE

# SAMPLE RESULTS - 06

TS - 06 ONE LAB. NATIONWIDE.

Collected date/time: 07/19/18 11:25

| Analyte                       | CAS#       | Mol. Wt. | RDL1<br>ppbv | RDL2<br>ug/m3 | Result<br>ppbv | Result<br>ug/m3 | Qualifier   | Dilution | Batch                         |
|-------------------------------|------------|----------|--------------|---------------|----------------|-----------------|-------------|----------|-------------------------------|
| Acetone                       | 67-64-1    | 58.10    | 2.50         | 5.94          | 56.8           | 135             |             | 2        | WG1144023                     |
| Allyl chloride                | 107-05-1   | 76.53    | 0.400        | 1.25          | ND             | ND              |             | 2        | WG1144023                     |
| Benzene                       | 71-43-2    | 78.10    | 0.400        | 1.28          | ND             | ND              |             | 2        | WG1144023                     |
| Benzyl Chloride               | 100-44-7   | 127      | 0.400        | 2.08          | ND             | ND              |             | 2        | WG1144023                     |
| Bromodichloromethane          | 75-27-4    | 164      | 0.400        | 2.68          | ND             | ND              |             | 2        | WG1144023                     |
| Bromoform                     | 75-25-2    | 253      | 1.20         | 12.4          | ND             | ND              |             | 2        | WG1144023                     |
| Bromomethane                  | 74-83-9    | 94.90    | 0.400        | 1.55          | ND             | ND              |             | 2        | WG1144023                     |
| 1,3-Butadiene                 | 106-99-0   | 54.10    | 4.00         | 8.85          | ND             | ND              |             | 2        | WG1144023                     |
| Carbon disulfide              | 75-15-0    | 76.10    | 0.400        | 1.24          | ND             | ND              |             | 2        | WG1144023                     |
| Carbon tetrachloride          | 56-23-5    | 154      | 0.400        | 2.52          | ND             | ND              |             | 2        | WG1144023                     |
| Chlorobenzene                 | 108-90-7   | 113      | 0.400        | 1.85          | ND             | ND              |             | 2        | WG1144023                     |
| Chloroethane                  | 75-00-3    | 64.50    | 0.400        | 1.06          | ND             | ND              |             | 2        | WG1144023                     |
| Chloroform                    | 67-66-3    | 119      | 0.400        | 1.95          | ND             | ND              |             | 2        | WG1I44023                     |
| Chloromethane                 | 74-87-3    | 50.50    | 0.400        | 0.826         | ND             | ND              |             | 2        | WG1144023                     |
| 2-Chlorotoluene               | 95-49-8    | 126      | 0.400        | 2.06          | ND             | ND              |             | 2        | WG1144023                     |
| Cyclohexane                   | 110-82-7   | 84.20    | 0.400        | 1.38          | ND             | ND              |             | 2        | WG1144023                     |
| Dibromochloromethane          | 124-48-1   | 208      | 0.400        | 3.40          | ND             | ND              |             | 2        | WG1144023                     |
| ,2-Dibromoethane              | 106-93-4   | 188      | 0.400        | 3.40          | ND             | ND<br>ND        |             | 2        | WG1144023<br>WG1144023        |
| ,2-Dichlorobenzene            | 95-50-1    | 147      | 0.400        | 2.40          | ND<br>ND       | ND<br>ND        |             | 2        | WG1144023                     |
| ,3-Dichlorobenzene            | 541-73-1   | 147      | 0.400        | 2.40          | ND<br>ND       | ND<br>ND        |             | 2        |                               |
| ,4-Dichlorobenzene            | 106-46-7   | 147      | 0.400        | 2.40          | ND<br>ND       | ND<br>ND        | i. <b>1</b> | 2        | <u>WG1144023</u><br>WG1144023 |
|                               |            |          |              |               |                |                 | <u>./4</u>  |          |                               |
| ,2-Dichloroethane             | 107-06-2   | 99       | 0.400        | 1.62          | ND             | ND              |             | 2        | WG1[44023                     |
| ,1-Dichloroethane             | 75-34-3    | 98       | 0.400        | 1.60          | ND             | ND              |             | 2        | WG1144023                     |
| ,1-Dichloroethene             | 75-35-4    | 96.90    | 0.400        | 1.59          | ND             | ND              |             | 2        | WG1144023                     |
| ris-1,2-Dichloroethene        | 156-59-2   | 96.90    | 0.400        | 1.59          | ND             | ND              |             | 2        | WG1144023                     |
| rans-1,2-Dichloroethene       | 156-60-5   | 96.90    | 0.400        | 1.59          | ND             | ND              |             | 2        | WG1144023                     |
| ,2-Dichloropropane            | 78-87-5    | 113      | 0.400        | 1.85          | ND             | ND              |             | 2        | WG1144023                     |
| is-1,3-Dichloropropene        | 10061-01-5 | 111      | 0.400        | 1.82          | ND             | ND              |             | 2        | WG1144023                     |
| rans-1,3-Dichloropropene      | 10061-02-6 | 111      | 0.400        | 1.82          | ND             | ND              |             | 2        | WG1144023                     |
| ,4-Dioxane                    | 123-91-1   | 88.10    | 0.400        | 1,44          | ND             | ND              |             | 2        | WG1144023                     |
| Ethanol                       | 64-17-5    | 46.10    | 1.26         | 2.38          | 13.5           | 25.4            |             | 2        | WG1144023                     |
| thylbenzene                   | 100-41-4   | 106      | 0.400        | 1.73          | ND             | ND              |             | 2        | WG1144023                     |
| 1-Ethyltoluene                | 622-96-8   | 120      | 0.400        | 1.96          | ND             | ND              |             | 2        | WG1144023                     |
| richlorofluoromethane         | 75-69-4    | 137.40   | 0.400        | 2.25          | ND             | ND              |             | 2        | WG1144023                     |
| Dichlorodifluoromethane       | 75-71-8    | 120.92   | 0.400        | 1.98          | ND             | ND              |             | 2        | WG1144023                     |
| ,1,2-Trichlorotrifluoroethane | 76-13-1    | 187.40   | 0.400        | 3.07          | ND             | ND              |             | 2        | WG1144023                     |
| ,2-Dichlorotetrafluoroethane  | 76-14-2    | 171      | 0.400        | 2.80          | ND             | ND              |             | 2        | WG1144023                     |
| leptane                       | 142-82-5   | 100      | 0.400        | 1.64          | ND             | ND              |             | 2        | WG1144023                     |
| lexachloro-1,3-butadiene      | 87-68-3    | 261      | 1.26         | 13.5          | ND             | ND              |             | 2        | WG1144023                     |
| -Hexane                       | 110-54-3   | 86.20    | 0.400        | 1.41          | ND             | ND              |             | 2        | WG1144023                     |
| sopropylbenzene               | 98-82-8    | 120.20   | 0.400        | 1.97          | ND             | ND              |             | 2        | WG1144023                     |
| Methylene Chloride            | 75-09-2    | 84.90    | 0.400        | 1.39          | 0.476          | 1.65            |             | 2        | WG1144023                     |
| Methyl Butyl Ketone           | 591-78-6   | 100      | 2.50         | 10.2          | ND             | ND              |             | 2        | WG1144023                     |
| -Butanone (MEK)               | 78-93-3    | 72.10    | 2.50         | 7.37          | 8.01           | 23.6            |             | 2        | WG1144023                     |
| -Methyl-2-pentanone (MIBK)    | 108-10-1   | 100.10   | 2.50         | 10.2          | 5.13           | 21.0            |             | 2        | WG1144023                     |
| Methyl methacrylate           | 80-62-6    | 100.12   | 0.400        | 1.64          | ND             | ND              |             | 2        | WG1144023                     |
| ATBE                          | 1634-04-4  | 88.10    | 0.400        | 1.44          | ND             | ND              |             | 2        | WG1144023                     |
| laphthalene                   | 91-20-3    | 128      | 1.26         | 6.60          | 5.08           | 26,6            |             | 2        | WG1144023                     |
| -Propanol                     | 67-63-0    | 60.10    | 2.50         | 6.15          | ND             | ND              |             | 2        | WG1144023                     |
| ropene                        | 115-07-1   | 42.10    | 0.800        | 1.38          | 0.913          | 1.57            |             | 2        | WG1144023                     |
| tyrene                        | 100-42-5   | 104      | 0.400        | 1.70          | ND             | ND              |             | 2        | WG1144023                     |
| 1,2,2-Tetrachloroethane       | 79-34-5    | 168      | 0.400        | 2.75          | ND             | ND              |             | 2        | WG1144023                     |
| etrachloroethylene            | 127-18-4   | 166      | 0.400        | 2.72          | ND             | ND              |             | 2        | WG1144023                     |
| etrahydrofuran                | 109-99-9   | 72.10    | 0.400        | 1.18          | 2.42           | 7.14            |             | 2        | WG1144023                     |
| oluene                        | 108-88-3   | 92.10    | 0.400        | 1.51          | 0.525          | 1.98            |             | 2        | WG1144023                     |
|                               | 120-82-1   | 181      | 1.26         | 9.33          | ND             | ND              |             | 2        | A                             |



















1807A94-006A RYSV0802R-20180719-AE

## SAMPLE RESULTS - 06

ONE LAB. NATIONWIDE.

Collected date/time: 07/19/18 11:25

|                            | CAS #     | Mol. Wt. | RDL1     | RDL2  | Result | Result | Qualifier | Dilution | Batch     |
|----------------------------|-----------|----------|----------|-------|--------|--------|-----------|----------|-----------|
| Analyte                    |           |          | ppbv     | ug/m3 | ppbv   | ug/m3  |           |          |           |
| ,1,1-Trichloroethane       | 71-55-6   | 133      | 0.400    | 2.18  | ND     | ND     |           | 2        | WG1144023 |
| 1,2-Trichloroethane        | 79-00-5   | 133      | 0.400    | 2.18  | ND     | ND     |           | 2        | WG1144023 |
| richloroethylene           | 79-01-6   | 131      | 0.400    | 2.14  | ND     | ND     |           | 2        | WG1144023 |
| 2,4-Trimethylbenzene       | 95-63-6   | 120      | 0.400    | 1.96  | 1.96   | 9.62   |           | 2        | WG1144023 |
| 3,5-Trimethyfbenzene       | 108-67-8  | 120      | 0.400    | 1.96  | 0.555  | 2.73   |           | 2        | WG1144023 |
| 2,4-Trimethylpentane       | 540-84-1  | 114.22   | 0.400    | 1.87  | ND     | ND     |           | 2        | WG1144023 |
| nyl chloride               | 75-01-4   | 62.50    | 0.400    | 1.02  | ND     | ND     |           | 2        | WG1144023 |
| nyl Bromide                | 593-60-2  | 106.95   | 0.400    | 1.75  | ND     | ND     |           | 2        | WG1144023 |
| nyl acetate                | 108-05-4  | 86.10    | 0.400    | 1.41  | ND     | ND     |           | 2        | WG1144023 |
| &p-Xylene                  | 1330-20-7 | 106      | 0.800    | 3.47  | ND     | ND     |           | 2        | WG1144023 |
| Xylene                     | 95-47-6   | 106      | 0.400    | 1.73  | ND     | ND     |           | 2        | WG1144023 |
| PH (GC/MS) Low Fraction    | 8006-61-9 | 101      | 100      | 413   | 209    | 865    |           | 2        | WG1144023 |
| (S) 1,4-Bromofluorobenzene | 460-00-4  | 175      | 60.0-140 |       | 103    |        |           |          | WG1144023 |

















Collected date/fime: 07/19/18 10:45

# SAMPLE RESULTS - 07

DAR LAS HATIDHWIDE

| CAS #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Mol. Wt.                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Result                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Result                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Qualifier                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Odulion                                                                                       | Batch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 67.683                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | EGAN                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4                                                                                             | Alloward and I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                               | WG3RM007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                               | W6:144023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                               | <u>WG71400.NG</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                               | WG1144021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                               | WG114402/1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                               | WIG1144023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                               | WG114402.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                               | WE1144023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 100                                                                                           | MR4144053                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                               | WG1144027                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                               | WE1144029                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                               | W/31144/327                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 67-66-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 119                                                                                                                                                                                                                                                                                                                                                                                                      | 0.400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1,95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ND:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2                                                                                             | WC1144023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 74-87-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 50 50                                                                                                                                                                                                                                                                                                                                                                                                    | 0.400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.826                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | NE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | NO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2                                                                                             | WEIJ44023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 95-49-8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 126                                                                                                                                                                                                                                                                                                                                                                                                      | 0,400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ND:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2                                                                                             | W1/11/41/2/1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| MO-82-7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | B4_20                                                                                                                                                                                                                                                                                                                                                                                                    | 0.400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1,38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.570                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1,96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2                                                                                             | WG1144023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 124-48-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 203                                                                                                                                                                                                                                                                                                                                                                                                      | 0.400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2                                                                                             | W61144023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 106-93-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 188                                                                                                                                                                                                                                                                                                                                                                                                      | 0.400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 308                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ND.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2                                                                                             | W01144025                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 05-50-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 147                                                                                                                                                                                                                                                                                                                                                                                                      | 0.400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | N0:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3                                                                                             | Wt2144025                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 541.73 *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 147                                                                                                                                                                                                                                                                                                                                                                                                      | 0.400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2,40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | .2                                                                                            | W01144023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 106-46-7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | MY                                                                                                                                                                                                                                                                                                                                                                                                       | 0.400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7                                                                                             | WE1104020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 107-06-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 99                                                                                                                                                                                                                                                                                                                                                                                                       | 0.400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ND.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2                                                                                             | WE114402                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 75-34-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 98                                                                                                                                                                                                                                                                                                                                                                                                       | 0.400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 160                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | NO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2                                                                                             | WE1144029                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 75-35-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2                                                                                             | WG144023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                               | W51444023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                               | WII144028                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                               | WUTINGUES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                               | WE1144029                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                               | W0114ID23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                          | 13 14 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                               | WSTA403-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                               | W51144021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                               | W:7344020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                               | W1010002/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| A Company of the Comp |                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                               | WEYMADZE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                               | W-7144023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                               | Wii1144023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                               | W:184022                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2                                                                                             | W31144323                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 87-58-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 261                                                                                                                                                                                                                                                                                                                                                                                                      | 1.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 13.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | NO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2                                                                                             | W3144023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                               | A = (860) 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                               | W.335900XX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 75-09-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 84.90                                                                                                                                                                                                                                                                                                                                                                                                    | 0.400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10.615                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2                                                                                             | W91144023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 591-78-6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 100.                                                                                                                                                                                                                                                                                                                                                                                                     | 2.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NE.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NO.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Z                                                                                             | M302M400X3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 78-93-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 72.10                                                                                                                                                                                                                                                                                                                                                                                                    | 2,50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7.37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | NO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                               | WG184023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 108-10-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 01:00:                                                                                                                                                                                                                                                                                                                                                                                                   | 2.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | .2                                                                                            | W3144023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 80-62-6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 100.12                                                                                                                                                                                                                                                                                                                                                                                                   | 0.400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.428                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7                                                                                             | WarrANDES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 1634-04-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 88.10                                                                                                                                                                                                                                                                                                                                                                                                    | 0.400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1,44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2                                                                                             | WENDAMENT.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 91-20-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 128                                                                                                                                                                                                                                                                                                                                                                                                      | 1.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ND.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2                                                                                             | W31164023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 67-63-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 60 10                                                                                                                                                                                                                                                                                                                                                                                                    | 250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 615                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | NO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2                                                                                             | W.1044023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 115-07-8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 42.10                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1,38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | NO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                               | W651M4023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 100-42-5.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | '64                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Nő                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                               | W_J/M4(023)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                               | War99024                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                               | Worldwid73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                               | W6/M4023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 4.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 92.10                                                                                                                                                                                                                                                                                                                                                                                                    | 0.466                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 16.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2                                                                                             | WG (144023)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 108-88-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 74-87-3<br>95-49-8<br>110-82-7<br>124-48-1<br>106-93-4<br>05-50-1<br>541-73-1<br>106-6-2<br>75-34-3<br>75-35-4<br>155-59-2<br>155-60-5<br>78-87-5<br>100-61-01-5<br>103-61-02-6<br>123-91-1<br>64-17-5<br>100-41-4<br>622-95-8<br>75-63-1<br>76-14-2<br>M2-82-5<br>87-58-3<br>10-54-3<br>98-82-8<br>75-09-2<br>591-78-6<br>78-93-3<br>108-10-1<br>80-62-6<br>1634-04-4<br>91-20-3<br>67-63-0<br>115-07-8 | 67-64-1 58.10 107-05-1 76.53 71-43-2 78.10 100-44-7 127 75-27-4 164 75-25-2 253 74-83-8 94.90 106-99-0 54.10 75-15-0 76.10 56-23-5 154 108-90-7 113 75-00-3 54.50 67-66-3 119 74-87-3 50.50 95-49-8 126 110-82-7 84.20 124-48-1 208 106-93-4 188 05-50-1 147 541.73 147 107-06-2 99 75-34-3 98 75-35-4 96.90 155-60-5 96.90 78-87-5 113 100-61-01-5 111 123-91-1 38.10 64-17-5 46.10 100-41-4 106 622-96-8 120 75-71-8 120-92 76-13-1 187-40 75-71-8 120-92 76-13-1 187-40 75-71-8 120-92 76-13-1 187-40 75-71-8 120-92 76-13-1 187-40 75-71-8 120-92 76-13-1 187-40 75-71-8 120-92 76-13-1 187-40 75-71-8 120-92 76-13-1 187-40 75-71-8 120-92 76-13-1 187-40 75-71-8 120-92 76-13-1 187-40 75-71-8 120-92 76-13-1 187-40 75-71-8 120-92 76-13-1 187-40 75-71-8 120-92 76-13-1 187-40 75-71-8 120-92 76-13-1 187-40 75-71-8 120-92 76-13-1 187-40 75-71-8 120-92 76-13-1 187-40 75-71-8 120-92 76-13-1 187-40 75-71-8 120-92 76-13-1 187-40 75-71-8 120-92 76-13-1 187-40 75-71-8 120-92 76-13-1 187-40 75-71-8 120-92 76-13-1 187-40 75-71-8 120-92 76-13-1 187-40 75-71-8 120-92 76-13-1 187-40 75-71-8 120-92 76-13-1 187-40 75-71-8 120-92 76-13-1 187-40 75-71-8 120-92 76-13-1 187-40 75-71-8 120-92 76-13-1 187-40 75-71-8 120-92 76-13-1 187-40 75-71-8 120-92 76-13-1 187-40 75-71-8 120-92 76-13-1 187-40 75-71-8 120-92 76-13-1 187-40 75-71-8 120-92 76-13-1 187-40 75-71-8 120-92 76-13-1 187-40 75-71-8 120-92 76-13-1 187-40 75-71-8 120-92 76-13-1 187-40 75-71-8 120-92 76-13-1 187-40 75-71-8 120-92 76-13-1 187-40 75-71-8 120-92 76-13-1 187-40 75-71-8 120-92 76-13-1 187-40 75-71-8 120-92 76-13-1 187-40 75-71-8 120-92 76-13-1 187-40 75-71-8 120-92 76-13-1 187-40 75-71-8 120-92 76-13-1 187-40 75-71-8 120-92 76-13-1 187-40 75-71-8 120-92 76-13-1 187-40 75-71-8 120-92 76-13-1 187-40 75-71-8 120-92 76-13-1 187-40 75-71-8 120-92 76-13-1 187-40 75-71-8 120-92 76-13-1 187-40 75-71-8 120-92 76-13-1 187-40 75-71-8 120-92 76-13-1 187-40 75-71-8 120-92 76-13-1 187-40 75-71-8 120-92 76-13-1 187-40 75-71-8 120-92 76-13-1 187-40 75-71-8 120-92 76-13-1 187-40 75-71-8 120-92 76-13-1 187- | 97.64.1 58.10 2.50 107.05-1 76.53 0.400 71-43-2 73.10 0.400 100-44-7 127 0.400 75-27-4 164 0.480 75-25-2 253 1.20 74-83-9 94.90 0.400 106.99-0 54.10 4.00 75-15-0 76.10 0.400 56-23-5 15-4 0.400 75-66-3 119 0.400 75-66-3 119 0.400 75-66-3 119 0.400 75-48-13 50.50 0.400 106.82-7 84.20 0.400 106.82-7 84.20 0.400 106.82-7 84.20 0.400 106-50-1 147 0.400 106-50-1 147 0.400 107-06-2 99 0.400 155-59-7 96.90 0.400 155-69-8 126 0.400 155-69-8 126 0.400 155-69-8 126 0.400 155-69-8 126 0.400 155-69-8 126 0.400 155-69-8 126 0.400 155-69-8 126 0.400 155-69-8 126 0.400 155-69-8 126 0.400 155-69-8 126 0.400 155-69-8 126 0.400 156-60-5 96.90 0.400 156-60-5 96.90 0.400 156-60-5 96.90 0.400 156-60-5 96.90 0.400 156-60-5 96.90 0.400 156-60-5 96.90 0.400 156-60-5 96.90 0.400 156-60-5 96.90 0.400 156-60-5 96.90 0.400 156-60-5 96.90 0.400 156-60-5 96.90 0.400 156-60-5 96.90 0.400 156-60-5 96.90 0.400 156-60-5 96.90 0.400 156-60-5 96.90 0.400 156-60-5 96.90 0.400 156-60-5 96.90 0.400 156-60-5 96.90 0.400 156-60-5 96.90 0.400 156-60-5 96.90 0.400 156-60-5 96.90 0.400 156-60-5 96.90 0.400 156-60-5 96.90 0.400 156-60-5 96.90 0.400 156-60-5 96.90 0.400 156-60-5 96.90 0.400 156-60-5 96.90 0.400 156-60-5 96.90 0.400 156-60-5 96.90 0.400 156-60-5 96.90 0.400 156-60-5 96.90 0.400 156-60-5 96.90 0.400 156-60-5 96.90 0.400 156-60-5 96.90 0.400 156-60-5 96.90 0.400 156-60-5 96.90 0.400 156-60-5 96.90 0.400 156-60-5 96.90 0.400 156-60-5 96.90 0.400 156-60-5 96.90 0.400 156-60-5 96.90 0.400 156-60-5 96.90 0.400 156-60-5 96.90 0.400 156-60-5 96.90 0.400 156-60-5 96.90 0.400 156-60-5 96.90 0.400 156-60-5 96.90 0.400 156-60-5 96.90 0.400 156-60-5 96.90 0.400 156-60-5 96.90 0.400 156-60-5 96.90 0.400 156-60-5 96.90 0.400 156-60-5 96.90 0.400 156-60-5 96.90 0.400 156-60-5 96.90 0.400 156-60-5 96.90 0.400 156-60-5 96.90 0.400 156-60-5 96.90 0.400 156-60-5 96.90 0.400 156-60-5 96.90 0.400 156-60-5 96.90 0.400 156-60-5 96.90 0.400 | 67-6241 58.10 2.50 5.94 107-05-1 75-53 0.400 1.25 71-43-2 73.10 0.400 1.28 100-44-7 127 0.400 2.08 75-27-4 164 0.800 2.68 75-25-2 253 1.20 12.4 74-81-8 94.90 0.400 1.55 106-99 0.54.10 0.00 3.85 75-15-0 76.10 0.400 1.24 56-23-5 15-4 0.400 1.85 75-60-3 19 0.400 1.06 67-66-3 19 0.400 1.95 74-87-3 50.50 0.400 1.06 67-66-3 19 0.400 1.95 74-87-3 50.50 0.400 3.82 95-49-8 126 0.400 3.88 124-48-1 203 0.400 3.88 124-48-1 203 0.400 3.88 124-48-1 203 0.400 3.88 125-50-1 147 0.400 2.40 106-93-4 188 0.400 3.08 105-50-1 147 0.400 2.40 107-06-2 39 0.400 1.62 75-34-3 38 0.400 1.62 75-34-3 38 0.400 1.62 75-35-4 96-90 0.400 1.59 155-59-7 96-90 0.400 1.85 1006-10-5 111 0.400 1.82 1006-10-5 111 0.400 1.82 1006-10-5 111 0.400 1.82 1006-10-5 111 0.400 1.82 1006-10-5 111 0.400 1.82 1006-10-5 111 0.400 1.82 1006-10-5 111 0.400 1.82 1006-10-5 111 0.400 1.82 1006-10-5 111 0.400 1.82 1006-10-5 111 0.400 1.82 1006-10-5 111 0.400 1.82 1006-10-5 111 0.400 1.82 1006-10-5 111 0.400 1.82 1006-10-5 111 0.400 1.82 1006-10-5 111 0.400 1.82 1006-10-5 111 0.400 1.82 1006-10-5 111 0.400 1.96 10-82-5 0.400 1.96 10-82-5 0.400 1.96 10-82-5 0.400 1.96 10-82-5 0.400 1.98 10-82-5 0.000 1.41 10-82-5 0.000 1.41 10-82-5 0.000 1.39 10-82-5 0.000 1.39 10-82-5 0.000 1.38 100-42-5 0.000 1.38 100-42-5 0.000 1.38 100-42-5 0.000 1.38 100-42-5 0.000 1.38 100-42-5 0.000 1.38 100-42-5 0.000 1.38 100-42-5 0.000 1.38 100-42-5 0.000 1.38 100-42-5 0.000 1.38 100-42-5 0.000 1.38 100-42-5 0.000 1.38 100-42-5 0.000 1.38 100-42-5 0.000 1.38 100-42-5 0.000 1.38 100-42-5 0.000 1.38 100-42-5 0.000 1.38 100-42-5 0.000 1.38 100-42-5 0.000 1.38 100-42-5 0.000 1.38 100-42-5 0.000 1.38 100-42-5 0.000 1.38 100-42-5 0.000 1.38 100-42-5 0.000 1.38 100-42-5 0.000 1.38 100-42-5 0.000 1.38 100-42-5 0.000 1.38 100-42-5 0.000 1.38 100-42-5 0.000 1.38 100-42-5 0.000 1.38 100-42-5 0.000 1.38 100-42-5 0.000 1.38 100-42-5 0.000 1.38 100-42-5 0.000 1.38 100-42-5 0.000 1.38 | 67-64-1 58.10 2.50 5.94 8.78 107-05-1 75-53 0.400 1.25 N0 10-40-7 127 0.400 2.08 ND 175-27-4 164 0.400 1.26 ND 175-27-4 164 0.400 1.55 ND 175-25-2 253 1.20 12.4 ND 175-25-2 253 1.20 12.4 ND 175-25-2 253 1.20 12.4 ND 175-25-3 15.4 0.400 1.55 ND 106-99-6 54-10 4.00 3.65 ND 156-23-5 15.4 0.400 1.25 ND 108-90.7 111 0.400 1.85 ND 175-00-3 64-50 0.400 1.06 ND 175-00-3 64-50 0.400 1.06 ND 175-48-7 15 0.400 1.95 ND 175-48-7 15 0.400 1.95 ND 175-48-7 15 0.400 1.95 ND 175-48-8 126 0.400 1.95 ND 175-48-8 126 0.400 3.40 NB 175-48-8 126 0.400 3.08 ND 175-50-1 147 0.400 3.40 NB 175-50-1 147 0.400 2.40 ND 175-06-2 39 0.400 1.60 ND 175-06-2 39 0.400 1.60 ND 175-35-4 96-90 0.400 1.60 ND 175-35-4 96-90 0.400 1.50 ND 175-35-4 96-90 0.400 1.50 ND 175-39-1 13 0.400 1.50 ND 175-39-1 13 0.400 1.50 ND 175-39-1 147 0.400 ND 175-39-1 147 0.400 ND 175-39-1 147 0.400 ND 175 | 67-841 58:10 25:0 594 8:78 20.9 107-05-1 75 58 0.400 1.25 NO NO NO 178-77-1 166 0.400 1.28 NU NO 100-44-7 127 0.400 2.08 ND NO 179-77-1 166 0.400 1.25 NO NO NO 175-15-0 75.00 0.400 1.25 NO NO NO 175-15-0 75.00 0.400 1.24 NO NO 175-15-0 75.00 0.400 1.25 NO NO NO 175-15-0 75.00 0.400 1.25 NO NO NO 175-15-0 15-0 15-0 0.400 1.25 NO NO NO 175-15-0 15-0 0.400 1.25 NO NO NO 175-15-0 NO NO NO 175-15-0 15-0 0.400 1.25 NO NO NO 175-15-0 NO NO NO NO 175-15-0 NO NO NO NO NO 175-15-0 NO | 67-641 58.10 250 594 8.78 20.9  10-44-7 127 0.400 1.25 ND | 67.641 58.10 2.50 5.94 8.78 29.9 7 174.95 7 174.95 7 174.95 7 174.95 7 174.95 7 174.95 7 174.95 7 175.95 7 175.95 7 175.95 7 175.95 7 175.95 7 175.95 7 175.95 7 175.95 7 175.95 7 175.95 7 175.95 7 175.95 7 175.95 7 175.95 7 175.95 7 175.95 7 175.95 7 175.95 7 175.95 7 175.95 7 175.95 7 175.95 7 175.95 7 175.95 7 175.95 7 175.95 7 175.95 7 175.95 7 175.95 7 175.95 7 175.95 7 175.95 7 175.95 7 175.95 7 175.95 7 175.95 7 175.95 7 175.95 7 175.95 7 175.95 7 175.95 7 175.95 7 175.95 7 175.95 7 175.95 7 175.95 7 175.95 7 175.95 7 175.95 7 175.95 7 175.95 7 175.95 7 175.95 7 175.95 7 175.95 7 175.95 7 175.95 7 175.95 7 175.95 7 175.95 7 175.95 7 175.95 7 175.95 7 175.95 7 175.95 7 175.95 7 175.95 7 175.95 7 175.95 7 175.95 7 175.95 7 175.95 7 175.95 7 175.95 7 175.95 7 175.95 7 175.95 7 175.95 7 175.95 7 175.95 7 175.95 7 175.95 7 175.95 7 175.95 7 175.95 7 175.95 7 175.95 7 175.95 7 175.95 7 175.95 7 175.95 7 175.95 7 175.95 7 175.95 7 175.95 7 175.95 7 175.95 7 175.95 7 175.95 7 175.95 7 175.95 7 175.95 7 175.95 7 175.95 7 175.95 7 175.95 7 175.95 7 175.95 7 175.95 7 175.95 7 175.95 7 175.95 7 175.95 7 175.95 7 175.95 7 175.95 7 175.95 7 175.95 7 175.95 7 175.95 7 175.95 7 175.95 7 175.95 7 175.95 7 175.95 7 175.95 7 175.95 7 175.95 7 175.95 7 175.95 7 175.95 7 175.95 7 175.95 7 175.95 7 175.95 7 175.95 7 175.95 7 175.95 7 175.95 7 175.95 7 175.95 7 175.95 7 175.95 7 175.95 7 175.95 7 175.95 7 175.95 7 175.95 7 175.95 7 175.95 7 175.95 7 175.95 7 175.95 7 175.95 7 175.95 7 175.95 7 175.95 7 175.95 7 175.95 7 175.95 7 175.95 7 175.95 7 175.95 7 175.95 7 175.95 7 175.95 7 175.95 7 175.95 7 175.95 7 175.95 7 175.95 7 175.95 7 175.95 7 175.95 7 175.95 7 175.95 7 175.95 7 175.95 7 175.95 7 175.95 7 175.95 7 175.95 7 175.95 7 175.95 7 175.95 7 175.95 7 175.95 7 175.95 7 175.95 7 175.95 7 175.95 7 175.95 7 175.95 7 175.95 7 175.95 7 175.95 7 175.95 7 175.95 7 175.95 7 175.95 7 175.95 7 175.95 7 175.95 7 175.95 7 175.95 7 175.95 7 175.95 7 175.95 7 175.95 7 175.95 7 175.95 7 175.95 7 175.95 7 175.95 7 175.95 7 175.95 7 175. |















1807A94-007A RYSV0803-20180719-AE

# SAMPLE RESULTS - 07

ONE LAB. NATIONWIDE.

Collected date/time: 07/19/18 10:46

|                            | CAS #     | Mol. Wt. | RDL1     | RDL2  | Result | Result | Qualifier | Dilution | Batch       |
|----------------------------|-----------|----------|----------|-------|--------|--------|-----------|----------|-------------|
| Analyte                    |           |          | ppbv     | ug/m3 | ppbv   | ug/m3  |           |          | <del></del> |
| 1,1,1-Trichloroethane      | 71-55-6   | 133      | 0.400    | 2.18  | 15.9   | 86.2   |           | 2        | WG1144023   |
| 1,1,2-Trichloroethane      | 79-00-5   | 133      | 0.400    | 2.18  | ND     | ND     |           | 2        | WG1144023   |
| Trichloroethylene          | 79-01-6   | 131      | 0.400    | 2.14  | ND     | ND     |           | 2        | WG1144023   |
| 1,2,4-Trimethylbenzene     | 95-63-6   | 120      | 0.400    | 1.96  | ND     | ND     |           | 2        | WG1144023   |
| 1,3,5-Trimethylbenzene     | 108-67-8  | 120      | 0.400    | 1.96  | ND     | ND     |           | 2        | WG1144023   |
| 2,2,4-Trimethylpentane     | 540-84-1  | 114.22   | 0.400    | 1.87  | ND     | ND     |           | 2        | WG1144023   |
| Vinyl chloride             | 75-01-4   | 62.50    | 0.400    | 1.02  | ND     | ND     |           | 2        | WG1144023   |
| Vinyl Bromide              | 593-60-2  | 106.95   | 0.400    | 1.75  | ND     | ND     |           | 2        | WG1144023   |
| Vinyl acetate              | 108-05-4  | 86.10    | 0.400    | 1.41  | ND     | ND     |           | 2        | WG1144023   |
| m&p-Xylene                 | 1330-20-7 | 106      | 0.800    | 3.47  | 0.884  | 3.83   |           | 2        | WG1144023   |
| o-Xylene                   | 95-47-6   | 106      | 0.400    | 1.73  | ND     | ND     |           | 2        | WG1144023   |
| TPH (GC/MS) Low Fraction   | 8006-61-9 | 101      | 100      | 413   | 144    | 594    |           | 2        | WG1144023   |
| (S) 1,4-Bromofluorobenzene | 460-00-4  | 175      | 60.0-140 |       | 98.7   |        |           |          | WG1144023   |



















1807A94-008A RYSV0804-20180719-AE

Collected date/time: 07/19/18 10:51

# SAMPLE RESULTS - 08

ONE LAB, NATIONWIDE.

| Analyte         ppbv         ug/m3         ppbv         ug/m3           Acetone         67-64-1         58.10         2.50         5.94         31.3         74.4         2         WG144           Allyl chloride         107-05-1         76.53         0.400         1.25         ND         ND         2         WG144           Benzene         71-43-2         78.10         0.400         1.28         0.797         2.55         2         WG144           Benzyl Chloride         100-44-7         127         0.400         2.08         ND         ND         2         WG144           Bromodichloromethane         75-27-4         164         0.400         2.68         ND         ND         2         WG144           Bromoform         75-25-2         253         1.20         12.4         ND         ND         2         WG144           Bromomethane         74-83-9         94.90         0.400         1.55         ND         ND         2         WG144           1,3-Butadiene         106-99-0         54.10         4.00         8.85         ND         ND         2         WG144           Carbon disulfide         75-15-0         76.10         0.400         | 4023<br>4023<br>4023<br>4023<br>4023<br>4023<br>4023<br>4023 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|
| Allyl chloride         107-05-1         76.53         0.400         1.25         ND         ND         2         WG144           Benzene         71-43-2         78.10         0.400         1.28         0.797         2.55         2         WG144           Benzyl Chloride         100-44-7         127         0.400         2.08         ND         ND         2         WG144           Bromodichloromethane         75-27-4         164         0.400         2.68         ND         ND         2         WG144           Bromoform         75-25-2         253         1.20         12.4         ND         ND         2         WG144           Bromomethane         74-83-9         94.90         0.400         1.55         ND         ND         2         WG144           1,3-Butadiene         106-99-0         54.10         4.00         8.85         ND         ND         2         WG144           Carbon disulfide         75-15-0         76.10         0.400         1.24         0.447         1.39         2         WG144           Chlorobenzene         108-90-7         113         0.400         1.85         ND         ND         ND         2         WG144    | 4023<br>4023<br>4023<br>4023<br>4023<br>4023<br>4023<br>4023 |
| Benzene         71-43-2         78.10         0.400         1.28         0.797         2.55         2         WG1144           Benzyl Chloride         100-44-7         127         0.400         2.08         ND         ND         2         WG1144           Bromodichloromethane         75-27-4         164         0.400         2.68         ND         ND         2         WG1144           Bromoform         75-25-2         253         1.20         12.4         ND         ND         2         WG1144           Bromomethane         74-83-9         94.90         0.400         1.55         ND         ND         2         WG1144           1,3-Butadiene         106-99-0         54.10         4.00         8.85         ND         ND         2         WG1144           Carbon disulfide         75-15-0         76.10         0.400         1.24         0.447         1.39         2         WG1144           Chlorobenzene         108-90-7         113         0.400         1.85         ND         ND         ND         2         WG1144           Chlorobenzene         75-00-3         64.50         0.400         1.06         ND         ND         ND         2 | 4023<br>4023<br>4023<br>4023<br>4023<br>4023<br>4023         |
| Benzyl Chloride         100-44-7         127         0.400         2.08         ND         ND         2         WG144-8           Bromodichloromethane         75-27-4         164         0.400         2.68         ND         ND         2         WG144-8           Bromoform         75-25-2         253         1.20         12.4         ND         ND         2         WG144-8           Bromomethane         74-83-9         94.90         0.400         1.55         ND         ND         2         WG144-14-14-14-14-14-14-14-14-14-14-14-14-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4023<br>4023<br>4023<br>4023<br>4023<br>4023                 |
| Bromodichloromethane         75-27-4         164         0.400         2.68         ND         ND         2         WG144           Bromoform         75-25-2         253         1.20         12.4         ND         ND         2         WG144           Bromomethane         74-83-9         94.90         0.400         1.55         ND         ND         2         WG144           1,3-Butadiene         106-99-0         54.10         4.00         8.85         ND         ND         2         WG144           Carbon disulfide         75-15-0         76.10         0.400         1.24         0.447         1.39         2         WG144           Carbon tetrachloride         56-23-5         154         0.400         2.52         ND         ND         2         WG144           Chlorobenzene         108-90-7         113         0.400         1.85         NO         ND         ND         2         WG144           Chlorobethane         75-00-3         64.50         0.400         1.06         ND         ND         ND         2         WG144                                                                                                                     | 4023<br>4023<br>4023<br>4023<br>4023                         |
| Bromoform         75-25-2         253         1.20         12.4         ND         ND         2         WG144           Bromomethane         74-83-9         94.90         0.400         1.55         ND         ND         2         WG144           1,3-Butadiene         106-99-0         54.10         4.00         8.85         ND         ND         2         WG144           Carbon disulfide         75-15-0         76.10         0.400         1.24         0.447         1.39         2         WG144           Carbon tetrachloride         56-23-5         154         0.400         2.52         ND         ND         2         WG144           Chlorobenzene         108-90-7         113         0.400         1.85         NO         ND         ND         2         WG144           Chloroethane         75-00-3         64.50         0.400         1.06         ND         ND         ND         2         WG144                                                                                                                                                                                                                                                          | 4023<br>4023<br>4023<br>4023                                 |
| Bromomethane         74-83-9         94.90         0.400         1.55         ND         ND         2         WG1144           1,3-Butadiene         106-99-0         54.10         4.00         8.85         ND         ND         2         WG1144           Carbon disulfide         75-15-0         76.10         0.400         1.24         0.447         1.39         2         WG1144           Carbon tetrachloride         56-23-5         154         0.400         2.52         ND         ND         2         WG1144           Chlorobenzene         108-90-7         113         0.400         1.85         NO         ND         ND         2         WG1144           Chloroethane         75-00-3         64.50         0.400         1.06         ND         ND         ND         2         WG1144                                                                                                                                                                                                                                                                                                                                                                            | 4023<br>4023<br>4023                                         |
| 1,3-Butadiene         106-99-0         54,10         4,00         8,85         ND         ND         2         WG144           Carbon disulfide         75-15-0         76,10         0,400         1,24         0,447         1,39         2         WG144           Carbon tetrachloride         56-23-5         154         0,400         2,52         ND         ND         2         WG144           Chlorobenzene         108-90-7         113         0,400         1,85         ND         ND         ND         2         WG144           Chloroethane         75-00-3         64,50         0,400         1,06         ND         ND         2         WG144                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4023<br>4023                                                 |
| Carbon disulfide         75-15-0         76.10         0.400         1.24         0.447         1.39         2         WG1144           Carbon tetrachloride         56-23-5         154         0.400         2.52         ND         ND         2         WG1144           Chlorobenzene         108-90-7         113         0.400         1.85         ND         ND         2         WG1144           Chloroethane         75-00-3         64.50         0.400         1.06         ND         ND         2         WG1144                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4023                                                         |
| Carbon tetrachloride         56-23-5         154         0.400         2.52         ND         ND         2         WG114-2           Chlorobenzene         108-90-7         113         0.400         1.85         ND         ND         ND         2         WG114-2           Chloroethane         75-00-3         64.50         0.400         1.06         ND         ND         ND         2         WG114-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              |
| Chlorobenzene         108-90-7         113         0.400         1.85         ND         ND         2         WG114-7           Chloroethane         75-00-3         64.50         0.400         1.06         ND         ND         ND         2         WG114-7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4023                                                         |
| Chloroethane 75-00-3 64.50 0.400 1.06 ND ND 2 WG1144                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                              |
| <del>MATHER</del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4023                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4023                                                         |
| Chloroform 67-66-3 119 0.400 1.95 ND ND 2 <u>WG1 44</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4023                                                         |
| Chloromethane 74-87-3 50.50 0.400 0.826 0.716 1.48 2 WG1144                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4023                                                         |
| 2-Chlorotoluene 95-49-8 126 0.400 2.06 ND ND 2 WG114                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4023                                                         |
| Cyclohexane 110-82-7 84.20 0.400 1.38 ND ND 2 WG1144                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4023                                                         |
| Dibromochloromethane 124-48-1 208 0.400 3.40 ND ND 2 WG1144                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                              |
| 1,2-Dibromoethane 106-93-4 188 0.400 3.08 ND ND 2 WG1144                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <del></del>                                                  |
| 1,2-Dichlorobenzene 95-50-1 147 0.400 2.40 ND ND 2 WG1144                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4023                                                         |
| 1,3-Dichlorobenzene 541-73-1 147 0.400 2.40 ND ND 2 WG1144                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                              |
| 1,4-Dichlorobenzene 106-46-7 147 0.400 2.40 ND ND <u>J4</u> 2 <u>WG144-</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                              |
| 1,2-Dichloroethane 107-06-2 99 0.400 1.62 ND ND 2 WG1144                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                              |
| 1,1-Dichloroethane 75-34-3 98 0.400 1.60 ND ND 2 WG1144                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                              |
| 1,1-Dichloroethene 75-35-4 96.90 0.400 1.59 ND ND 2 WG1144                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                              |
| cis-1,2-Dichloroethene 156-59-2 96.90 0.400 1.59 ND ND 2 WG1144                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <del></del>                                                  |
| trans-1,2-Dichloroethene 156-60-5 96.90 0.400 1.59 ND ND 2 WG1144                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              |
| 1,2-Dichloropropane 78-87-5 113 0.400 1.85 ND ND 2 WG1144                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                              |
| cis-1,3-Dichloropropene 10061-01-5 111 0.400 1.82 ND ND 2 WG1144                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                              |
| trans-1,3-Dichloropropene 10061-02-6 111 0.400 1.82 ND ND 2 WG1144                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                              |
| 1,4-Dioxane 123-91-1 88.10 0.400 1.44 ND ND 2 WG1144                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                              |
| Ethanol 64-17-5 46.10 1.26 2.38 37.0 69.7 2 WG1144                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                              |
| Ethylbenzene 100-41-4 106 0.400 1.73 0.942 4.08 2 WG1144                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                              |
| 4-Ethyltoluene 622-96-8 120 0.400 1.96 ND ND 2 WG1144                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                              |
| Trichlorofluoromethane 75-69-4 137.40 0.400 2.25 ND ND 2 WG1144                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                              |
| Dichlorodifluoromethane 75-71-8 120.92 0.400 1.98 0.443 2.19 2 WG1144                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <del></del>                                                  |
| 1,1,2-Trichlorotrifluoroethane 76-13-1 187.40 0.400 3.07 ND ND 2 WG1144                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <del></del>                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                              |
| Heptane     142-82-5     100     0.400     1.64     1.07     4.38     2     WG1144       Hexachloro-1.3-butadiene     87-68-3     261     1.26     13.5     ND     ND     ND     2     WG1144                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <del></del>                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                              |
| n-Hexane 110-54-3 86.20 0.400 1.41 2.99 10.5 2 <u>WG1144</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                              |
| Isopropylbenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                              |
| Methylene Chloride         75-09-2         84.90         0.400         1.39         5.00         17.3         2         WG/114/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                              |
| Methyl Butyl Ketone 591-78-6 100 2.50 10.2 ND ND 2 WG1144                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                              |
| 2-Butanone (MEK) 78-93-3 72.10 2.50 7.37 5.16 15.2 2 WG1144                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                              |
| 4-Methyl-2-pentanone (MIBK) 108-10-1 100.10 2.50 10.2 ND ND 2 <u>WG1(44</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                              |
| Methyl methacrylate 80-62-6 100.12 0.400 1.64 ND ND 2 <u>WG1144</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                              |
| MTBE 1634-04-4 88.10 0.400 1.44 ND ND 2 WG1144                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                              |
| Naphthalene 91-20-3 128 1.26 6.60 ND ND 2 <u>WG1144</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                              |
| 2-Propanol 67-63-0 60.10 2.50 6.15 6.03 14.8 2 <u>WG1144</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                              |
| Propene 115-07-1 42.10 0.800 1.38 11.6 20.0 2 WG1144                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                              |
| Styrene 100-42-5 104 0.400 1.70 ND ND 2 <u>WG1144</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                              |
| 1,1,2,2-Tetrachloroethane 79-34-5 168 0.400 2.75 ND ND 2 <u>WG1144</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1023                                                         |
| Tetrachloroethylene 127-18-4 166 0.400 2.72 12.4 84.4 2 <u>WG114-4</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1023                                                         |
| Tetrahydrofuran 109-99-9 72.10 0.400 1.18 0.489 1.44 2 <u>WG1144</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1023                                                         |
| Toluene 108-88-3 92.10 0.400 1.51 1.60 6.03 2 <u>W61144</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1023                                                         |
| 1,2,4-Trichlorobenzene 120-82-1 181 1.26 9.33 ND ND 2 <u>W61144</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1023                                                         |



















1807A94-008A RYSV0804-20180719-AE

# SAMPLE RESULTS - 08

ONE LAB, NATIONWIDE.

Collected date/time: 07/19/18 10:51

|                            | CAS#      | Mol. Wt. | RDL1     | RDL2  | Result | Result | Qualifier | Dilution | Batch     |
|----------------------------|-----------|----------|----------|-------|--------|--------|-----------|----------|-----------|
| Analyte                    |           |          | ppbv     | ug/m3 | ppbv   | ug/m3  |           |          |           |
| 1,1,1-Trichloroethane      | 71-55-6   | 133      | 0.400    | 2.18  | ND     | ND     |           | 2        | WG1144023 |
| 1,1,2-Trichloroethane      | 79-00-5   | 133      | 0.400    | 2.18  | ND     | ND     |           | 2        | WG1144023 |
| Trichloroethylene          | 79-01-6   | 131      | 0.400    | 2.14  | 0.687  | 3.68   |           | 2        | WG1144023 |
| 1,2,4-Trimethylbenzene     | 95-63-6   | 120      | 0.400    | 1.96  | 0.629  | 3.09   |           | 2        | WG1144023 |
| 1,3,5-Trimethylbenzene     | 108-67-8  | 120      | 0.400    | 1.96  | ND     | ND     |           | 2        | WG1144023 |
| 2,2,4-Trimethylpentane     | 540-84-1  | 114.22   | 0.400    | 1.87  | ND     | ND     |           | 2        | WG1144023 |
| Vinyl chloride             | 75-01-4   | 62.50    | 0.400    | 1.02  | ND     | ND     |           | 2        | WG1144023 |
| Vinyl Bromide              | 593-60-2  | 106.95   | 0.400    | 1.75  | ND     | ND     |           | 2        | WG1144023 |
| Vinyl acetate              | 108-05-4  | 86.10    | 0.400    | 1.41  | ND     | ND     |           | 2        | WG1144023 |
| m&p-Xytene                 | 1330-20-7 | 106      | 0.800    | 3,47  | 1.22   | 5.28   |           | 2        | WG1144023 |
| o-Xylene                   | 95-47-6   | 106      | 0.400    | 1.73  | 0.499  | 2.17   |           | 2        | WG1144023 |
| TPH (GC/MS) Low Fraction   | 8006-61-9 | 101      | 100      | 413   | 114    | 472    |           | 2        | WG1144023 |
| (S) 1,4-Bromofluorobenzene | 460-00-4  | 175      | 60.0-140 |       | 100    |        |           |          | WG1144023 |



















1807A94-009A RYSV0805-20180719-AE

# SAMPLE RESULTS - 09

ONE LAB. NATIONWIDE.



Ss

GI

ΔI

Sc

Collected date/time: 07/19/18 11:32

|                                                        | CAS#                | Mol. Wt.        | RDL1           | RDL2                 | Result      | Result     | Qualifier | Dilution | <u>Batch</u>                  |
|--------------------------------------------------------|---------------------|-----------------|----------------|----------------------|-------------|------------|-----------|----------|-------------------------------|
| Analyte                                                |                     |                 | ppbv           | ug/m3                | ppbv        | ug/m3      |           |          |                               |
| Acetone                                                | 67-64-1             | 58.10           | 2.50           | 5.94                 | 28.4        | 67.4       |           | 2        | WG1144720                     |
| Allyl chloride                                         | 107-05-1            | 76.53           | 0.400          | 1.25                 | ND          | ND         |           | 2        | WG1144720                     |
| Benzene                                                | 71-43-2             | 78.10           | 0.400          | 1.28                 | ND          | ND         |           | 2        | WG[144720                     |
| Benzyl Chloride                                        | 100-44-7            | 127             | 0.400          | 2.08                 | ND          | ND         |           | 2        | WG1144720                     |
| Bromodichloromethane                                   | 75-27-4             | 164             | 0.400          | 2.68                 | ND          | ND         |           | 2        | WG1144720                     |
| Bromoform                                              | 75-25-2             | 253             | 1.20           | 12.4                 | ND          | ND         |           | 2        | WG1144720                     |
| Bromomethane                                           | 74-83-9             | 94.90           | 0.400          | 1.55                 | ND          | ND         |           | 2        | WG1144720                     |
| 1,3-Butadiene                                          | 106-99-0            | 54.10           | 4.00           | 8.85                 | ND          | ND         |           | 2        | WG1144720                     |
| Carbon disulfide                                       | 75-15-0             | 76.10           | 0.400          | 1.24                 | ND          | ND         |           | 2        | WG1144720                     |
| Carbon tetrachloride                                   | 56-23-5             | 154             | 0.400          | 2.52                 | ND          | ND         |           | 2        | WG1144720                     |
| Chlorobenzene                                          | 108-90-7            | 113             | 0.400          | 1.85                 | ND          | ND         |           | 2        | WG1144720                     |
| Chloroethane                                           | 75-00-3             | 64.50           | 0.400          | 1.06                 | ND          | ND         |           | 2        | WG1144720                     |
| Chloroform                                             | 67-66-3             | 119             | 0.400          | 1.95                 | ND          | ND         |           | 2        | WG1144720                     |
| Chloromethane                                          | 74-87-3             | 50.50           | 0.400          | 0.826                | 0.447       | 0.922      |           | 2        | WG1144720                     |
| 2-Chlorotoluene                                        | 95-49-8             | 126             | 0.400          | 2.06                 | ND          | ND         |           | 2        | WG1144720                     |
| Cyclohexane                                            | 110-82-7            | 84.20           | 0.400          | 1.38                 | ND          | ND         |           | 2        | WG1144720                     |
| Dibromochloromethane                                   | 124-48-1            | 208             | 0.400          | 3.40                 | ND          | ND         |           | 2        | WG1144720                     |
| 1,2-Dibromoethane                                      | 106-93-4            | 188             | 0.400          | 3.08                 | ND          | ND         |           | 2        | WG1144720                     |
| 1,2-Dichlorobenzene                                    | 95-50-1             | 147             | 0.400          | 2.40                 | ND          | ND         |           | 2        | WG1144720                     |
| 1,3-Dichlorobenzene                                    | 541-73-1            | 147             | 0.400          | 2.40                 | ND          | ND         |           | 2        | WG1144720                     |
| 1,4-Dichlorobenzene                                    | 106-46-7            | 147             | 0.400          | 2.40                 | ND          | ND         |           | 2        | WG1344720                     |
| 1,2-Dichloroethane                                     | 107-06-2            | 99              | 0.400          | 1.62                 | ND          | ND         |           | 2        | WG1144720                     |
| 1,1-Dichloroethane                                     | 75-34-3             | 98              | 0.400          | 1,60                 | ND          | ND         |           | 2        | WG1144720                     |
| 1,1-Dichloroethene                                     | 75-35-4             | 96.90           | 0.400          | 1.59                 | ND          | ND         |           | 2        | WG1144720                     |
| cis-1,2-Dichloroethene                                 | 156-59-2            | 96.90           | 0.400          | 1,59                 | ND          | ND         |           | 2        | WG1144720                     |
| trans-1,2-Dichloroethene                               | 156-60-5            | 96.90           | 0.400          | 1.59                 | ND          | ND         |           | 2        | WG1144720                     |
| 1,2-Dichloropropane                                    | 78-87-5             | 113             | 0.400          | 1.85                 | ND          | ND         |           | 2        | WG1144720                     |
| cis-1,3-Dichloropropene                                | 10061-01-5          | 111             | 0.400          | 1.82                 | ND          | ND         |           | 2        | WG1144720                     |
| trans-1,3-Dichloropropene                              | 10061-02-6          | 111             | 0.400          | 1.82                 | ND          | ND         |           | 2        | WG1144720                     |
| 1,4-Dioxane                                            | 123-91-1            | 88.10           | 0.400          | 1,44                 | 1.06        | 3.81       |           | 2        | WG1144720                     |
| Ethanol                                                | 64-17-5             | 46.10           | 1.26           | 2.38                 | 29.5        | 55.6       |           | 2        | WG1144720                     |
| Ethylbenzene                                           | 100-41-4            | 106             | 0.400          | 1.73                 | ND          | ND         |           | 2        | WG1144720                     |
| 4-Ethyltoluene                                         | 622-96-8            | 120             | 0.400          | 1.96                 | ND          | ND         |           | 2        | WG1144720                     |
| Trichlorofluoromethane                                 | 75-69-4             | 137.40          | 0.400          | 2.25                 | ND          | ND         |           | 2        | WG1144720                     |
| Dichlorodifluoromethane 1,1,2-Trichlorotrifluoroethane | 75-71-8<br>76-40-4  | 120.92          | 0.400          | 1.98                 | ND          | ND         |           | 2        | WG1144720                     |
| 1,2-1 inchlorotetrafluoroethane                        | 76-13-1<br>76-14-2  | 187.40          | 0.400          | 3.07                 | ND          | ND         |           | 2        | WG1144720                     |
| ,                                                      | 76-14-2             | 171             | 0.400          | 2.80                 | ND<br>ND    | ND<br>ND   |           | 2        | WG1144720                     |
| Heptane                                                | 142-82-5<br>87-68-3 | 100             | 0.400          | 1.64                 | ND          | ND         |           | 2        | WG1144720                     |
| Hexachloro-1,3-butadiene                               | 110-54-3            | 261             | 1.26           | 13.5                 | ND          | ND         |           | 2        | WG1144720                     |
| n-Hexane<br>Isopropylbenzene                           | 98-82-8             | 86.20<br>120.20 | 0.400<br>0.400 | 1. <b>41</b><br>1.97 | ND<br>ND    | 1.41<br>ND |           | 2        | WG1144720                     |
| Methylene Chloride                                     | 75-09-2             | 84.90           | 0.400          | 1.39                 | 1,37        | 4.76       |           | 2        | WG1144720                     |
| Methyl Butyl Ketone                                    | 591-78-6            | 100             | 2.50           | 10.2                 | ND          | 4.76<br>ND |           | 2        | WG1144720                     |
| 2-Butanone (MEK)                                       | 78-93-3             | 72.10           | 2.50           | 7.37                 | 3.31        | 9.76       |           | 2        | <u>WG1144720</u><br>WG1144720 |
| 4-Methyl-2-pentanone (MIBK)                            | 108-10-1            | 100.10          | 2.50           | 10.2                 | ND          | ND         |           | 2        | WG1144720                     |
| Methyl methacrylate                                    | 80-62-6             | 100.10          | 0.400          | 1,64                 | ND          | ND         |           | 2        | WG1144720                     |
| MTBE                                                   | 1634-04-4           | 88.10           | 0.400          | 1,44                 | ND          | ND         |           | 2        | WG1144720                     |
| Naphthalene                                            | 91-20-3             | 128             | 1.26           | 6.60                 | ND          | ND         |           | 2        | WG1144720                     |
| 2-Propanol                                             | 67-63-0             | 60.10           | 2.50           | 6.15                 | 2.68        | 6.58       |           | 2        | WG1144720                     |
| Propene                                                | 115-07-1            | 42.10           | 0.800          | 1.38                 | 1.15        | 1.98       |           | 2        | WG1144720                     |
| Styrene                                                | 100-42-5            | 104             | 0.400          | 1.70                 | ND          | ND         |           | 2        | WG1144720                     |
| 1,1,2,2-Tetrachloroethane                              | 79-34-5             | 168             | 0.400          | 2.75                 | ND          | ND<br>ND   |           | 2        | WG1144720<br>WG1144720        |
| Tetrachloroethylene                                    | 127-18-4            | 166             | 0.400          | 2.73                 | 0.824       | 5.60       |           | 2        | WG1144720                     |
| Tetrahydrofuran                                        | 109-99-9            | 72,10           | 0.400          | 1.18                 | 0.768       | 2.27       |           | 2        | W61144720                     |
| Toluene                                                | 108-88-3            | 92.10           | 0.400          | 1.51                 | 0.768<br>ND | ND         |           | 2        | WG1144720                     |
| 1,2,4-Trichlorobenzene                                 | 120-82-1            | 181             | 1.26           | 9.33                 | ND          | ND         |           | 2        | WG1144720                     |
| 1,2,3-11:CHOLOGEREERE                                  | 120-02-1            | 101             | 1.20           | 3.33                 | NU          | W          |           | 4        | 11G:(1/47.ZU                  |

1807A94-009A RYSV0805-20180719-AE

# SAMPLE RESULTS - 09

ONE LAB. NATIONWIDE.

Collected date/time: 07/19/18 11:32

|                            | CAS #     | Mol. Wt. | RDL1     | RDL2  | Result | Result | Qualifier | Dilution | Batch     |
|----------------------------|-----------|----------|----------|-------|--------|--------|-----------|----------|-----------|
| Analyte                    |           |          | ppbv     | ug/m3 | ppbv   | ug/m3  |           |          |           |
| ,1,1-Trichloroethane       | 71-55-6   | 133      | 0.400    | 2.18  | 3.92   | 21.3   |           | 2        | WG1144720 |
| ,1,2-Trichloroethane       | 79-00-5   | 133      | 0.400    | 2.18  | ND     | ND     |           | 2        | WG1144720 |
| richłoroethylene           | 79-01-6   | 131      | 0.400    | 2.14  | ND     | ND     |           | 2        | WG1144720 |
| 2,4-Trimethylbenzene       | 95-63-6   | 120      | 0.400    | 1.96  | 1.18   | 5.79   |           | 2        | WG1144720 |
| 3,5-Trimethylbenzene       | 108-67-8  | 120      | 0.400    | 1.96  | ND     | ND     |           | 2        | WG1144720 |
| ,2,4-Trimethylpentane      | 540-84-1  | 114.22   | 0.400    | 1.87  | ND     | ND     |           | 2        | WG1144720 |
| inyl chloride              | 75-01-4   | 62.50    | 0.400    | 1.02  | ND     | ND     |           | 2        | WG1144720 |
| inyl Bromide               | 593-60-2  | 106.95   | 0.400    | 1.75  | ND     | ND     |           | 2        | WG1144720 |
| inyl acetate               | 108-05-4  | 86.10    | 0.400    | 1.41  | ND     | ND     |           | 2        | WG1144720 |
| ı&p-Xylene                 | 1330-20-7 | 106      | 0.800    | 3.47  | ND     | ND     |           | 2        | WG1144720 |
| -Xylene                    | 95-47-6   | 106      | 0.400    | 1.73  | ND     | ND     |           | 2        | WG1144720 |
| PH (GC/MS) Low Fraction    | 8006-61-9 | 101      | 100      | 413   | 108    | 448    |           | 2        | WG1144720 |
| (S) 1,4-Bromofluorobenzene | 460-00-4  | 175      | 60.0-140 |       | 90.5   |        |           |          | WG1144720 |

















1807A94-010A RYSV0806-20180719-AE

## SAMPLE RESULTS - 10

ONE LAB. NATIONWIDE.

Collected date/time: 07/19/18 11:40

Volatile Organic Compounds (MS) by Method TO-15

| Analyte Acetone Allyl chloride | 67-64-1            | E0.10          | ppbv          | ug/m3 | ppbv        | ug/m3         |        |            |
|--------------------------------|--------------------|----------------|---------------|-------|-------------|---------------|--------|------------|
| Allyl chloride                 | 07-04-1            |                | 2 50          | 5.94  | 12 E        | 20.7          | 2      | 1904144100 |
| *                              | 107-05-1           | 58.10<br>76.53 | 2.50<br>0.400 | 1.25  | 12.5<br>ND  | 29.7          | 2      | WG1144138  |
| Benzene                        | 71-43-2            | 78.10          | 0.400         | 1.28  | ND<br>ND    | ND            | 2<br>2 | WG1144138  |
| Benzyl Chloride                | 100-44-7           | 127            | 0.400         | 2.08  |             | ND<br>ND      |        | WG1144138  |
| Bromodichloromethane           | 75-27-4            | 164            | 0.400         |       | ND<br>ND    | ND<br>ND      | 2      | WG1144138  |
| Bromoform                      | 75-27-4<br>75-25-2 |                |               | 2.68  | ND          | ND<br>ND      | 2      | WG1144138  |
| Bromomethane                   | 74-83-9            | 253            | 1.20<br>0.400 | 12,4  | ND<br>ND    | ND            | 2      | WG1144138  |
| 1,3-Butadiene                  | 106-99-0           | 94.90<br>54.10 | 4.00          | 1.55  | ND          | ND<br>ND      | 2      | WG1144138  |
| Carbon disulfide               | 75-15-0            |                |               | 8.85  | ND          | ND            | 2      | WG1144138  |
|                                |                    | 76.10<br>154   | 0.400         | 1.24  | 0.427       | 1.33          | 2      | WG1144138  |
| Carbon tetrachloride           | 56-23-5            | 154            | 0.400         | 2.52  | ND          | ND            | 2      | WG1144138  |
| Chlorobenzene                  | 108-90-7           | 113            | 0.400         | 1.85  | ND          | ND            | 2      | WG1144138  |
| Chloroethane                   | 75-00-3            | 64.50          | 0.400         | 1.06  | ND<br>a rar | ND<br>n. n.o. | 2      | WG1144138  |
| Chloroform                     | 67-66-3            | 119            | 0.400         | 1.95  | 0.484       | 2.36          | 2      | WG1144138  |
| Chloromethane                  | 74-87-3            | 50.50          | 0.400         | 0.826 | 0.784       | 1.62          | 2      | WG1144138  |
| 2-Chlorotoluene                | 95-49-8            | 126            | 0.400         | 2.06  | ND          | ND            | 2      | WG1144138  |
| Cyclohexane                    | 110-82-7           | 84.20          | 0.400         | 1.38  | ND          | ND            | 2      | WG1144138  |
| Dibromochloromethane           | 124-48-1           | 208            | 0.400         | 3.40  | ND          | ND            | 2      | WG1144138  |
| 1,2-Dibromoethane              | 106-93-4           | 188            | 0.400         | 3.08  | ND          | ND            | 2      | WG1144138  |
| 1,2-Dichlorobenzene            | 95-50-1            | 147            | 0.400         | 2.40  | ND          | ND            | 2      | WG1144138  |
| 1,3-Dichlorobenzene            | 541-73-1           | 147            | 0.400         | 2.40  | ND          | ND            | 2      | WG1144138  |
| 1,4-Dichlorobenzene            | 106-46-7           | 147            | 0.400         | 2.40  | ND          | ND            | 2      | WG1144138  |
| 1,2-Dichloroethane             | 107-06-2           | 99             | 0.400         | 1.62  | ND          | ND            | 2      | WG1144138  |
| 1,1-Dichloroethane             | 75-34-3            | 98             | 0.400         | 1,60  | ND          | ND            | 2      | WG1144138  |
| 1,1-Dichloroethene             | 75-35-4            | 96.90          | 0.400         | 1.59  | ND          | ND            | 2      | WG1144138  |
| cis-1,2-Dichloroethene         | 156-59-2           | 96.90          | 0.400         | 1.59  | ND          | ND            | 2      | WG1144138  |
| trans-1,2-Dichloroethene       | 156-60-5           | 96.90          | 0.400         | 1.59  | ND          | ND            | 2      | WG1144138  |
| 1,2-Dichloropropane            | 78-87-5            | 113            | 0.400         | 1.85  | ND          | ND            | 2      | WG1I44138  |
| cis-1,3-Dichloropropene        | 10061-01-5         | 111            | 0.400         | 1.82  | ND          | ND            | 2      | WG1144138  |
| trans-1,3-Dichloropropene      | 10061-02-6         | 111            | 0.400         | 1.82  | ND          | ND            | 2      | WG1144138  |
| 1,4-Dioxane                    | 123-91-1           | 88.10          | 0.400         | 1.44  | ND          | ND            | 2      | WG1144138  |
| Ethanol                        | 64-17-5            | 46.10          | 1.26          | 2.38  | 7.47        | 14.1          | 2      | WG1144138  |
| Ethylbenzene                   | 100-41-4           | 106            | 0.400         | 1.73  | ND          | ND            | 2      | WG1144138  |
| 4-Ethyltoluene                 | 622-96-8           | 120            | 0.400         | 1.96  | ND          | ND            | 2      | WG1144138  |
| Trichlorofluoromethane         | 75-69-4            | 137.40         | 0.400         | 2.25  | ND          | ND            | 2      | WG1144138  |
| Dichlorodifluoromethane        | 75-71-8            | 120.92         | 0.400         | 1.98  | ND          | ND            | 2      | WG1144138  |
| 1,1,2-Trichlorotrifluoroethane | 76-13-1            | 187.40         | 0.400         | 3.07  | ND          | ND            | 2      | WG1144138  |
| 1,2-Dichlorotetrafluoroethane  | 76-14-2            | 171            | 0.400         | 2.80  | ND          | ND            | 2      | WG1144138  |
| Heptane                        | 142-82-5           | 100            | 0.400         | 1.64  | ND          | ND            | 2      | WG1144138  |
| Hexachloro-1,3-butadiene       | 87-68-3            | 261            | 1.26          | 13.5  | ND          | ND            | 2      | WG1144138  |
| n-Hexane                       | 110-54-3           | 86.20          | 0.400         | 1,41  | ND          | ND            | 2      | WG1144138  |
| Isopropylbenzene               | 98-82-8            | 120.20         | 0.400         | 1.97  | ND          | ND            | 2      | WG1144138  |
| Methylene Chloride             | 75-09-2            | 84.90          | 0.400         | 1.39  | ND          | ND            | 2      | WG1144138  |
| Methyl Butyl Ketone            | 591-78-6           | 100            | 2.50          | 10.2  | ND          | ND            | 2      | WG1144138  |
| 2-Butanone (MEK)               | 78-93-3            | 72.10          | 2.50          | 7.37  | ND          | ND            | 2      | WG1144138  |
| 4-Methyl-2-pentanone (MIBK)    | 108-10-1           | 100.10         | 2.50          | 10.2  | ND          | ND            | 2      | WG1144138  |
| Methyl methacrylate            | 80-62-6            | 100.12         | 0.400         | 1.64  | ND          | ND            | 2      | WG1144138  |
| MTBE                           | 1634-04-4          | 88.10          | 0.400         | 1,44  | ND          | ND            | 2      | WG1144138  |
| Naphthalene                    | 91-20-3            | 128            | 1,26          | 6.60  | 2.22        | 11.6          | 2      | WG1144138  |
| 2-Propanol                     | 67-63-0            | 60.10          | 2.50          | 6.15  | 4.41        | 10.8          | 2      | WG1144138  |
| ·                              | 115-07-1           | 42.10          | 0.800         | 1.38  | 2.12        | 3.66          | 2      | WG1144138  |
| Styrene                        | 100-42-5           | 104            | 0.400         | 1.70  | ND          | ND            | 2      | WG1144138  |
| =                              | 79-34-5            | 168            | 0.400         | 2.75  | ND          | ND            | 2      | WG1144138  |
|                                | 127-18-4           | 166            | 0.400         | 2.72  | 0.957       | 6.50          | 2      | WG/144138  |
| *                              | 109-99-9           | 72.10          | 0.400         | 1.18  | ND          | ND            | 2      | WG1144138  |
|                                |                    |                |               | 1.51  | 0.527       |               |        |            |
| ·                              | 108-88-3           | 92.10          | 0.400         | 151   | 11 527      | 1.98          | 2      | WG1144138  |

ACCOUNT: Half Environmental Analysis Laboratory PROJECT:

SDG: L1011512

DATE/TIME: 07/30/18 17:19



















1807A94-010A RYSV0806-20180719-AE

## SAMPLE RESULTS - 10

ONE LAB. NATIONWIDE.

Collected date/time: 07/19/18 11:40

|                            | CAS#      | Mol. Wt. | RDL1     | RDL2  | Result | Result | Qualifier | Dilution | Batch     |
|----------------------------|-----------|----------|----------|-------|--------|--------|-----------|----------|-----------|
| Analyte                    |           |          | ppbv     | ug/m3 | ppbv   | ug/m3  |           |          |           |
| ,1,1-Trichloroethane       | 71-55-6   | 133      | 0.400    | 2.18  | 11.8   | 64.0   |           | 2        | WG1144138 |
| ,1,2-Trichloroethane       | 79-00-5   | 133      | 0.400    | 2.18  | ND     | ND     |           | 2        | WG1144138 |
| richloroethylene           | 79-01-6   | 131      | 0.400    | 2.14  | ND     | ND     |           | 2        | WG1144133 |
| 2,4-Trimethylbenzene       | 95-63-6   | 120      | 0.400    | 1.96  | ND     | ND     |           | 2        | WG1144138 |
| 3,5-Trimethylbenzene       | 108-67-8  | 120      | 0.400    | 1.96  | ND     | ND     |           | 2        | WG1144138 |
| ,2,4-Trimethylpentane      | 540-84-1  | 114.22   | 0.400    | 1.87  | ND     | ND     |           | 2        | WG1144138 |
| inyl chloride              | 75-01-4   | 62.50    | 0.400    | 1.02  | ND     | ND     |           | 2        | WG1I44138 |
| inyl Bromide               | 593-60-2  | 106.95   | 0.400    | 1.75  | ND     | ND     |           | 2        | WG1144138 |
| inyl acetate               | 108-05-4  | 86.10    | 0.400    | 1.41  | ND     | ND     |           | 2        | WG1144138 |
| ı&ρ-Xylene                 | 1330-20-7 | 106      | 0.800    | 3.47  | ND     | ND     |           | 2        | WG1144133 |
| -Xylene                    | 95-47-6   | 106      | 0.400    | 1.73  | ND     | ND     |           | 2        | WG1144138 |
| PH (GC/MS) Low Fraction    | 8006-61-9 | 101      | 100      | 413   | ND     | ND     |           | 2        | WG1144138 |
| (S) 1,4-Bromofluorobenzene | 460-00-4  | 175      | 60.0-140 |       | 98.1   |        |           |          | WG1144138 |

















1807A94-011A RYSV0807-20180719-AE

Collected date/time: 07/19/18 10:56

## SAMPLE RESULTS - 11

ONE LAB. NATIONWIDE.

| <del></del>                           | CAS #             | Mol. Wt.           | RDL1           | RDL2  | Result   | Result   | Qualifier | Dilution | Batch                  |
|---------------------------------------|-------------------|--------------------|----------------|-------|----------|----------|-----------|----------|------------------------|
| Analyte                               |                   |                    | ppbv           | ug/m3 | ppbv     | ug/m3    |           |          |                        |
| Acetone                               | 67-64-1           | 58.10              | 2.50           | 5.94  | 6.27     | 14.9     |           | 2        | WG1144133              |
| Allyl chloride                        | 107-05-1          | 76.53              | 0.400          | 1.25  | ND       | ND       |           | 2        | WG1144138              |
| Benzene                               | 71-43-2           | 78.10              | 0.400          | 1.28  | ND       | ND       |           | 2        | WG1144138              |
| Benzyl Chloride                       | 100-44-7          | 127                | 0.400          | 2.08  | ND       | ND       |           | 2        | WG1144138              |
| Bromodichloromethane                  | 75-27-4           | 164                | 0.400          | 2.68  | ND       | ND       |           | 2        | WG1144138              |
| Bromoform                             | 75-25-2           | 253                | 1.20           | 12,4  | ND       | ND       |           | 2        | WG1144138              |
| Bromomethane                          | 74-83-9           | 94.90              | 0.400          | 1.55  | ND       | ND       |           | 2        | WG1144138              |
| 1,3-Butadiene                         | 106-99-0          | 54.10              | 4.00           | 8.85  | ND       | ND       |           | 2        | WG1144138              |
| Carbon disulfide                      | 75-15-0           | 76.10              | 0.400          | 1.24  | 0.452    | 1,41     |           | 2        | WG1144138              |
| Carbon distance  Carbon tetrachloride | 56-23-5           | 154                | 0.400          | 2.52  |          | ND       |           | 2        |                        |
| Chlorobenzene                         | 108-90-7          | 113                |                | 1.85  | ND<br>ND |          |           | 2        | WG1144138              |
| Chloroethane                          | 75-00-3           | 64.50              | 0.400<br>0.400 | 1.06  | ND       | ND<br>ND |           | 2        | WG1144138              |
| Chloroform                            | 67-66-3           | 119                | 0.400          | 1.95  |          | ND<br>ND |           |          | WG1144138              |
| Chloromethane                         | 74-87-3           |                    |                |       | ND       |          |           | 2        | WG1144138              |
|                                       |                   | 50.50              | 0.400          | 0.826 | ND       | ND       |           | 2        | WG1144138              |
| 2-Chlorotoluene                       | 95-49-8           | 126                | 0.400          | 2.06  | ND<br>NB | ND       |           | 2        | WG1144138              |
| Cyclohexane                           | 110-82-7          | 84.20              | 0.400          | 1.38  | NO<br>HB | ND       |           | 2        | WG1144138              |
| Dibromochloromethane                  | 124-48-1          | 208                | 0.400          | 3.40  | ND       | ND       |           | 2        | WG1144138              |
| 1,2-Dibromoethane                     | 106-93-4          | 188                | 0.400          | 3.08  | ND       | ND       |           | 2        | WG1144138              |
| 1,2-Dichlorobenzene                   | 95-50-1           | 147                | 0.400          | 2.40  | ND       | ND       |           | 2        | WG1144138              |
| 1,3-Dichlorobenzene                   | 541-73-1          | 147                | 0.400          | 2.40  | ND       | ND       |           | 2        | WG1144138              |
| 1,4-Dichlorobenzene                   | 106-46-7          | 147                | 0.400          | 2.40  | ND       | ND       |           | 2        | WG1144138              |
| 1,2-Dichloroethane                    | 107-06-2          | 99                 | 0.400          | 1.62  | ND       | ND       |           | 2        | WG1144138              |
| 1,1-Dichloroethane                    | 75-34-3           | 98                 | 0.400          | 1.60  | ND       | ND       |           | 2        | WG1144138              |
| 1,1-Dichloroethene                    | 75-35-4           | 96.90              | 0.400          | 1.59  | ND       | ND       |           | 2        | WG1144133              |
| cis-1,2-Dichloroethene                | 156-59-2          | 96. <del>9</del> 0 | 0.400          | 1.59  | ND       | ND       |           | 2        | WG1144138              |
| trans-1,2-Dichloroethene              | 156 <b>-6</b> 0-5 | 96.90              | 0.400          | 1.59  | ND       | ND       |           | 2        | WG1144138              |
| 1,2-Dichloropropane                   | 78-87-5           | 113                | 0.400          | 1.85  | ND       | ND       |           | 2        | WG1144138              |
| cis-1,3-Dichloropropene               | 10061-01-5        | 111                | 0.400          | 1.82  | ND       | ND       |           | 2        | WG1144138              |
| trans-1,3-Dichloropropene             | 10061-02-6        | 111                | 0.400          | 1.82  | ND       | ND       |           | 2        | WG1144138              |
| 1,4-Dioxane                           | 123-91-1          | 88.10              | 0.400          | 1.44  | ND       | ND       |           | 2        | WG1144138              |
| Ethanol                               | 64-17-5           | 46.10              | 1.26           | 2.38  | 2.69     | 5.06     |           | 2        | WG1144138              |
| Ethylbenzene                          | 100-41-4          | 106                | 0.400          | 1.73  | ND       | ND       |           | 2        | WG1144138              |
| 4-Ethyltoluene                        | 622-96-8          | 120                | 0.400          | 1.96  | ND       | ND       |           | 2        | WG1144138              |
| Trichlorofluoromethane                | 75-69-4           | 137.40             | 0.400          | 2.25  | ND       | ND       |           | 2        | WG1144138              |
| Dichlorodifluoromethane               | 75-71-8           | 120.92             | 0.400          | 1.98  | ND       | ND       |           | 2        | WG1144138              |
| 1,1,2-Trichlorotrifluoroethane        | 76-13-1           | 187.40             | 0.400          | 3.07  | ND       | ND       |           | 2        | WG1144138              |
| 1,2-Dichlorotetrafluoroethane         | 76-14-2           | 171                | 0.400          | 2.80  | ND       | ND       |           | 2        | WG1144138              |
| Heptane                               | 142-82-5          | 100                | 0.400          | 1.64  | ND       | ND       |           | 2        | WG1144138              |
| Hexachloro-1,3-butadiene              | 87-68-3           | 261                | 1.26           | 13.5  | ND       | ND       |           | 2        | WG1144138              |
| n-Hexane                              | 110-54-3          | 86.20              | 0.400          | 1,41  | ND       | 1.41     |           | 2        | WG1144138              |
| Isopropylbenzene                      | 98-82-8           | 120.20             | 0.400          | 1.97  | ND       | ND       |           | 2        | WG1144138              |
| Methylene Chloride                    | 75-09-2           | 84.90              | 0.400          | 1.39  | 0.975    | 3.39     |           | 2        | WG1144138              |
| Methyl Butyl Ketone                   | 591-78-6          | 100                | 2.50           | 10.2  | ND       | ND       |           | 2        | WG1144138              |
| 2-Butanone (MEK)                      | 78-93-3           | 72,10              | 2,50           | 7.37  | ND       | ND       |           | 2        | WG1144138              |
| 4-Methyl-2-pentanone (MIBK)           | 108-10-1          | 100.10             | 2.50           | 10.2  | ND       | ND       |           | 2        | WG1144138              |
| Methyl methacrylate                   | 80-62-6           | 100.12             | 0.400          | 1.64  | ND       | ND       |           | 2        | WG1144138              |
| MTBE                                  | 1634-04-4         | 88.10              | 0.400          | 1.44  | ND       | ND       |           | 2        | WG1144138              |
| Naphthalene                           | 91-20-3           | 128                | 1.26           | 6.60  | ND       | ND       |           | 2        | WG1144138              |
| 2-Propanol                            | 67-63-0           | 60.10              | 2.50           | 6.15  | ND       | ND       |           | 2        | WG1144138              |
| Propene                               | 115-07-1          | 42.10              | 0.800          | 1.38  | ND       | ND       |           | 2        | WG1144138              |
| Styrene                               | 100-42-5          | 104                | 0.400          | 1.70  | ND       | ND       |           | 2        | WG1144138              |
| 1,1,2,2-Tetrachloroethane             | 79-34-5           | 168                | 0.400          | 2.75  | ND       | ND       |           | 2        | WG1144138              |
| Tetrachloroethylene                   | 127-18-4          | 166                | 0.400          | 2.73  | ND       | ND<br>ND |           | 2        | WG1144138              |
| Tetrahydrofuran                       | 109-99-9          | 72.10              | 0.400          | 1.18  | ND       | ND<br>ND |           | 2        | WG1144138<br>WG1144138 |
| Toluene                               | 108-88-3          | 92.10              | 0.400          | 1.18  | ND<br>ND | ND<br>ND |           | 2        |                        |
|                                       |                   |                    |                |       |          |          |           |          | WG1144138              |
| 1,2,4-Trichlorobenzene                | 120-82-1          | 181                | 1.26           | 9.33  | ND       | ND       |           | 2        | <u>WG1144138</u>       |

















1807A94-011A RYSV0807-20180719-AE

## SAMPLE RESULTS - 11

ONE LAB. NATIONWIDE,

Collected date/time: 07/19/18 10:56

|                            | CAS #     | Mol. Wt. | RDL1     | RDL2  | Result | Result | Qualifier | Dilution | Batch     |
|----------------------------|-----------|----------|----------|-------|--------|--------|-----------|----------|-----------|
| Analyte                    |           |          | ppbv     | ug/m3 | ppbv   | ug/m3  |           |          |           |
| 1,1,1-Trichloroethane      | 71-55-6   | 133      | 0.400    | 2.18  | 4.53   | 24.7   |           | 2        | WG1144138 |
| 1,1,2-Trichtoroethane      | 79-00-5   | 133      | 0.400    | 2.18  | ND     | ND     |           | 2        | WG1144138 |
| Trichloroethylene          | 79-01-6   | 131      | 0.400    | 2.14  | ND     | ND     |           | 2        | WG1144138 |
| I,2,4-Trimethylbenzene     | 95-63-6   | 120      | 0.400    | 1.96  | ND     | ND     |           | 2        | WG1144138 |
| ,3,5-Trimethylbenzene      | 108-67-8  | 120      | 0.400    | 1.96  | ND     | ND     |           | 2        | WG1144138 |
| 2,2,4-Trimethylpentane     | 540-84-1  | 114.22   | 0.400    | 1.87  | ND     | ND     |           | 2        | WG1144133 |
| /inyl chloride             | 75-01-4   | 62.50    | 0.400    | 1.02  | ND     | ND     |           | 2        | WG1144138 |
| /inyl Bromide              | 593-60-2  | 106.95   | 0.400    | 1.75  | ND     | ND     |           | 2        | WG1144133 |
| /inyl acetate              | 108-05-4  | 86.10    | 0.400    | 1.41  | ND     | ND     |           | 2        | WG1144139 |
| n&p-Xylene                 | 1330-20-7 | 106      | 0.800    | 3.47  | ND     | ND     |           | 2        | WG1144138 |
| -Xylene                    | 95-47-6   | 106      | 0.400    | 1.73  | ND     | ND     |           | 2        | WG1144138 |
| PH (GC/MS) Low Fraction    | 8006-61-9 | 101      | 100      | 413   | ND     | ND     |           | 2        | WG1144138 |
| (S) 1,4-Bromofluorobenzene | 460-00-4  | 175      | 60.0-140 |       | 97.7   |        |           |          | WG1144138 |

















1807A94-012A RYSV0808R-20180719-AE

Collected date/time: 07/19/18 11:01

## SAMPLE RESULTS - 12

ONE LAB. NATIONWIDE.

|                                |                    | V                  | ~- <del>//</del> |              |                |              |           |          |                        |
|--------------------------------|--------------------|--------------------|------------------|--------------|----------------|--------------|-----------|----------|------------------------|
|                                | CAS#               | Mol. Wt.           | RDL1             | RDL2         | Result         | Result       | Qualifier | Dilution | <u>Batch</u>           |
| Analyte                        |                    |                    | ppbv             | ug/m3        | ppbv           | ug/m3        |           |          |                        |
| Acetone                        | 67-64-1            | 58.10              | 2.50             | 5.94         | 33.0           | 78.4         |           | 2        | WG1144138              |
| Allyl chloride                 | 107-05-1           | 76.53              | 0.400            | 1.25         | NO             | ND           |           | 2        | WG1144138              |
| Benzene                        | 71-43-2            | 78.10              | 0.400            | 1.28         | ND             | ND           |           | 2        | WG1144138              |
| Benzyl Chloride                | 100-44-7           | 127                | 0.400            | 2.08         | ND             | ND           |           | 2        | WG1144138              |
| Bromodichloromethane           | 75-27-4            | 164                | 0.400            | 2.68         | ND             | ND           |           | 2        | WG1144138              |
| Bromoform                      | 75-25-2            | 253                | 1.20             | 12.4         | ND             | ND           |           | 2        | WG1144138              |
| Bromomethane                   | 74-83-9            | 94.90              | 0.400            | 1.55         | ND             | ND           |           | 2        | WG1144138              |
| 1,3-Butadiene                  | 106-99-0           | 54.10              | 4.00             | 8.85         | ND             | ND           |           | 2        | WG1144138              |
| Carbon disulfide               | 75-15-0            | 76.10              | 0.400            | 1.24         | ND             | ND           |           | 2        | WG1144138              |
| Carbon tetrachloride           | 56-23-5            | 154                | 0.400            | 2.52         | ND             | ND           |           | 2        | WG1144138              |
| Chlorobenzene                  | 108-90-7           | 113                | 0.400            | 1.85         | ND             | ND           |           | 2        | WG1144138              |
| Chloroethane                   | 75-00-3            | 64.50              | 0.400            | 1.06         | ND             | ND           |           | 2        | WG1144138              |
| Chloroform                     | 67-66-3            | 119                | 0.400            | 1.95         | ND             | ND           |           | 2        | WG1I44138              |
| Chloromethane                  | 74-87-3            | 50.50              | 0.400            | 0.826        | 0.678          | 1.40         |           | 2        | WG1144138              |
| 2-Chlorotoluene                | 95-49-8            | 126                | 0.400            | 2.06         | ND             | ND           |           | 2        | WG1144138              |
| Cyclohexane                    | 110-82-7           | 84.20              | 0.400            | 1.38         | ND             | ND           |           | 2        | WG1144133              |
| Dibromochloromethane           | 124-48-1           | 208                | 0.400            | 3.40         | ND             | ND           |           | 2        | WG1144138              |
| 1,2-Dibromoethane              | 106-93-4           | 188                | 0.400            | 3.08         | ND             | ND           |           | 2        | WG1144138              |
| 1,2-Dichlorobenzene            | 95-50-1            | 147                | 0.400            | 2.40         | ND             | ND           |           | 2        | WG1144138              |
| 1,3-Dichlorobenzene            | 541-73-1           | 147                | 0.400            | 2.40         | ND             | ND           |           | 2        | WG1144138              |
| 1,4-Dichlorobenzene            | 106-46-7           | 147                | 0.400            | 2.40         | ND             | ND           |           | 2        | WG1I44138              |
| 1,2-Dichloroethane             | 107-06-2           | 99                 | 0.400            | 1.62         | ND             | ND           |           | 2        | WG1144138              |
| 1,1-Dichloroethane             | 75-34-3            | 98                 | 0.400            | 1.60         | ND             | ND           |           | 2        | WG1I44138              |
| 1,1-Dichloroethene             | 75-35-4            | 96.90              | 0.400            | 1.59         | ND             | ND           |           | 2        | WG1144138              |
| cis-1,2-Dichloroethene         | 156-59-2           | 96.90              | 0.400            | 1.59         | ND             | ND           |           | 2        | WG1144138              |
| trans-1,2-Dichloroethene       | 156-60-5           | 96.90              | 0.400            | 1.59         | ND             | ND           |           | 2        | WG1144138              |
| 1,2-Dichloropropane            | 78-87-5            | 113                | 0.400            | 1.85         | ND             | ND           |           | 2        | WG1144138              |
| cis-1,3-Dichloropropene        | 10061-01-5         | 111                | 0.400            | 1.82         | ND             | ND           |           | 2        | WG1144138              |
| trans-1,3-Dichloropropene      | 10061-02-6         | 111                | 0.400            | 1.82         | ND             | ND           |           | 2        | WG1144138              |
| 1,4-Dioxane                    | 123-91-1           | 88.10              | 0.400            | 1.44         | ND             | ND           |           | 2        | WG1144138              |
| Ethanol                        | 64-17-5            | 46.10              | 1.26             | 2.38         | 13.9           | 26.3         |           | 2        | WG1144138              |
| Ethylbenzene                   | 100-41-4           | 106                | 0.400            | 1.73         | ND             | ND:          |           | 2        | WG1144138              |
| 4-Ethyltoluene                 | 622-96-8           | 120                | 0.400            | 1.96         | ND             | ND           |           | 2        |                        |
| Trichlorofluoromethane         | 75-69-4            | 137.40             | 0.400            | 2.25         | ND             | ND           |           | 2        | WG1144138              |
| Dichlorodifluoromethane        | 75-71-8            | 120.92             | 0.400            | 1.98         |                | ND<br>ND     |           |          | WG1144138              |
| 1,1,2-Trichlorotrifluoroethane | 76-13-1            | 187.40             | 0.400            | 3.07         | ND<br>ND       |              |           | 2        | WG1144138              |
| 1,2-Dichlorotetrafluoroethane  | 76-13-1<br>76-14-2 | 171                |                  |              | ND             | ND           |           | 2        | WG1144138              |
| Heptane                        | 142-82-5           |                    | 0.400            | 2.80         | ND<br>0.573    | ND<br>2.24   |           | 2        | WG1144138              |
| •                              |                    | 100                | 0.400            | 1.64         | 0.572          | 2.34         |           | 2        | WG1144138              |
| Hexachloro-1,3-butadiene       | 87-68-3            | 261                | 1.26             | 13.5         | ND             | ND           |           | 2        | WG1144138              |
| n-Hexane                       | 110-54-3           | 86.20              | 0.400            | 1,41         | 2.15           | 7.57         |           | 2        | WG1144138              |
| isopropylbenzene               | 98-82-8            | 120.20             | 0.400            | 1.97         | ND             | ND           |           | 2        | WG1144138              |
| Methylene Chloride             | 75-09-2            | 84.90              | 0.400            | 1.39         | 0.438          | 1.52         |           | 2        | WG1144138              |
| Methyl Butyl Ketone            | 591-78-6           | 100                | 2.50             | 10.2         | ND             | ND           |           | 2        | <u>WG1144138</u>       |
| 2-Butanone (MEK)               | 78-93-3            | 72.10              | 2.50             | 7.37         | 3.95           | 11.7         |           | 2        | WG1144138              |
| 4-Methyl-2-pentanone (MIBK)    | 108-10-1           | 100.10             | 2.50             | 10.2         | ND             | ND           |           | 2        | WG1144138              |
| Methyl methacrylate            | 80-62-6            | 100.12             | 0.400            | 1.64         | ND             | ND           |           | 2        | WG1144138              |
| MTBE                           | 1634-04-4          | 88.10              | 0.400            | 1,44         | ND             | ND           |           | 2        | WG1144138              |
| Naphthalene                    | 91-20-3            | 128                | 1.26             | 6.60         | ND             | ND           |           | 2        | WG1144138              |
| 2-Propanol                     | 67-63-0            | 60.10              | 2.50             | 6.15         | ND             | ND           |           | 2        | WG1144138              |
| Propene                        | 115-07-1           | 42.10              | 0.800            | 1.38         | 44.2           | 76.1         |           | 2        | WG1144138              |
| Styrene                        | 100-42-5           | 104                | 0.400            | 1.70         | ND             | ND           |           | 2        | WG1144138              |
| 1,1,2,2-Tetrachloroethane      | 79-34-5            | 168                | 0.400            | 2.75         | ND             | ND           |           | 2        | WG1144138              |
| Tetrachloroethylene            | 127-18-4           | 166                | 0.400            | 2.72         | 0.451          | 3.06         |           | 2        | WG !144138             |
|                                | ,                  |                    |                  |              |                |              |           |          |                        |
| Tetrahydrofuran                | 109-99-9           | 72.10              | 0.400            | 1.18         | 0.547          | 1.61         |           | 2        | WG1144138              |
| Tetrahydrofuran<br>Toluene     |                    | <b>72.10</b> 92.10 | 0.400<br>0.400   | 1.18<br>1.51 | 0.547<br>0.497 | 1.61<br>1.87 |           | 2        | WG1144138<br>WG1144138 |



















1807A94-012A RYSV0808R-20180719-AE

## SAMPLE RESULTS - 12

ONE LAB. NATIONWIDE.

Collected date/time: 07/19/18 11:01

|                            | CAS #     | Mol. Wt. | RDL1     | RDL2  | Result | Result | Qualifier   | Dilution | <u>Batch</u> |  |
|----------------------------|-----------|----------|----------|-------|--------|--------|-------------|----------|--------------|--|
| Analyte                    |           |          | ppbv     | ug/m3 | ppbv   | ug/m3  | <del></del> |          |              |  |
| ,1,1-Trichloroethane       | 71-55-6   | 133      | 0.400    | 2.18  | 0.475  | 2.58   |             | 2        | WG1144138    |  |
| ,1,2-Trichloroethane       | 79-00-5   | 133      | 0.400    | 2.18  | ND     | ND     |             | 2        | WG1144138    |  |
| richloroethylene           | 79-01-6   | 131      | 0.400    | 2.14  | 0.804  | 4.31   |             | 2        | WG1144133    |  |
| ,2,4-Trimethylbenzene      | 95-63-6   | 120      | 0.400    | 1.96  | 0.405  | 1.99   |             | 2        | WG1144138    |  |
| 3,5-Trimethylbenzene       | 108-67-8  | 120      | 0.400    | 1.96  | ND     | ND     |             | 2        | WG1144138    |  |
| ,2,4-Trimethylpentane      | 540-84-1  | 114.22   | 0.400    | 1.87  | ND     | ND     |             | 2        | WG1144138    |  |
| inyl chloride              | 75-01-4   | 62.50    | 0.400    | 1.02  | ND     | ND     |             | 2        | WG1144138    |  |
| inyl Bromide               | 593-60-2  | 106.95   | 0.400    | 1.75  | ND     | ND     |             | 2        | WG1144138    |  |
| inyl acetate               | 108-05-4  | 86.10    | 0.400    | 1.41  | ND     | ND     |             | 2        | WG1144138    |  |
| n&p-Xylene                 | 1330-20-7 | 106      | 0.800    | 3.47  | ND     | ND     |             | 2        | WG1144138    |  |
| -Xylene                    | 95-47-6   | 106      | 0.400    | 1.73  | ND     | ND     |             | 2        | WG1144138    |  |
| PH (GC/MS) Low Fraction    | 8006-61-9 | 101      | 100      | 413   | ND     | ND     |             | 2        | WG1144138    |  |
| (S) 1,4-Bromofluorobenzene | 460-00-4  | 175      | 60.0-140 |       | 98.1   |        |             |          | WG1144138    |  |















1807A94-013A RYV0809R-20180719-AE

## SAMPLE RESULTS - 13

ONE LAB. NATIONWIDE.

Collected date/time: 07/19/18 11:09

| ***************************************   | CAS #                          | Mol. Wt.    | RDL1          | RDL2         | Result      | Result     | Qualifier | Dilution | Batch                                   |
|-------------------------------------------|--------------------------------|-------------|---------------|--------------|-------------|------------|-----------|----------|-----------------------------------------|
| Analyte                                   | UAJ#                           | 1710(. 171. | ppbv          | ug/m3        | ppbv        | ug/m3      | Qualifier | Dilution | batch                                   |
| Acetone                                   | 67-64-1                        | 58.10       | 2.50          | 5.94         | 5.10        | 12.1       |           | 2        | WG1144138                               |
| Allyl chloride                            | 107-05-1                       | 76.53       | 0.400         | 1.25         | ND          | ND         |           | 2        | WG1144138                               |
| Benzene                                   | 71-43-2                        | 78.10       | 0.400         | 1.28         | ND          | ND         |           | 2        | WG1144138                               |
| Benzyl Chloride                           | 100-44-7                       | 127         | 0.400         | 2.08         | ND          | ND<br>ND   |           | 2        | WG1144138                               |
| Bromodichioromethane                      | 75-27-4                        | 164         | 0.400         | 2.68         | ND          | ND<br>ND   |           | 2        | WG1144138                               |
| Bromoform                                 | 75-25-2                        | 253         | 1.20          | 12.4         | ND          | ND         |           | 2        | WG1144138                               |
| Bromomethane                              | 74-83-9                        | 94.90       | 0.400         | 1.55         | ND          | ND         |           | 2        | WG1144138                               |
| 1,3-Butadiene                             | 106-99-0                       | 54.10       | 4.00          | 8.85         | ND          | ND         |           | 2        | WG1144138                               |
| Carbon disulfide                          | <b>75-1</b> 5-0                | 76.10       | 0.400         | 1.24         | ND          | ND         |           | 2        | WG1144138                               |
| Carbon tetrachloride                      | 56-23-5                        | 154         | 0.400         | 2,52         | ND          | ND         |           | 2        | WG1144138                               |
| Chlorobenzene                             | 108-90-7                       | 113         | 0.400         | 1.85         | ND          | ND         |           | 2        | WG144138                                |
| Chloroethane                              | 75-00-3                        | 64.50       | 0.400         | 1.06         | ND          | ND         |           | 2        | WG1144138                               |
| Chloroform                                | 67-66-3                        | 119         | 0.400         | 1.95         | ND          | ND         |           | 2        | WG1I44138                               |
| Chloromethane                             | 74-87-3                        | 50.50       | 0.400         | 0.826        | ND          | ND         |           | 2        | WG1144138                               |
| 2-Chlorotoluene                           | 95-49-8                        | 126         | 0.400         | 2.06         | ND          | ND         |           | 2        | WG1144133                               |
| Cyclohexane                               | 110-82-7                       | 84.20       | 0.400         | 1.38         | ND          | ND         |           | 2        | WG1144133                               |
| Dibromochloromethane                      | 124-48-1                       | 208         | 0.400         | 3.40         | ND          | ND         |           | 2        | WG1144138                               |
| 1,2-Dibromoethane                         | 106-93-4                       | 188         | 0.400         | 3.08         | ND          | ND         |           | 2        | WG1144138                               |
| 1,2-Dichlorobenzene                       | 95-50-1                        | 147         | 0.400         | 2.40         | ND          | ND         |           | 2        | WG1144138                               |
| 1,3-Dichlorobenzene                       | 541-73-1                       | 147         | 0.400         | 2.40         | ND          | ND         |           | 2        | WG1144138                               |
| 1,4-Dichlorobenzene                       | 106-46-7                       | 147         | 0.400         | 2.40         | ND          | ND         |           | 2        | WG1144138                               |
| 1,2-Dichloroethane                        | 107-06-2                       | 99          | 0.400         | 1.62         | ND          | ND         |           | 2        | WG1144138                               |
| 1,1-Dichloroethane                        | 75-34-3                        | 98          | 0.400         | 1.60         | ND          | ND         |           | 2        | *************************************** |
| 1,1-Dichloroethene                        | 75-35-4                        | 96.90       | 0.400         | 1.59         | ND          | ND         |           | 2        | WG1144138                               |
| cis-1,2-Dichloroethene                    | 156-59-2                       | 96.90       | 0.400         | 1.59         | ND          | ND         |           | 2        | WG1144138                               |
| trans-1,2-Dichloroethene                  | 156-60-5                       | 96.90       | 0.400         | 1.59         | ND<br>ND    | ND<br>ND   |           | 2        | WG1144138                               |
| 1,2-Dichloropropane                       | 78-87-5                        | 113         | 0.400         | 1.85         | ND<br>ND    | ND         |           |          | WG1144138                               |
| cis-1,3-Dichloropropene                   | 10061-01-5                     | 113         | 0.400         | 1.82         |             |            |           | 2        | WG1144138                               |
| trans-1,3-Dichloropropene                 | 10061-01-3                     | 111         | 0.400         | 1.82         | ND          | ND         |           | 2<br>2   | WG1144138                               |
| 1,4-Dioxane                               | 123-91-1                       | 88.10       |               |              | ND          | ND         |           |          | WG1144138                               |
| Ethanol                                   | 64-17-5                        | 46.10       | 0.400<br>1.26 | 1.44<br>2.38 | ND<br>15.2  | ND<br>28.9 |           | 2        | WG1144138                               |
| Ethylbenzene                              | 100-41-4                       | 106         | 0.400         | 1.73         | 15.3<br>ND  | ND         |           | 2<br>2   | WG1144138                               |
| 4-Ethyltoluene                            | 622-96-8                       | 120         | 0.400         | 1.96         |             | ND .       |           | 2        | WG1144138                               |
| Trichlorofluoromethane                    | 75-69-4                        | 137.40      | 0.400         | 2.25         | ND<br>ND    | ND         |           | 2        | WG1144138                               |
| Dichlorodifluoromethane                   | 75-09 <del>-4</del><br>75-71-8 | 120.92      | 0.400         | 1.98         | ND          | ND<br>ND   |           | 2        | WG1144138                               |
| 1,1,2-Trichforotrifluoroethane            | 76-13-1                        | 187.40      | 0.400         | 3.07         |             | ND         |           |          | WG1144138                               |
| 1,2-Dichlorotetrafluoroethane             | 76-13-1<br>76-14-2             | 171         |               |              | ND          |            |           | 2        | WG1144138                               |
|                                           |                                | 100         | 0.400         | 2.80         | ND          | ND         |           | 2        | WG1144138                               |
| Heptane<br>Hexachloro-1,3-butadiene       | 142-82-5<br>87-68-3            | 261         | 0.400         | 1.64         | ND          | ND         |           | 2        | WG1144138                               |
| n-Hexane                                  | 110-54-3                       | 86.20       | 1.26<br>0.400 | 13.5<br>1.41 | ND<br>0.848 | ND<br>3.00 |           | 2        | WG1144138                               |
| Isopropylbenzene                          | 98-82-8                        | 120.20      | 0.400         | 1.97         | 0.648<br>ND | 2.99<br>ND |           | 2        | WG1144138                               |
| ,                                         | 75-02-6<br>75-09-2             |             |               |              |             |            |           | 2        | WG1144138                               |
| Methylene Chloride<br>Methyl Butyl Ketone |                                | 84.90       | 0.400         | 1.39         | 0.940       | 3.26       |           | 2        | WG1144138                               |
| 2-Butanone (MEK)                          | 591-78-6                       | 100         | 2.50          | 10.2         | ND          | ND<br>ND   |           | 2        | WG1144138                               |
| • •                                       | 78-93-3                        | 72.10       | 2.50          | 7.37         | ND          | ND         |           | 2        | WG1144138                               |
| 4-Methyl-2-pentanone (MIBK)               | 108-10-1                       | 100.10      | 2.50          | 10.2         | ND          | ND         |           | 2        | WG1144138                               |
| Methyl methacrylate                       | 80-62-6                        | 100.12      | 0.400         | 1.64         | ND          | ND         |           | 2        | WG1144138                               |
| MTBE                                      | 1634-04-4                      | 88.10       | 0.400         | 1.44         | ND          | ND         |           | 2        | WG1144138                               |
| Naphthalene                               | 91-20-3                        | 128         | 1.26          | 6,60         | ND          | ND         |           | 2        | WG1144138                               |
| 2-Propanol                                | 67-63-0                        | 60.10       | 2.50          | 6.15         | ND          | ND<br>ND   |           | 2        | WG1144138                               |
| Propene                                   | 115-07-1                       | 42.10       | 0.800         | 1.38         | ND          | ND         |           | 2        | WG1144138                               |
| Styrene                                   | 100-42-5                       | 104         | 0.400         | 1.70         | ND          | ND         |           | 2        | WG1144138                               |
| 1,1,2,2-Tetrachloroethane                 | 79-34-5                        | 168         | 0.400         | 2.75         | ND          | ND         |           | 2        | WG1144138                               |
| Tetrachloroethylene                       | 127-18-4                       | 166         | 0.400         | 2.72         | ND          | ND         |           | 2        | WG1144138                               |
| Tetrahydrofuran                           | 109-99-9                       | 72.10       | 0.400         | 1.18         | ND          | . ND       |           | 2        | WG1144138                               |
| Toluene                                   | 108-88-3                       | 92.10       | 0.400         | 1.51         | ND          | ND         |           | 2        | WG1144138                               |
| 1,2,4-Trichlorobenzene                    | 120-82-1                       | 181         | 1.26          | 9.33         | ND          | ND         |           | 2        | WG1144138                               |



















1807A94-013A RYV0809R-20180719-AE

## SAMPLE RESULTS - 13

ONE LAB, NATIONWIDE.

Collected date/time: 07/19/18 11:09

| The state of the s | CAS #     | Mol. Wt. | RDL1     | RDL2  | Result | Result | Qualifier | Dilution | Batch     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|----------|----------|-------|--------|--------|-----------|----------|-----------|
| Analyte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           |          | ppbv     | ug/m3 | ppbv   | ug/m3  | <u> </u>  |          |           |
| 1,1,1-Trichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 71-55-6   | 133      | 0.400    | 2.18  | ND     | ND     |           | 2        | WG1144138 |
| ,1,2-Trichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 79-00-5   | 133      | 0.400    | 2.18  | ND     | ND     |           | 2        | WG1144138 |
| Frichloroethylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 79-01-6   | 131      | 0.400    | 2.14  | ND     | ND     |           | 2        | WG1144138 |
| ,2,4-Trimethylbenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 95-63-6   | 120      | 0.400    | 1.96  | NO     | ND     |           | 2        | WG1144138 |
| ,3,5-Trimethylbenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 108-67-8  | 120      | 0.400    | 1.96  | ND     | ND     |           | 2        | WG1144138 |
| 2,2,4-Trimethylpentane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 540-84-1  | 114.22   | 0.400    | 1.87  | ND     | ND     |           | 2        | WG1144138 |
| /inyl chloride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 75-01-4   | 62.50    | 0.400    | 1.02  | ND     | ND     |           | 2        | WG1144138 |
| /inyl Bromide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 593-60-2  | 106.95   | 0.400    | 1.75  | ND     | ND     |           | 2        | WG1144138 |
| /inyl acetate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 108-05-4  | 86.10    | 0.400    | 1.41  | ND     | ND     |           | 2        | WG1144138 |
| n&p-Xylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1330-20-7 | 106      | 0.800    | 3.47  | ND     | ND     |           | 2        | WG1144138 |
| -Xylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 95-47-6   | 106      | 0.400    | 1.73  | ND     | ND     |           | 2        | WG1144138 |
| PH (GC/MS) Low Fraction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8006-61-9 | 101      | 100      | 413   | ND     | ND     |           | 2        | WG1144138 |
| (S) 1,4-Bromofluorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 460-00-4  | 175      | 60.0-140 |       | 95.5   |        |           |          | WG1144138 |



















1807A94-014A RYSV0810R-20180719-AE Collected date/time: 07/19/18 11:14

## SAMPLE RESULTS - 14

ONE LAB. NATIONWIDE.

L10115

| A                              | CAS#                | Mol. Wt.     | RDL1          | RDL2         | Docule.          | Docub           | Oualifias | Dibution | Datch                         |
|--------------------------------|---------------------|--------------|---------------|--------------|------------------|-----------------|-----------|----------|-------------------------------|
| Analyte                        | CA3#                | MINI'S AMI'  | ppbv          | ug/m3        | Result<br>ppbv   | Result<br>ug/m3 | Qualifier | Dilution | <u>Batch</u>                  |
| Acetone                        | 67-64-1             | 58.10        | 2.50          | 5.94         | 8.44             | 20.1            |           | 2        | WG1144138                     |
| Allyl chloride                 | 107-05-1            | 76.53        | 0.400         | 1.25         | ND               | ND              |           | 2        |                               |
| Benzene                        | 71-43-2             | 78.10        | 0.400         | 1.28         | ND               | ND<br>ND        |           | 2        | <u>WG1144138</u><br>WG1144138 |
| Benzyl Chloride                | 100-44-7            | 127          | 0.400         | 2.08         | ND               | ND              |           | 2        |                               |
| 8romodichloromethane           | 75-27-4             | 164          | 0.400         | 2.68         | ND               | ND<br>ND        |           | 2        | <u>WG1144138</u><br>WG1144138 |
| Bromoform                      | 75-25-2             | 253          | 1.20          | 12.4         | ND               | ND<br>ND        |           | 2        | WG1144138                     |
| Bromomethane                   | 74-83-9             | 94.90        | 0.400         | 1.55         | ND               | ND<br>ND        |           | 2        | WG1144138                     |
| 1,3-Butadiene                  | 106-99-0            | 54.10        | 4.00          | 8.85         | ND               | ND              |           | 2        | WG1144138                     |
| Carbon disulfide               | 75-15-0             | 76.10        | 0.400         | 1.24         | ND               | ND              |           | 2        | WG1144138                     |
| Carbon tetrachloride           | 56-23-5             | 154          | 0.400         | 2.52         | 7.23             | 45.5            |           | 2        | WG1144138                     |
| Chlorobenzene                  | 108-90-7            | 113          | 0.400         | 1.85         | ND               | ND              |           | 2        | WG1I44138                     |
| Chloroethane                   | 75-00-3             | 64.50        | 0.400         | 1.06         | ND               | ND              |           | 2        | WG1144138                     |
| Chloroform                     | 67-66-3             | 119          | 0.400         | 1.95         | ND               | ND ND           |           | 2        | WG1144138                     |
| Chloromethane                  | 74-87-3             | 50.50        | 0.400         | 0.826        | ND               | ND              |           | 2        | WG1144133                     |
| 2-Chlorotoluene                | 95-49-8             | 126          | 0.400         | 2.06         | ND               | ND              |           | 2        | WG1144138                     |
| Cyclohexane                    | 110-82-7            | 84.20        | 0.400         | 1.38         | ND               | ND              |           | 2        | WG1144138                     |
| Dibromochloromethane           | 124-48-1            | 208          | 0.400         | 3.40         | ND               | ND              |           | 2        | WG1144138                     |
| 1,2-Dibromoethane              | 106-93-4            | 188          | 0.400         | 3.08         | ND               | ND              |           | 2        | WG1144138                     |
| 1,2-Dichlorobenzene            | 95-50-1             | 147          | 0.400         | 2.40         | ND               | ND              |           | 2        | WG1144138                     |
| 1,3-Dichlorobenzene            | 541-73-1            | 147          | 0.400         | 2.40         | ND               | ND              |           | 2        | WG1144138                     |
| 1,4-Dichlorobenzene            | 106-46-7            | 147          | 0.400         | 2.40         | ND               | ND              |           | 2        | WG1144138                     |
| 1,2-Dichloroethane             | 107-06-2            | 99           | 0.400         | 1.62         | ND               | ND              |           | 2        | WG1144138                     |
| 1,1-Dichloroethane             | 75-34-3             | 98           | 0.400         | 1.60         | ND<br>ND         | ND              |           | 2        |                               |
| 1,1-Dichloroethene             | 75-35-4             | 96.90        | 0.400         | 1.59         | ND<br>ND         | ND              |           | 2        | WG1144138                     |
| cis-1,2-Dichloroethene         | 156-59-2            | 96.90        | 0.400         | 1.59         | 1.12             | 4.43            |           | 2        | WG1144138                     |
| trans-1,2-Dichloroethene       | 156-60-5            | 96.90        | 0.400         | 1.59         | ND               | 4.43<br>ND      |           | 2        | WG1144138                     |
| 1,2-Dichloropropane            | 78-87-5             | 113          | 0.400         | 1.85         | ND               | ND              |           | 2        | WG1144138                     |
| cis-1,3-Dichloropropene        | 10061-01-5          | 111          | 0.400         | 1.82         | ND               | ND              |           | 2        | WG1144138                     |
| trans-1,3-Dichloropropene      | 10061-01-5          | 111          | 0.400         | 1.82         | ND               | ND              |           | 2        | WG1144138                     |
| 1,4-Dioxane                    | 123-91-1            | 88.10        | 0.400         | 1,44         | ND               | ND              |           | 2        | WG1144138                     |
| Ethanol                        | 64-17-5             | 46.10        | 1.26          | 2.38         | 12.5             | 23.6            |           | 2        | WG1144138<br>WG1144138        |
| Ethylbenzene                   | 100-41-4            | 106          | 0.400         | 1.73         | ND               | ND              |           | 2        | WG1144138                     |
| 4-Ethyltoluene                 | 622-96-8            | 120          | 0.400         | 1.96         | ND               | ND              |           | 2        | WG1144138                     |
| Trichlorofluoromethane         | 75-69-4             | 137.40       | 0.400         | 2.25         | ND               | ND              |           | 2        | WG1144138                     |
| Dichlorodifluoromethane        | 75-71-8             | 120.92       | 0.400         | 1.98         | ND               | ND              |           | 2        | WG1144138                     |
| 1,1,2-Trichlorotrifluoroethane | 76-13-1             | 187.40       | 0.400         | 3.07         | ND               | ND              |           | 2        | WG1144138                     |
| 1,2-Dichlorotetrafluoroethane  | 76-14-2             | 171          | 0.400         | 2.80         | ND<br>ND         | ND              |           | 2        | WG1144138                     |
| Heptane                        | 142-82-5            | 100          | 0.400         | 1.64         | ND               | ND              |           | 2        | WG1144138                     |
| Hexachloro-1,3-butadiene       | 87-68-3             | 261          | 1.26          | 13.5         | ND               | ND              |           | 2        | WG1144138                     |
| n-Hexane                       | 110-54-3            | 86.20        | 0.400         | 1,41         | ND               | ND              |           | 2        | WG1144138                     |
| Isopropylbenzene               | 98-82-8             | 120.20       | 0.400         | 1.97         | ND               | ND              |           | 2        | WG1144138                     |
| Methylene Chloride             | 75-09-2             | 84.90        | 0.400         | 1.39         | 0.522            | 1.81            |           | 2        | WG1144138                     |
| Methyl Butyl Ketone            | 591-78-6            | 100          | 2.50          | 10.2         | ND               | ND              |           | 2        | WG1144138                     |
| 2-Butanone (MEK)               | 78-93-3             | 72.10        | 2.50          | 7.37         | ND               | ND              |           | 2        | WG1144138                     |
| 4-Methyl-2-pentanone (MIBK)    | 108-10-1            | 100.10       | 2.50          | 10.2         | ND               | ND<br>ND        |           | 2        |                               |
| Methyl methacrylate            | 80-62-6             | 100.12       | 0.400         | 1.64         | ND               | ND<br>ND        |           | 2        | WG1144138                     |
| MTBE                           | 1634-04-4           |              |               |              |                  |                 |           |          | WG1144138                     |
| Naphthalene                    | 91-20-3             | 88.10<br>128 | 0.400<br>1.26 | 1,44<br>6.60 | ND<br>3.41       | ND<br>17.9      |           | 2        | WG1144138                     |
| 2-Propanol                     | 67-63-0             | 60.10        | 2.50          | 6.15         | 5.47             |                 |           | 2        | WG1144138                     |
| Propene                        | 115-07-1            | 42.10        | 0.800         | 1.38         |                  | 13.4<br>ND      |           |          | WG1144138                     |
| Styrene                        | 100-42-5            | 104          | 0.400         | 1.70         | <b>N</b> D<br>ND | ND<br>ND        |           | 2<br>2   | WG1144138                     |
| 1,1,2,2-Tetrachloroethane      | 79-34-5             | 168          | 0.400         | 2.75         |                  |                 |           |          | WG1144138                     |
| Tetrachloroethylene            | 79-34-5<br>127-18-4 | 166          | 0.400         | 2.75         | ND<br>ND         | ND<br>ND        |           | 2        | W61144138                     |
| Tetrahydrofuran                | 109-99-9            | 72.10        | 0.400         | 1.18         | ND<br>ND         | ND<br>ND        |           |          | WG1144138                     |
| Toluene                        | 108-88-3            | 92.10        | 0.400         | 1.18         |                  | ND<br>Se e      |           | 2        | WG1144138                     |
| 1,2,4-Trichforobenzene         | 120-82-1            | 181          | 1.26          |              | 6.76<br>ND       | 25.5<br>ND      |           | 2        | WG1144138                     |
| "" - LUCHIOLOGERSERS           | 12U-02-1            | 101          | 1.20          | 9.33         | ND               | NU              |           | 2        | WG1144138                     |



















1807A94-014A RYSV0810R-20180719-AE

Collected date/time: 07/19/18 11:14

SAMPLE RESULTS - 14

Volatile Organic Compounds (MS) by Method TO-15

|                            | CAS #     | Mol. Wt. | RDL1     | RDL2  | Result | Result | Qualifier | Dilution | <u>Batch</u> |
|----------------------------|-----------|----------|----------|-------|--------|--------|-----------|----------|--------------|
| Analyte                    |           |          | ppbv     | ug/m3 | ppbv   | ug/m3  |           |          |              |
| 1,1,1-Trichloroethane      | 71-55-6   | 133      | 0.400    | 2.18  | 3.11   | 16.9   |           | 2        | WG1144138    |
| 1,1,2-Trichloroethane      | 79-00-5   | 133      | 0.400    | 2.18  | ND     | ND     |           | 2        | WG1144133    |
| Trichloroethylene          | 79-01-6   | 131      | 0.400    | 2.14  | 8.03   | 43.0   |           | 2        | WG1144138    |
| 1,2,4-Trimethylbenzene     | 95-63-6   | 120      | 0.400    | 1.96  | 1.12   | 5.52   |           | 2        | WG1144138    |
| 1,3,5-Trimethylbenzene     | 108-67-8  | 120      | 0.400    | 1.96  | 0.736  | 3.61   |           | 2        | WG1144138    |
| 2,2,4-Trimethylpentane     | 540-84-1  | 114.22   | 0.400    | 1.87  | ND     | ND     |           | 2        | WG1144138    |
| Vinyl chloride             | 75-01-4   | 62.50    | 0.400    | 1.02  | ND     | ND     |           | 2        | WG1144138    |
| Vinyl Bromide              | 593-60-2  | 106.95   | 0.400    | 1.75  | ND     | ND     |           | 2        | WG1144138    |
| Vinyl acetate              | 108-05-4  | 86.10    | 0.400    | 1.41  | ND     | ND     |           | 2        | WG1144138    |
| m&p-Xylene                 | 1330-20-7 | 106      | 0.800    | 3.47  | ND     | ND ·   |           | 2        | WG1144138    |
| o-Xylene                   | 95-47-6   | 106      | 0.400    | 1.73  | ND     | ND     |           | 2        | WG1144138    |
| TPH (GC/MS) Low Fraction   | 8006-61-9 | 101      | 100      | 413   | 146    | 603    | <u>B</u>  | 2        | WG1144138    |
| (S) 1,4-Bromofluorobenzene | 460-00-4  | 175      | 60.0-140 |       | 100    |        | _         |          | WG1144138    |



ONE LAB, NATIONWIDE.















2

ss.

<u>ٿ</u>

| Ū |  |
|---|--|
|   |  |

|         |   | r~~ | 77. |
|---------|---|-----|-----|
|         |   |     |     |
| $\odot$ | 1 |     | <', |
|         |   |     |     |

| 1 |       |   | r |
|---|-------|---|---|
| ŧ |       | - | 4 |
| t | 200.0 |   | 1 |
|   |       |   | 1 |
|   |       | - | 1 |
|   |       |   | 1 |
|   |       |   | 1 |
|   |       |   |   |

| 7   |     |
|-----|-----|
| -   |     |
| 1   | S   |
| - 1 | 160 |

| ~ | 7      |
|---|--------|
| - | l #    |
| - | 1 . 1  |
| 1 | 1 76 1 |
| 1 | 1 03 1 |
| 1 | 160    |























|      | 2000000000 |
|------|------------|
|      | 3          |
|      | 1          |
| / D  | 1          |
| {!!} | 1 1/7      |
| ~    |            |

| Š | ိဂ္ဂ |
|---|------|
|   |      |





























ွိလိ

Volatile Organic Compounds (MS) by Method TO-15

WG1144023

Method Blank (MB)

| (MB) R3329090-3 07/27/7        | 07/27/18 09:41 |              |        |        |
|--------------------------------|----------------|--------------|--------|--------|
|                                | MB Result      | MB Qualifier | MB MDL | MB RDL |
| Analyte                        | Aqdd           |              | hddd   | hpbv   |
| Acetone                        | 0.274          | >!           | 0.0569 | 1.25   |
| Allyl Chloride                 | _              |              | 0.0546 | 0.200  |
| Benzene                        | <b>5</b>       |              | 0.0460 | 0.200  |
| Benzyl Chloride                | ņ              |              | 0.0598 | 0.200  |
| Bromodichloromethane           | n              |              | 0.0436 | 0.200  |
| Вготогот                       | <b>¬</b>       |              | 0.0786 | 0.600  |
| Bromomethane                   | <b>¬</b>       |              | 6090'0 | 0.200  |
| 1,3-Butadiene                  | n              |              | 0.0563 | 2.00   |
| Carbon disulfide               | <b>¬</b>       |              | 0.0544 | 0.200  |
| Carbon tetrachloride           | n              |              | 0.0585 | 0.200  |
| Chlorobenzene                  | n              |              | 0.0601 | 0.200  |
| Chloroethane                   | n              |              | 0.0489 | 0.200  |
| Chloroform                     | <sub>D</sub>   |              | 0.0574 | 0.200  |
| Chloromethane                  | ח              |              | 0.0544 | 0.200  |
| 2-Chlorotoluene                | _              |              | 0.0605 | 0.200  |
| Cyclohexane                    | J              |              | 0.0534 | 0.200  |
| Dibromochloromethane           | ⊃              |              | 0.0494 | 0.200  |
| 1,2-Dibromoethane              | J              |              | 0.0185 | 0.200  |
| 1,2-Dichlorobenzene            | ⊃              |              | 0.0603 | 0.200  |
| 1,3-Dichlorobenzene            | ם              |              | 0.0597 | 0.200  |
| 1,4-Dichlorobenzene            | ח              |              | 0.0557 | 0.200  |
| 1,2-Dichloroethane             | ∍              |              | 0.0616 | 0.200  |
| 1,1-Dichloroethane             | n              |              | 0.0514 | 0.200  |
| 1,1-Dichloroethene             | Ω              |              | 0.0490 | 0.200  |
| cis-1,2-Dichloroethene         | <b>-</b>       |              | 0.0389 | 0.200  |
| trans-1,2-Dichloroethene       | Ω              |              | 0.0464 | 0.200  |
| 1,2-Dichloropropane            | <b>¬</b>       |              | 0.0599 | 0.200  |
| cis-1,3-Dichloropropene        | n              |              | 0.0588 | 0.200  |
| trans-1,3-Dichloropropene      | n              |              | 0.0435 | 0.200  |
| 1,4-Dioxane                    | n              |              | 0.0554 | 0.200  |
| Ethylbenzene                   | n              |              | 9050.0 | 0.200  |
| 4-Ethyltoluene                 | n              |              | 0.0666 | 0.200  |
| Trichlorofluoromethane         | Ω              |              | 0.0673 | 0.200  |
| Dichlorodifluoromethane        | ⊃              |              | 0.0601 | 0.200  |
| 1.1,2-Trichlorotrifluoroethane | n              |              | 0.0687 | 0.200  |
| 1,2-Dichlorotetrafluoroethane  | D              |              | 0.0458 | 0.200  |
| Heptane                        | n              |              | 0.0626 | 0.200  |
| Hexachloro-1,3-butadiene       | ⊃              |              | 0.0656 | 0.630  |
| п-Нехале                       | n              |              | 0.0457 | 0.200  |

DATE/TIME: 07/30/18 17:19

SDG: L1011512

PROJECT:

0.200

0.0563

 $\supset$ 

Isopropylbenzene

11011512-01,02,03,04.05,06,07,08

SS

5

| 面     |
|-------|
| <br>٠ |

್ಧಾ

્રું,

WG1144023

| ) |  |  |
|---|--|--|
| • |  |  |
| • |  |  |
| , |  |  |
|   |  |  |
| 1 |  |  |
|   |  |  |
| 2 |  |  |
|   |  |  |
| : |  |  |
|   |  |  |
|   |  |  |
|   |  |  |
|   |  |  |
| , |  |  |
| • |  |  |
|   |  |  |
| • |  |  |
| 1 |  |  |
|   |  |  |
|   |  |  |
|   |  |  |
|   |  |  |
|   |  |  |
|   |  |  |

| 0-15                                            |  |
|-------------------------------------------------|--|
| Method 1                                        |  |
| ð                                               |  |
| ΩS                                              |  |
| Volatile Organic Compounds (MS) by Method TO-15 |  |
| Organ                                           |  |
| Volatile                                        |  |
|                                                 |  |

# Method Blank (MB)

| ä.       | l |
|----------|---|
| 2        | ١ |
| _        | ı |
| <u> </u> | 4 |
| ō        | 1 |
| 5        |   |
| 3        | 1 |
| >        | 1 |
| =        | 1 |
| )        |   |
| -        | • |
|          |   |
|          |   |

| MB MDL                                      |                                | MB RDL         |
|---------------------------------------------|--------------------------------|----------------|
| _                                           |                                | _              |
| 쭕                                           |                                | MB Qualifier N |
| (MB) R3329090-3 07/27/18 09:41<br>MB Result | (MB) R3329090-3 07/27/18 09:41 | MB Result      |

|                            | MB Result | MB Qualifier | MB MDL |
|----------------------------|-----------|--------------|--------|
| nalyte                     | Aqdd      |              | vadd   |
| lethylene Chloride         | 5         |              | 0.0465 |
| lethyl Butyl Ketone        | <b>n</b>  |              | 0.0682 |
| -Butanone (MEK)            | n         |              | 0.0493 |
| -Methyl-2-pentanone (MIBK) | _         |              | 0.0650 |
| lethyl Methacrylate        | ⊐         |              | 0.0773 |

|                       | *nda |
|-----------------------|------|
| ene Chloride          | ח    |
| Butyl Ketone          | n    |
| ione (MEK)            | n    |
| /I-2-pentanone (MIBK) | _    |
| Methacrylate          | ⊐    |
|                       |      |

0.200 0.200 0.630

0.0505

0.154













0.200 0.200 0.200 0.200 0.200

0.400

0.0932 0.0465 0.0576

1.25

0.0882

0.200 0.200 0.200 0.200 0.200 0.200

0.0665 0.0287 0.0545 0.0483

 $\supset$ 

1,1.2-Trichloroethane

1,1,1-Trichloroethane

 $\supset$ 

0.630

0.148

 $\supset$  $\supset$ 

1,2,4-Trichlorobenzene

0.0508 0.0499

0.0497

 $\supset$  $\supset$  $\supset$ 


1,1,2,2-Tetrachloroethane

Styrene

Tetrachloroethylene

Tetrahydrofuran

Toluene





























| ~~~ | <br>    | -    |
|-----|---------|------|
|     | - 1     | ì    |
|     |         | 1 (  |
|     | <br>- 1 | 1 11 |
|     |         |      |

| macomy |   |
|--------|---|
|        | 9 |

97/30/18 17:19 DATE/TIME:

L1011512 SDG

PROJECT:

Hall Environmental Analysis Laboratory

ACCOUNT:

RPD Limits

8

LCSD Qualifier

LCS Qualifier

Rec. Limits

LCSD Rec.

LCS Rec.

LCSD Result

nqdd 3.59 4.55

52.0-158 54.0-155 69.0-143 70.0-130

95.0

95.6 121 128 121

120

4.55 4.81

1,2-Dichlorotetrafluoroethane

Dichlorodifluoromethane

Propene

Analyte Ethanol

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3329090-1 07/27/18 08:11 • (LCSD) R3329090-2 07/27/18 08:56

Spike Amount LCS Result yddd 3.56 4.81 4.51

3.75 3.75 3.75

60.0-140

98.3

(S) 1,4-Bromofluorobenzene

TPH (GC/MS) Low Fraction

0.200 0.630

0.0633 0.0832

0.0946

0.200 0.200 0.200 0.400

0.0457 0.0727

0.0639

0.0456

2,2,4-Trimethylpentane

Vinyl Bromide Vinyl chłoride

Vinyl acetate m&p-Xylene

o-Xyiene

Ethanol

1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene

Trichloroethylene

0.0631

25 25 25 25

0.187

11

1.03

0.683

|   | erency. | ,   | _ |
|---|---------|-----|---|
| İ | - 1     | 1   |   |
|   | ÷       | 1 , | ۳ |

| 7 | F   | _ |
|---|-----|---|
| 1 | 1 1 | ı |







| ſ | <u>ှ</u> | ٦ |
|---|----------|---|

| 1 | 000 |
|---|-----|

|    | F |
|----|---|
| 75 | ] |

| 1   | r   | •••• |
|-----|-----|------|
| - 1 | 1   | 1    |
| - 1 | 1 5 | i    |

| ٦ | F   | 1 |
|---|-----|---|
| 1 | -77 | 1 |

| ****** | <b>~</b> [ | r |   |
|--------|------------|---|---|
| st.    | 1          | • | Ü |

|    | 7 |
|----|---|
| SC |   |

| ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |     |
|-----------------------------------------|-----|
| - 1                                     | 200 |

| ŗ |    |   |  |
|---|----|---|--|
| ł | () | 1 |  |
| ŧ | Ø. | 1 |  |
| ŧ |    | 1 |  |

| Ų | 7 |  |
|---|---|--|









































Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD) (LCS) R3329090-1 07/27/18 08:11 • (LCSD) R3329090-2 07/27/18 08:56

Volatile Organic Compounds (MS) by Method TO-15

WG1144023

| ppb/         %         %         %           4.64         123         124         70.0-130           4.50         119         120         70.0-130           4.41         110         113         70.0-130           4.42         118         70.0-130           4.48         118         70.0-130           4.48         118         70.0-130           4.49         118         70.0-130           4.40         117         70.0-130           4.39         116         117         70.0-130           4.39         115         117         70.0-130           4.39         115         117         70.0-130           4.39         115         117         70.0-130           4.39         115         117         70.0-130           4.39         115         117         70.0-130           4.39         115         117         70.0-130           4.39         115         117         70.0-130           4.39         115         117         70.0-130           4.39         115         117         70.0-130           4.39         116         170         70.0 |                |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| 123                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | %              |
| 13 120 120 123 138 138 139 139 139 139 139 139 139 139 139 139                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 70.0-130 0.963 |
| 17 123<br>18 18 18 18 18 18 18 19 19 19 19 19 19 19 19 19 19 19 19 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 70.0-130 0.845 |
| 17 123<br>188 188 189 199 199 199 199 199 199 199                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7.04           |
| 118 118 118 118 118 119 119 119 119 119                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 70.0-130 5.13  |
| 119 118 118 118 119 119 119 119 119 119                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 70.0-130 0.358 |
| 118 118 119 119 119 119 117 117 117 118 118 119 119 119 119 119 119 119 119                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 70.0-130 0.118 |
| 118 118 118 118 119 119 119 119 119 119                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                |
| 116 99.9 115 117 117 118 118 119 119 119 119 119 119 119 119                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 70.0-130 0.402 |
| 99.9 115 117 118 119 119 119 119 119 119 119 119 119                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                |
| 115 117 118 119 119 119 119 119 119 119 119 119                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0-130        |
| 117 117 117 117 117 117 117 117 117 117                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                |
| 11.2 11.3 11.3 11.5 11.5 11.5 11.5 11.5 11.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |
| 116 116 117 117 117 117 117 117 117 117                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                |
| 115 123 123 124 175 175 175 175 176 176 177 177 177 177 177 177 177 177                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                |
| 113 173 173 173 173 175 175 175 175 175 175 175 175 175 175                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
| 123 121 115 116 115 116 116 117 117 117 117 117 117 117 117                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
| 117 117 117 117 117 117 117 117 117 117                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 70.0-130       |
| 115 116 115 116 116 117 117 117 117 117 117 117 117                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 70.0-130 0.419 |
| 115 116 117 117 117 117 117 117 117 117 117                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
| 115 116 116 117 117 117 117 117 117 118 119 119 119 119 119 119 119 119 119                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
| 116 117 118 119 119 119 119 119 119 119 119 119                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                |
| 116 117 118 119 119 119 119 119 119 119 119 119                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                |
| 115 117 117 118 119 119 119 119 119 119 119 119 119                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                |
| 115 117 119 119 119 119 119 119 119 119 119                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
| 117 119 114 116 114 116 113 117 117 119 117 119 117 119 117 119 117 119 119 119 119 119 119 119 119 119 119 119 119                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                |
| 114 116 114 116 113 117 117 119 119 1122 122 118 120 119 119 119 119 121 119 122 124 119 119                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |
| 114 116 113 117 119 119 112 120 118 120 119 121 118 120 118 120 118 120 125 124 119 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                |
| 113 117 119 119 119 120 120 120 120 120 120 120 120 120 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
| 117 119 119 120 122 122 118 120 117 119 118 120 125 127 119 119 119 119 119                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
| 119 120<br>122 122<br>118 120<br>117 119<br>118 120<br>125 127<br>119 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 70.0-130 0.967 |
| 122 122<br>118 120<br>119 121<br>117 119<br>118 120<br>125 127<br>119 122                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 70.0-130       |
| 118 120<br>119 121<br>118 120<br>125 127<br>129 124                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 70.0-142 0.250 |
| 119 121<br>117 119<br>118 120<br>125 127<br>119 122                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 70.0-130 2.03  |
| 117 119<br>118 120<br>125 127<br>122 124<br>119 122                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 70.0-130 1.78  |
| 118 120<br>125 127<br>122 124<br>119 122                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                |
| 125 127<br>122 124<br>119 122                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |
| 122 124<br>119 122                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0-150        |
| 119 122                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                |
| 4.51 118 120 70.0-130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 70.0-130       |

DATE/TIME: 07/30/18 17:19

SDG: L1011512

**PROJECT**:

Hall Environmental Analysis Laboratory ACCOUNT:

ိဂ္ဂ ဂ

Ū

<1<u></u>

Sc

Cn

ത്

Ss

 $\stackrel{\smile}{\vdash}$ 

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

Volatile Organic Compounds (MS) by Method TO-15

WG1144023

| (LCS) R3329090-1 07/27/18 08:11 • (LCSD) R3329090-2 07/27/18 08:56 | 7/18 08:11 • (LCSI | D) R3329090-2 | 07/27/18 08:5 | 9        |           |             |               |                |        |            |
|--------------------------------------------------------------------|--------------------|---------------|---------------|----------|-----------|-------------|---------------|----------------|--------|------------|
|                                                                    | Spike Amount       | LCS Result    | LCSD Result   | LCS Rec. | LCSD Rec. | Rec. Limits | LCS Qualifier | LCSD Qualifier | RPD    | RPD Limits |
| Analyte                                                            | ppbv               | yddd          | hpbv          | %        | 96        | 8%          |               |                | 8%     | 69         |
| Ethylbenzene                                                       | 3.75               | 4.45          | 4.51          | 119      | 120       | 70.0-130    |               |                | 1.29   | 25         |
| m&p-Xylene                                                         | 7.50               | 8.84          | 8.98          | 118      | 120       | 70.0-130    |               |                | 1.59   | 25         |
| o-Xylene                                                           | 3.75               | 4.59          | 4.65          | 122      | 124       | 70.0-130    |               |                | 1.42   | 25         |
| Styrene                                                            | 3.75               | 4.85          | 4.89          | 129      | 130       | 70.0-130    |               |                | 0.735  | 25         |
| Bromoform                                                          | 3.75               | 4.79          | 4.85          | 128      | 129       | 70.0-130    |               |                | 1.23   | 25         |
| 1,1,2,2-Tetrachloroethane                                          | 3.75               | 4.58          | 4.60          | 122      | 123       | 70.0-130    |               |                | 0.531  | 25         |
| 4-Ethyltoluene                                                     | 3.75               | 4.62          | 4.71          | 123      | 126       | 70.0-130    |               |                | 1.90   | 25         |
| 1,3,5-Trimethylbenzene                                             | 3.75               | 4.77          | 4.84          | 127      | 129       | 70.0-130    |               |                | 1.46   | 25         |
| 1,2,4-Trimethylbenzene                                             | 3.75               | 4.61          | 4.66          | 123      | 124       | 70.0-130    |               |                | 1.19   | 25         |
| 1,3-Dichlorobenzene                                                | 3.75               | 4.73          | 4.81          | 126      | 128       | 70.0-130    |               |                | 1.67   | 25         |
| 1,4-Dichlorobenzene                                                | 3.75               | 4.90          | 4.97          | 131      | 133       | 70.0-130    | 1             | 4              | 1.49   | 25         |
| Benzyl Chloride                                                    | 3.75               | 5.00          | 5.05          | 133      | 135       | 70.0-144    | 1             | I              | 1.18   | 25         |
| 1,2-Dichlorobenzene                                                | 3.75               | 4.64          | 4.74          | 124      | 126       | 70.0-130    |               |                | 2.07   | 25         |
| 1,2,4-Trichlorobenzene                                             | 3.75               | 4.68          | 4.77          | 125      | 127       | 70.0-155    |               |                | 1.95   | 25         |
| Hexachloro-1,3-butadiene                                           | 3.75               | 4.72          | 4.80          | 126      | 128       | 70.0-145    |               |                | 1.80   | 25         |
| Naphthalene                                                        | 3.75               | 4.75          | 4.88          | 127      | 130       | 70.0-155    |               |                | 2.68   | 25         |
| TPH (GC/MS) Low Fraction                                           | 176                | 509           | 212           | 119      | 120       | 70.0-130    |               |                | 1.26   | 25         |
| Allyl Chloride                                                     | 3.75               | 4.44          | 4.47          | 118      | 119       | 70.0-130    |               |                | 0.702  | 25         |
| 2-Chlorotoluene                                                    | 3.75               | 4.74          | 4.80          | 127      | 128       | 70.0-130    |               |                | 1.15   | 25         |
| Methyl Methacrylate                                                | 3.75               | 4.51          | 4.55          | 120      | 121       | 70.0-130    |               |                | 0.842  | 25         |
| Tetrahydrofuran                                                    | 3.75               | 4.30          | 4.34          | 115      | 116       | 70.0-140    |               |                | 0.819  | 25         |
| 2,2,4-Trimethylpentane                                             | 3.75               | 4.43          | 4.43          | 118      | 118       | 70.0-130    |               |                | 0.0921 | 25         |
| Vinyl Bromide                                                      | 3.75               | 4.39          | 4.43          | 117      | 118       | 70.0-130    |               |                | 0.811  | 25         |
| Isopropylbenzene                                                   | 3.75               | 4,47          | 4.54          | 119      | 121       | 70.0-130    |               |                | 1.54   | 25         |
| (S) 1,4-Bromofluorobenzene                                         |                    |               |               | 102      | 102       | 60.0-140    |               |                |        |            |
|                                                                    |                    |               |               |          |           |             |               |                |        |            |

္မွဳ

တို

**(**[

Ss

U jui

<sup>\$</sup>D

S

Hall Environmental Analysis Laboratory ACCOUNT:

DATE/TIME: 07/30/18 17:19

PROJECT:

ហ

SS

<u>ب</u> سنا

û

ို့ပ

Ū

, KI

Sc

Method Blank (MB)

Volatile Organic Compounds (MS) by Method TO-15

WG1144138

| Analyse         John         MB Not         MB RDL           Analyse         John         MB Duelling         MB NDL         MB RDL           Acretore         polys         polys         polys         polys           Analy Chleride         U         0.0546         0.205         polys           Bernyl Chleride         U         0.0568         0.200         0.000           Bernyl Chleride         U         0.0458         0.200         0.000           Bromodichloromethane         U         0.0458         0.200         0.000           Chlorocheraene         U         0.0458         0.200         0.000           Chlorocheraene         U         0.0563         0.200         0.000           Chlorocheraene         U         0.0564         0.200         0.000           U.2.Deltrocheraene         U         0.0564         0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.00                           | 5.0         |              |        |        |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|-------------|--------------|--------|--------|
| pobby         ppbby           ride         U         0.0569           ride         U         0.0569           Inlocomethane         U         0.0598           Inlocomethane         U         0.0598           Inlocomethane         U         0.0563           rene         U         0.0563           suffide         U         0.0563           rackloride         U         0.0563           rackloride         U         0.0563           m         U         0.0563           me         U         0.0563           robenzaene         U         0.0564           coethane         U         0.0564           coethane         U         0.0564           ne         U         0.0566           ne         U         0.0566                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                | MB Result   | MB Qualifier | MB MDL | MB RDL |
| u         0.0569           ride         u         0.0546           loride         u         0.0546           hloromethane         u         0.0450           m         u         0.0436           m         u         0.0436           m         u         0.0436           thane         u         0.0633           rene         u         0.0633           rene         u         0.0544           nrachloride         u         0.0534           nrachloride         u         0.0534           nne         u         0.0534           nochtane         u         0.0534                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Analyte                        | nqdd        |              | nqdd   | Addq   |
| U 0.0546 U 0.0460 U 0.0460 U 0.0436 U 0.0538 U 0.0534 U 0.0538 U 0.0537 U 0.0539                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Acetone                        | ⊃           |              | 0.0569 | 1,25   |
| 0.0460 0.0588 0.00436 0.00436 0.00436 0.00436 0.00544 0.00544 0.00544 0.00544 0.00544 0.00544 0.00544 0.00544 0.00544 0.00544 0.00544 0.00544 0.00544 0.00544 0.00544 0.00544 0.00544 0.00544 0.00544 0.00544 0.00544 0.00544 0.00544 0.00544 0.00544 0.00544 0.00544 0.00544 0.00544 0.00544 0.00544 0.00544 0.00544 0.00544 0.00544 0.00544 0.00544 0.00544 0.00544 0.00544 0.00544 0.00544 0.00544 0.00544 0.00544 0.00544 0.00544 0.00544 0.00544 0.00544 0.00544 0.00544 0.00544 0.00544 0.00544 0.00546 0.00544 0.00546 0.00544 0.00546                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Allyi Chloride                 | n           |              | 0.0546 | 0.200  |
| 1 0.0598 1 0 0.0436 1 0 0.0436 1 0 0.0436 1 0 0.0544 1 0 0.0544 1 0 0.0544 1 0 0.0544 1 0 0.0544 1 0 0.0544 1 0 0.0544 1 0 0.0544 1 0 0.0544 1 0 0.0544 1 0 0.0544 1 0 0.0544 1 0 0.0544 1 0 0.0544 1 0 0.0544 1 0 0.0544 1 0 0.0544 1 0 0.0544 1 0 0.0544 1 0 0.0544 1 0 0.0544 1 0 0.0544 1 0 0.0544 1 0 0.0544 1 0 0.0544 1 0 0.0544 1 0 0.0544 1 0 0.0544 1 0 0.0544 1 0 0.0544 1 0 0.0544 1 0 0.0544 1 0 0.0554 1 0 0.0554 1 0 0.0554 1 0 0.0554 1 0 0.0554 1 0 0.0554 1 0 0.0554 1 0 0.0554 1 0 0.0554 1 0 0.0554 1 0 0.0554 1 0 0.0554 1 0 0.0554 1 0 0.0554 1 0 0.0554 1 0 0.0554 1 0 0.0554 1 0 0.0554 1 0 0.0554 1 0 0.0554 1 0 0.0554 1 0 0.0554 1 0 0.0554 1 0 0.0554 1 0 0.0554 1 0 0.0554 1 0 0.0554 1 0 0.0554 1 0 0.0554 1 0 0.0554 1 0 0.0554 1 0 0.0554 1 0 0.0554 1 0 0.0554 1 0 0.0554 1 0 0.0554 1 0 0.0554 1 0 0.0554 1 0 0.0554 1 0 0.0554 1 0 0.0554 1 0 0.0554 1 0 0.0554 1 0 0.0554 1 0 0.0554 1 0 0.0554 1 0 0.0554 1 0 0.0554 1 0 0.0554 1 0 0.0554 1 0 0.0554 1 0 0.0554 1 0 0.0554 1 0 0.0554 1 0 0.0554 1 0 0.0554 1 0 0.0554 1 0 0.0554 1 0 0.0554 1 0 0.0554 1 0 0.0554 1 0 0.0554 1 0 0.0554 1 0 0.0554 1 0 0.0554 1 0 0.0554 1 0 0.0554 1 0 0.0554 1 0 0.0554 1 0 0.0554 1 0 0.0554 1 0 0.0554 1 0 0.0554 1 0 0.0554 1 0 0.0554 1 0 0.0554 1 0 0.0554 1 0 0.0554 1 0 0.0554 1 0 0.0554 1 0 0.0554 1 0 0.0554 1 0 0.0554 1 0 0.0554 1 0 0.0554 1 0 0.0554 1 0 0.0554 1 0 0.0554 1 0 0.0554 1 0 0.0554 1 0 0.0554 1 0 0.0554 1 0 0.0554 1 0 0.0554 1 0 0.0554 1 0 0.0554 1 0 0.0554 1 0 0.0554 1 0 0.0554 1 0 0.0554 1 0 0.0554 1 0 0.0554 1 0 0.0554 1 0 0.0554 1 0 0.0554 1 0 0.0554 1 0 0.0554 1 0 0.0554 1 0 0.0554 1 0 0.0554 1 0 0.0554 1 0 0.0554 1 0 0.0554 1 0 0.0554 1 0 0.0554 1 0 0.0554 1 0 0.0554 1 0 0.0554 1 0 0.0554 1 0 0.0554 1 0 0.0554 1 0 0.0554 1 0 0.0554 1 0 0.0554 1 0 0.0554 1 0 0.0554 1 0 0.0554 1 0 0.0554 1 0 0.0554 1 0 0.0554 1 0 0.0554 1 0 0.0554 1 0 0.0554 1 0 0.0554 1 0 0.0554 1 0 0.0554 1 0 0.0554 1 0 0.0554 1 0 0.0554 1 0 0.0554 1 0 0.0554 1 0 0.0554 1 0 0.0554 1 0 0.0554 1 0 0.0554 1 0 0.0554 1 0 0.0554 1 0 0.0554 1 0 0.0554 1 0 0.0554 1 | Benzene                        | n           |              | 0.0460 | 0.200  |
| 0.0436 0.0786 0.0786 0.0009 0.0009 0.0009 0.00094 0.00094 0.00094 0.00094 0.000994 0.000994 0.000994 0.000994 0.000999 0.000994 0.000999 0.000999 0.000999 0.000999 0.000999 0.000999 0.0009999 0.0009999 0.0009999 0.00099999999                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Benzyl Chloride                | <b>-</b>    |              | 0.0598 | 0.200  |
| U 0.0544 U 0.0563 U 0.0563 U 0.0564 U 0.0564 U 0.0574 U 0.0578                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Bromodichloromethane           | _           |              | 0.0436 | 0.200  |
| 0.0009 0.0054 0.0054 0.0054 0.0054 0.0054 0.0054 0.0054 0.0054 0.0054 0.0054 0.0054 0.0054 0.0054 0.0054 0.0054 0.0054 0.0054 0.00554 0.00554 0.00554 0.00554 0.00554 0.00554 0.00554 0.00554 0.00554 0.00554 0.00554 0.00554 0.00554 0.00554 0.00554 0.00554 0.00554 0.00554 0.00554 0.00554 0.00554 0.00554 0.00556 0.00557 0.00556 0.00557 0.00556 0.00557 0.00556 0.00557 0.00556 0.00557 0.00556                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Bromoform                      | <b>¬</b>    |              | 0.0786 | 0.600  |
| 0.0563 0.0544 0.00601 0.00603 0.00603 0.00603 0.00603 0.00603 0.00603 0.00603 0.00603 0.00603 0.00603 0.00603 0.00603 0.00603 0.00603 0.00603 0.00603 0.00603 0.00603 0.00603 0.00603 0.00603 0.00603 0.00603 0.00603 0.00603 0.00603 0.00603 0.00603 0.00603 0.00603 0.00603 0.00603 0.00603 0.00603 0.00603 0.00603 0.00603 0.00603                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Bromomethane                   | ⊃           |              | 0.0609 | 0.200  |
| 0.0544 0.00635 0.00637 0.00638 0.00638 0.00638 0.00638 0.00638 0.00638 0.00638 0.00638 0.00638 0.00638 0.00638 0.00638 0.00638 0.00638 0.00638 0.00638 0.00638 0.00638 0.00638 0.00638 0.00638 0.00638 0.00638 0.00638 0.00638 0.00638 0.00638 0.00638 0.00638 0.00668 0.00668 0.00668 0.00668                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1,3-Butadiene                  | D           |              | 0.0563 | 2.00   |
| 0.0585 0.0601 0.00438 0.00534 0.00534 0.00534 0.00534 0.00534 0.00534 0.00534 0.00534 0.00534 0.00534 0.00534 0.00534 0.00534 0.00534 0.00534 0.00534 0.00534 0.00534 0.00534 0.00534 0.00534 0.00534 0.00538 0.00538 0.00538 0.00538 0.00538 0.00538 0.00538 0.00538 0.00538 0.00538 0.00538 0.00538 0.00538 0.00538 0.00538 0.00538 0.00538 0.00538 0.00538 0.00538 0.00538 0.00538 0.00538 0.00538 0.00538 0.00538 0.00538 0.00538 0.00538                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Carbon disulfide               | n           |              | 0.0544 | 0.200  |
| U 0.0534 U 0.0534 U 0.0534 U 0.0534 U 0.0534 U 0.0534 U 0.0537 U 0.0539                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Carbon tetrachloride           | ח           |              | 0.0585 | 0.200  |
| 0.0489 0.0574 0.00534 0.00534 0.00534 0.00534 0.00537 0.00537 0.00537 0.00538 0.00538 0.00538 0.00538 0.00538 0.00538 0.00538 0.00538 0.00538 0.00538 0.00538 0.00538 0.00538 0.00538 0.00538 0.00538 0.00538 0.00538 0.00538 0.00538 0.00538 0.00538 0.00538 0.00538 0.00538 0.00538 0.00538 0.00538 0.00538 0.00538 0.00538 0.00538 0.00538 0.00538 0.00538 0.00538                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Chlorobenzene                  | Ω           |              | 0.0601 | 0.200  |
| U 0.0534 U 0.0654 U 0.0654 U 0.06534 U 0.0634 U 0.0639 U 0.0659                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Chloroethane                   | n           |              | 0.0489 | 0.200  |
| U 0.0544 U 0.0654 U 0.0654 U 0.0634 U 0.0694 U 0.0695 U 0.0597 U 0.0597 U 0.0597 U 0.0598 U 0.0599                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Chloroform                     | D           |              | 0.0574 | 0.200  |
| U 0.0534 U 0.0494 U 0.0494 U 0.0498 U 0.0557 U 0.0557 U 0.0557 U 0.0558 U 0.0558 U 0.0558 U 0.0558 U 0.0566 U 0.0568                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Chloromethane                  | <b>_</b>    |              | 0.0544 | 0.200  |
| U 0.0494 U 0.0494 U 0.0494 U 0.0693 U 0.0697 U 0.0597 U 0.0594 U 0.0599                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2-Chlorotoluene                | n           |              | 0.0605 | 0.200  |
| U 0.0494 U 0.0185 U 0.0597 U 0.0597 U 0.0514 U 0.0514 U 0.0514 U 0.0539 U 0.0554 U 0.0566 U 0.05673                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Cyclohexane                    | Ω           |              | 0.0534 | 0.200  |
| U 0.0603<br>U 0.0557<br>U 0.0557<br>U 0.0557<br>U 0.0566<br>U 0.0588<br>U 0.0588                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Dibromochloromethane           | n           |              | 0.0494 | 0.200  |
| U 0.0503<br>U 0.0557<br>U 0.0514<br>U 0.0514<br>U 0.0514<br>U 0.0538<br>U 0.0588<br>U 0.0588<br>U 0.0584<br>U 0.0584<br>U 0.0584<br>U 0.0566<br>U 0.0566<br>U 0.05673<br>U 0.0566                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1,2-Dibromoethane              | ⊃           |              | 0.0185 | 0.200  |
| U 0.0557 U 0.0666 U 0.0744 U 0.0789                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1,2-Dichlorobenzene            | Ω           |              | 0.0603 | 0.200  |
| U 0.0557 U 0.0616 U 0.0514 U 0.0489 U 0.0489 U 0.0589 U 0.0589 U 0.0588 U 0.0554 U 0.0554 U 0.0566 U 0.0567 U 0.0567 U 0.0567 U 0.0567 U 0.0567 U 0.0567                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1,3-Dichlorobenzene            | n           |              | 0.0597 | 0.200  |
| U 0.0514<br>U 0.0490<br>U 0.0484<br>U 0.0589<br>U 0.0588<br>U 0.0588<br>U 0.0566<br>U 0.0574<br>U 0.0566<br>U 0.0573<br>U 0.0666<br>U 0.0673<br>U 0.0673<br>U 0.0673                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1,4-Dichlorobenzene            | n           |              | 0.0557 | 0.200  |
| U 0.0514<br>U 0.0389<br>U 0.0589<br>U 0.0588<br>U 0.0588<br>U 0.0566<br>U 0.0566<br>U 0.0566<br>U 0.0567<br>U 0.0673<br>U 0.0673<br>U 0.0673                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1,2-Dichloroethane             | ∍           |              | 0.0616 | 0.200  |
| U 0.0490 U 0.0389 U 0.0588 U 0.0588 U 0.0588 U 0.0554 U 0.0566 U 0.0566 U 0.0567 U 0.0667 U 0.0673 U 0.0673 U 0.0673 U 0.0673                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1,1-Dichloroethane             | n           |              | 0.0514 | 0.200  |
| U 0.0464 U 0.0589 U 0.0588 U 0.0588 U 0.0554 U 0.0554 U 0.0566 U 0.0667 U 0.0673 U 0.0673 u 0.0687 u 0.0687                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1,1-Dichloroethene             | <b>&gt;</b> |              | 0.0490 | 0.200  |
| U 0.0599 U 0.0598 U 0.0554 U 0.0554 U 0.0566 U 0.0607 U 0.0673 U 0.0673 u 0.0687 ane U 0.0626                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | cis-1,2-Dichloroethene         | ⊃           |              | 0.0389 | 0.200  |
| U 0.0599  U 0.0435  U 0.0554  U 0.0506  U 0.0673  U 0.0673  u 0.0687  ane U 0.0626                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | trans-1,2-Dichloroethene       | ⊐           |              | 0.0464 | 0.200  |
| U 0.0588 U 0.0554 U 0.0506 U 0.0607 U 0.0673 U 0.0673 u 0.0687 ane U 0.0626                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1,2-Dichloropropane            | ņ           |              | 0.0599 | 0.200  |
| . U 0.0554 U 0.0566 U 0.0666 U 0.0673 U 0.0673  ne U 0.0687  ane U 0.0626                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | cis-1,3-Dichloropropene        | ⊃           |              | 0.0588 | 0.200  |
| U 0.0554 U 0.0506 U 0.0673 U 0.0673 u 0.0687 ane U 0.0687 U 0.0687                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | trans-1,3-Dichloropropene      | n           |              | 0.0435 | 0.200  |
| U 0.0666 U 0.0673 U 0.0673 U 0.0673 u 0.0687 ane U 0.0687 U 0.0687                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1,4-Dioxane                    | n           |              | 0.0554 | 0.200  |
| U 0.0666 U 0.0673 U 0.0687  ne U 0.0458  nb U 0.0626                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Ethylbenzene                   | Ω           |              | 0.0506 | 0.200  |
| U 0.0673  U 0.0601  ne U 0.0458  ne U 0.0458                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4-Ethyltoluene                 | n           |              | 9990'0 | 0.200  |
| U 0.0601<br>Ine U 0.0687<br>ane U 0.0458<br>U 0.0626                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Trichlorofluoromethane         | Ð           |              | 0.0673 | 0.200  |
| U 0.0687<br>U 0.0458<br>U 0.0626                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Dichlorodifluoromethane        | n           |              | 0.0601 | 0.200  |
| rrotetrafluoroethane U 0.0458<br>U 0.0626                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1,1,2-Trichlorotrifluoroethane | n           |              | 0.0687 | 0.200  |
| U 0.0626                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1,2-Dichlorotetrafluoroethane  | <b>¬</b>    |              | 0.0458 | 0.200  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Heptane                        | ⊃           |              | 0.0626 | 0.200  |

Hall Environmental Analysis Laboratory ACCOUNT:

DATE/TIME: 07/30/18 17:19

SDG: L1011512

PROJECT:

0.630 0.200 0.200

0.0656 0.0457 0.0563

Hexachloro-1,3-butadiene

isopropylbenzene

Method Blank (MB)

Volatile Organic Compounds (MS) by Method TO-15

WG1144138

| (MB) R3329172-3 07/27/18 10:13 | 10:13     | *************************************** |        |          |
|--------------------------------|-----------|-----------------------------------------|--------|----------|
|                                | MB Result | MB Qualifier                            | MB MDL | MB RDL   |
| Analyte                        | ppbv      |                                         | hpby   | Aqdd     |
| Methylene Chloride             | Ω         |                                         | 0.0465 | 0.200    |
| Methyl Butyl Ketone            | Π         |                                         | 0.0682 | 1.25     |
| 2-Butanone (MEK)               | n         |                                         | 0.0493 | 1.25     |
| 4-Methyl-2-pentanone (MIBK)    | n         |                                         | 0.0650 | 1.25     |
| Methyl Methacrylate            | Π         |                                         | 0.0773 | 0.200    |
| MTBE                           | n         |                                         | 0.0505 | 0.200    |
| Naphthalene                    | _         |                                         | 0.154  | 0.630    |
| 2-Propanol                     | <b>-</b>  |                                         | 0.0882 | 1.25     |
| Propere                        | ⊃         |                                         | 0.0932 | 0.400    |
| Styrene                        | D         |                                         | 0.0465 | 0.200    |
| 1,1,2,2-Tetrachloroethane      | D         |                                         | 0.0576 | 0.200    |
| Fetrachloroethylene            | n         |                                         | 0.0497 | 0.200    |
| Tetrahydrofuran                | n         |                                         | 0.0508 | 0.200    |
| Toluene                        | ∍         |                                         | 0.0499 | 0.200    |
| 1,2,4-Trichlorobenzene         | Ω         |                                         | 0.148  | 0,630    |
| 1,1,1-Trichloroethane          | n         |                                         | 0.0665 | 0.200    |
| 1,1,2-Trichloroethane          | n         |                                         | 0.0287 | 0.200    |
| Trichloroethylene              | n         |                                         | 0.0545 | 0.200    |
| 1,2,4-Trimethylbenzene         | n         |                                         | 0.0483 | 0.200    |
| 1,3,5-Trimethylbenzene         | n         |                                         | 0.0631 | 0.200    |
| 2,2,4-Trimethylpentane         | n         |                                         | 0.0456 | 0.200    |
| Vinyl chloride                 | n         |                                         | 0.0457 | 0.200    |
| Vinyl Bromide                  | n         |                                         | 0.0727 | 0.200    |
| Vinyl acetate                  | n         |                                         | 0.0639 | 0.200    |
| m&p-Xylene                     | _         |                                         | 0.0946 | 0.400    |
| o-Xylene                       | D         |                                         | 0.0633 | 0.200    |
| Ethanol                        | Ω         |                                         | 0.0832 | 0.630    |
| TPH (GC/MS) Low Fraction       | 12.5      |                                         | 6.91   | 90.0     |
| (S) 1,4-Bromofluorobenzene     | 95.3      |                                         |        | 60.0-140 |

္မွိမွ

Ō

. K.

(V)

Ss

<u>, U</u>

'n

ঠ

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

| Spil                               |              |            |       |          |           |             |               |                  |        |            |
|------------------------------------|--------------|------------|-------|----------|-----------|-------------|---------------|------------------|--------|------------|
|                                    | Spike Amount | LCS Result | esult | LCS Rec. | LCSD Rec. | Rec. Limits | LCS Qualifier | LCSD Qualifier R | 5<br>2 | RPD Limits |
|                                    | hpbv         | hddd       |       | 96       | 96        | %           |               |                  |        | %          |
| Ethanol 3.75                       | 2            | 3.76       | 3.75  | 100      | 100       | 52.0-158    |               | Ö                | 0.153  | 25         |
| Propene 3.75                       | ъ            | 3.59       |       | 95.7     | 92.0      | 54.0-155    |               | m                | .95    | 25         |
| Dichlorodifluoromethane 3.75       | 2            | 3.29       |       | 7.78     | 87.6      | 69.0-143    |               | 0                | .0736  | 25         |
| 1,2-Dichlorotetrafluoroethane 3.75 | 2            | 4.03       |       | 108      | 105       | 70.0-130    |               | 2.               | 2.74   | 25         |

Hall Environmental Analysis Laboratory ACCOUNT:

SDG: L1011512

PROJECT:

DATE/TIME: 07/30/18 17:19

Ss

Î,

ွိတိ

Ō

Sc

้งว

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD) (LCS) R3329172-1 07/27/18 08:50 • (LCSD) R3329172-2 07/27/18 09:31

Volatile Organic Compounds (MS) by Method TO-15

WG1144138

| RPD Limits              | %            | 25            | 25             | 25            | 25           | 25           | 25                     | 25                             | 25                 | 25                 | 25       | 25         | 25               | 25                 | 25       | 25                       | 25       | 25            | 25                  | 25                     | 25         | 25          | 25                    | 25                   | 25       | 25                 | 25       | 25                | 25                  | 25          | 25                   | 25                      | 25                          | 25       | 25                        | 25                    | 25                  | 25                  | 25                   | 25                | 25            |
|-------------------------|--------------|---------------|----------------|---------------|--------------|--------------|------------------------|--------------------------------|--------------------|--------------------|----------|------------|------------------|--------------------|----------|--------------------------|----------|---------------|---------------------|------------------------|------------|-------------|-----------------------|----------------------|----------|--------------------|----------|-------------------|---------------------|-------------|----------------------|-------------------------|-----------------------------|----------|---------------------------|-----------------------|---------------------|---------------------|----------------------|-------------------|---------------|
| LCSD Qualifier RPD      |              | 2.16          | 68'6           | 8.00          | 1.13         | 4.99         | 0.851                  | 2.63                           | 1.88               | 2.63               | 3.84     | 1.26       | 2.92             | 2.83               | 1.82     | 1.95                     | 1.19     | 1.87          | 0.463               | 1.45                   | 0.450      | 1.01        | 1.06                  | 0.167                | 0.422    | 0.207              | 1.36     | 0.427             | 1.05                | 2.55        | 0.368                | 1.50                    | 1.52                        | 0.442    | 1.32                      | 1.79                  | 2.86                | 2.47                | 2.20                 | 1.58              | 2.61          |
| LCS Qualifier           |              |               |                |               |              |              |                        |                                |                    |                    |          |            |                  |                    |          |                          |          |               |                     |                        |            |             |                       |                      |          |                    |          |                   |                     |             |                      |                         |                             |          |                           |                       |                     |                     |                      |                   |               |
| Rec. Limits             | 96           | 70.0-130      | 70.0-130       | 70.0-130      | 70.0-130     | 70.0-130     | 70.0-130               | 70.0-130                       | 70.0-130           | 70.0-130           | 70.0-130 | 66.0-150   | 70.0-130         | 70.0-130           | 70.0-130 | 70.0-130                 | 70.0-130 | 70.0-130      | 70.0-130            | 70.0-130               | 70.0-130   | 70.0-130    | 70.0-130              | 70.0-130             | 70.0-130 | 70.0-130           | 70.0-130 | 70.0-130          | 70.0-130            | 70.0-152    | 70.0-130             | 70.0-130                | 70.0-142                    | 70.0-130 | 70.0-130                  | 70.0-130              | 70.0-130            | 70.0-150            | 70.0-130             | 70.0-130          | 70.0-130      |
| LCSD Rec.               | 96           | 96.7          | 96.3           | 92.3          | 106          | 97.5         | Щ                      | 106                            | 99.2               | 100                | 8.96     | 101        | 100              | 95.7               | 101      | 101                      | 97.2     | 0.66          | 106                 | 104                    | 105        | 103         | 108                   | Ш                    | 103      | 106                | 86.3     | 107               | 101                 | 116         | 109                  | 107                     | 101                         | 108      | 111                       | 110                   | 118                 | 109                 | 119                  | 115               | 114           |
| LCS Rec.                | 2%           | 98.8          | 106            | 100           | 107          | 103          | 110                    | 108                            | 101                | 103                | 101      | 102        | 103              | 98.5               | 102      | 103                      | 98.3     | 101           | 106                 | 106                    | 105        | 104         | 109                   | 111                  | 103      | 106                | 97.6     | 108               | 102                 | 113         | 108                  | 106                     | 7.66                        | 107      | 109                       | 109                   | 114                 | 107                 | 116                  | 113               | Ħ             |
| LCSD Result             | yddd         | 3.63          | 3.61           | 3.46          | 3.97         | 3.66         | 4.16                   | 3.96                           | 3.72               | 3.76               | 3.63     | 3.79       | 3.76             | 3.59               | 3.77     | 3.77                     | 3.64     | 3.71          | 3.97                | 3.91                   | 3.93       | 3.87        | 4.04                  | 4.17                 | 3.87     | 3.96               | 3.61     | 4.02              | 3.79                | 4.36        | 4.07                 | 4.02                    | 3.80                        | 4.05     | 4.15                      | 4.14                  | 4.41                | 4,10                | 4.46                 | 4.30              | 4.27          |
| nt LCS Result           | <b>A</b> qdd | 3.71          | 3.99           | 3.75          | 4.02         | 3.84         | 4.12                   | 4.06                           | 3.79               | 3.86               | 3.77     | 3.84       | 3.87             | 3.69               | 3.84     | 3.85                     | 3.69     | 3.78          | 3.99                | 3.97                   | 3,95       | 3.91        | 4.08                  | 4.17                 | 3.86     | 3.97               | 3.66     | 4.04              | 3.83                | 4,25        | 4.06                 | 3.96                    | 3.74                        | 4.03     | 4.09                      | 4.07                  | 4.28                | 4.00                | 4.37                 | 4.23              | 4.16          |
| Spike Amount            | hpbv         | 3.75          | 3.75           | 3.75          | 3.75         | 3.75         | 3.75                   | 3.75                           | 3.75               | 3.75               | 3.75     | 3.75       | 3.75             | 3.75               | 3.75     | 3.75                     | 3.75     | 3.75          | 3.75                | 3.75                   | 3.75       | 3.75        | 3.75                  | 3.75                 | 3.75     | 3.75               | 3.75     | 3.75              | 3.75                | 3.75        | 3.75                 | 3.75                    | 3.75                        | 3.75     | 3.75                      | 3.75                  | 3.75                | 3.75                | 3.75                 | 3.75              | 3.75          |
| Spike Amount LCS Result | Analyte      | Chloromethane | Vinyl chloride | 1,3-Butadiene | Bromomethane | Chloroethane | Trichlorofluoromethane | 1,1,2-Trichlorotrifluoroethane | 1,1-Dichloroethene | 1,1-Dichloroethane | Acetone  | 2-Propanol | Carbon disulfide | Methylene Chloride | MTBE     | trans-1,2-Dichloroethene | n-Hexane | Vinyl acetate | Methyl Ethyl Ketone | cis-1,2-Dichloroethene | Chloroform | Cyclohexane | 1,1,1-Trichloroethane | Carbon tetrachloride | Benzene  | 1,2-Dichloroethane | Heptane  | Trichloroethylene | 1,2-Dichloropropane | 1,4-Dioxane | Bromodichloromethane | cis-1,3-Dichloropropene | 4-Methyl-2-pentanone (MIBK) | Toluene  | trans-1,3-Dichloropropene | 1,1,2-Trichloroethane | Tetrachloroethylene | Methyl Butyl Ketone | Dibromochloromethane | 1,2-Dibromoethane | Chlorobenzene |

DATE/TIME: 07/30/18 17:19

SDG: L1011512

PROJECT:

Hall Environmental Analysis Laboratory ACCOUNT:

SS

Ĵ.

ู้เวิ

Volatile Organic Compounds (MS) by Method TQ-15

WG1144138

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

| Analyte                    | (LCS) K33291/2-1 0//2//18 08:50 • (LCSD) K33291/2-2 |      | 0//2//18 08:31 |          |           |             |               |                  |        |            |  |
|----------------------------|-----------------------------------------------------|------|----------------|----------|-----------|-------------|---------------|------------------|--------|------------|--|
| Analyte                    | Spike Amount LCS Result                             |      | LCSD Result    | LCS Rec. | LCSD Rec. | Rec. Limits | LCS Qualifier | LCSD Qualifier F | RPD    | RPD Limits |  |
|                            | hpbv                                                | ppbv | ppbv           | %        | %         | 86          |               |                  | %      | %          |  |
| Ethylbenzene               | 3.75                                                | 4.04 | 4.08           | 108      | 109       | 70.0-130    |               | -                | 101    | 25         |  |
| m&p-Xylene                 | 7.50                                                | 8.21 | 8.34           | 109      | 111       | 70.0-130    |               | •                | .59    | 25         |  |
| o-Xylene                   | 3.75                                                | 4.06 | 4.12           | 108      | 110       | 70.0-130    |               | •                | .38    | 25         |  |
| Styrene                    | 3.75                                                | 4,26 | 4.32           | 113      | 115       | 70.0-130    |               | 1                | 144    | 25         |  |
| Bromoform                  | 3.75                                                | 4.66 | 4.72           | 124      | 126       | 70.0-130    |               | 1                | 1.22   | 25         |  |
| 1,1,2,2-Tetrachloroethane  | 3.75                                                | 4.04 | 4.15           | 108      | TT.       | 70.0-130    |               |                  | 2.62   | 25         |  |
| 4-Ethyltoluene             | 3.75                                                | 4.29 | 4.35           | 114      | 116       | 70.0-130    |               | -                | 1.31   | 25         |  |
| 1,3,5-Trimethylbenzene     | 3.75                                                | 4.32 | 4.42           | 115      | 118       | 70.0-130    |               | ,,               | 2.35   | 25         |  |
| 1,2,4-Trimethylbenzene     | 3.75                                                | 4.25 | 4.37           | 113      | 116       | 70.0-130    |               |                  | 2.64   | 25         |  |
| 1,3-Dichlorobenzene        | 3.75                                                | 4.50 | 4.63           | 120      | 123       | 70.0-130    |               |                  | 2.88   | 25         |  |
| 1,4-Dichlorobenzene        | 3.75                                                | 4.72 | 4.83           | 126      | 129       | 70.0-130    |               | ,                | 2.38   | 25         |  |
| Benzyl Chloride            | 3.75                                                | 4.55 | 4.65           | 121      | 124       | 70.0-144    |               | ( )              | 2.21   | 25         |  |
| 1,2-Dichlorobenzene        | 3.75                                                | 4.43 | 4.56           | 118      | 122       | 70.0-130    |               |                  | 2.88   | 25         |  |
| 1,2,4-Trichlorobenzene     | 3.75                                                | 5.08 | 5.16           | 136      | 138       | 70.0-155    |               |                  | 1.53   | 25         |  |
| Hexachloro-1,3-butadiene   | 3.75                                                | 4.78 | 4.73           | 127      | 126       | 70.0-145    |               | _                | 1.07   | 25         |  |
| Naphthalene                | 3.75                                                | 4.86 | 4.85           | 130      | 129       | 70.0-155    |               | 0                | 0.246  | 25         |  |
| TPH (GC/MS) Low Fraction   | 176                                                 | 190  | 188            | 108      | 107       | 70.0-130    |               | -                | 1.08   | 25         |  |
| Allyt Chloride             | 3.75                                                | 3.61 | 3.51           | 96.2     | 93.7      | 70.0-130    |               |                  | 2.65   | 25         |  |
| 2-Chlorotoluene            | 3.75                                                | 4.44 | 4.52           | 119      | 120       | 70.0-130    |               | 1                | 1.60   | 25         |  |
| Methy! Methacrylate        | 3.75                                                | 3.89 | 3.88           | 104      | 103       | 70.0-130    |               | U                | 0.303  | 25         |  |
| Tetrahydrofuran            | 3.75                                                | 3.64 | 3.65           | 97.2     | 97.2      | 70.0-140    |               | U                | 0.0618 | 25         |  |
| 2,2,4-Trimethylpentane     | 3.75                                                | 3.71 | 3.69           | 0.66     | 98.3      | 70.0-130    |               | U                | 0.672  | 25         |  |
| Vinyl Bromide              | 3.75                                                | 4.09 | 4.07           | 109      | 109       | 70.0-130    |               | U                | 0.313  | 25         |  |
| Isopropylbenzene           | 3.75                                                | 4.15 | 4.22           | Ħ        | 113       | 70.0-130    |               | 1                | 1.70   | 25         |  |
| (S) 1,4-Bromofluorobenzene |                                                     |      |                | 98.0     | 98.6      | 60.0-140    |               |                  |        |            |  |

္မွ

Ū

<u>(41)</u>

, SO ONE LAB. NATIONWIDE.

U,

Ō

Ss

ري سم

Qc

Ū

<.7

Sc

Volatile Organic Compounds (MS) by Method TO-15

WG1144720

Method Blank (MB)

(MB) R3329391-3 07/29/18 10:10

0.200 0.200 0.200 0.200 0.200 0.200 0.600 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.630 0.200 2.00 0.0569 0.0436 0.0609 0.0563 0.0489 0.0605 0.0603 0.0490 0.0389 0.0599 0.0588 0.0506 0.0546 0.0460 0.0598 0.0786 0.0544 0.0585 0.0544 0.0534 0.0494 0.0597 0.0557 0.0601 0.0574 0.0185 0.0464 0.0435 0.0554 0.0666 0.0626 0.0656 0.0616 0.0514 0.0673 0.0601 0.0687 0.0458 0.0457 MB Qualifier --->**t** MB Result 0.0633 0.0730 0.0631 Aqdd 0.127  $\supset$  $\supset$ ⊃ 1,2-Dichlorotetrafluoroethane 1,1,2-Trichlorotrifluoroethane trans-1,3-Dichloropropene Hexachloro-1,3-butadiene Dichlorodifluoromethane trans-1,2-Dichloroethene Bromodichloromethane Dibromochloromethane cis-1,3-Dichloropropene **Trichlorofluoromethane** cis-1,2-Dichloroethene Carbon tetrachloride 1,2-Dichloropropane 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,2-Dibromoethane 1,2-Dichloroethane 1,1-Dichloroethene 1,1-Dichloroethane Isopropyłbenzene Carbon disulfide 2-Chlorotoluene Benzyl Chloride Chlorobenzene Bromomethane Chloromethane 4-Ethyltoluene 1,3-Butadiene Chloroethane Ethylbenzene Cyclohexane Allyt Chloride 1,4-Dioxane Chloroform Вготобогт Benzene Acetone Heptane Analyte

Hall Environmental Analysis Laboratory

ACCOUNT:

PROJECT:

SDG

L1011512

07/30/18 17:19 DATE/TIME:

SS

Ŷ Š

္ခ်င္တ

KĮ.

Sc

Ū

| Σ                      |          |
|------------------------|----------|
| ď                      |          |
| (MS)                   |          |
| : Compounds (MS) by Me |          |
| le Organic             | od Blank |

WG1144720

| -15          |  |
|--------------|--|
| 0d D0        |  |
| / Meth       |  |
| (MS) b)      |  |
| Compounds () |  |
| Organic      |  |
| Volatile     |  |
|              |  |

| (M)                 |  |
|---------------------|--|
| ank (               |  |
| $\overline{\alpha}$ |  |
| Method              |  |
| Σ                   |  |

|                                |           | *************************************** |        |          |  |
|--------------------------------|-----------|-----------------------------------------|--------|----------|--|
| (MB) R3329391-3 07/29/18 10:10 | 18 10:10  |                                         |        |          |  |
|                                | MB Result | MB Qualifier                            | MB MDL | MB RDL   |  |
| Analyte                        | vdqq      |                                         | ppbv   | Addd     |  |
| Methylene Chloride             | ⊐         |                                         | 0.0465 | 0.200    |  |
| Methyl Butyl Ketone            | n         |                                         | 0.0682 | 1.25     |  |
| 2-Butanone (MEK)               | n         |                                         | 0.0493 | 1.25     |  |
| 4-Methyl-2-pentanone (MIBK)    | Ð         |                                         | 0.0650 | 1.25     |  |
| Methyl Methacrylate            | Ω         |                                         | 0.0773 | 0.200    |  |
| MTBE                           | n         |                                         | 0.0505 | 0.200    |  |
| Naphthalene                    | 0.222     | >I                                      | 0.154  | 0.630    |  |
| 2-Propanol                     | ņ         |                                         | 0.0882 | 1.25     |  |
| Propene                        | J         |                                         | 0.0932 | 0.400    |  |
| Styrene                        | n         |                                         | 0.0465 | 0.200    |  |
| 1,1,2,2-Tetrachloroethane      | ⊐         |                                         | 0.0576 | 0.200    |  |
| Tetrachloroethylene            | n         |                                         | 0.0497 | 0.200    |  |
| Tetrahydrofuran                | J         |                                         | 0.0508 | 0.200    |  |
| Toluene                        | ם         |                                         | 0.0499 | 0.200    |  |
| 1,2,4-Trichlorobenzene         | 0.154     | ·>1                                     | 0.148  | 0.630    |  |
| 1,1,1-Trichloroethane          | n         |                                         | 0.0665 | 0.200    |  |
| 1,1,2-Trichloroethane          | ם         |                                         | 0.0287 | 0.200    |  |
| Trichloroethylene              | D         |                                         | 0.0545 | 0.200    |  |
| 1,2,4-Trimethylbenzene         | n         |                                         | 0.0483 | 0.200    |  |
| 1,3,5-Trimethylbenzene         | ח         |                                         | 0.0631 | 0.200    |  |
| 2.2.4-Trimethylpentane         | 'n        |                                         | 0.0456 | 0.200    |  |
| Vinyl chloride                 | D.        |                                         | 0.0457 | 0.200    |  |
| Vinyl Bromide                  | Ð         |                                         | 0.0727 | 0.200    |  |
| Vinyl acetate                  | n         |                                         | 0.0639 | 0.200    |  |
| m&p-Xylene                     | П         |                                         | 0.0946 | 0.400    |  |
| o-Xylene                       | n         |                                         | 0.0633 | 0.200    |  |
| Ethanol                        | D         |                                         | 0.0832 | 0.630    |  |
| TPH (GC/MS) Low Fraction       | n         |                                         | 6.91   | 50.0     |  |
| (S) 1,4-Bromofluorobenzene     | 97.0      |                                         |        | 60.0-140 |  |
|                                |           |                                         |        |          |  |

# Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

|                               |                  | _          |             |          |           |             |               |                  |      |            |
|-------------------------------|------------------|------------|-------------|----------|-----------|-------------|---------------|------------------|------|------------|
|                               | Spike Amount     | LCS Result | LCSD Result | LCS Rec. | LCSD Rec. | Rec. Limits | LCS Qualifier | LCSD Qualifier R | 5    | RPD Limits |
| Analyte                       | <b>vddd</b> vddd | hddq       | % ^qdd      | 96       | 96        | 96          |               |                  | %    | 96         |
| Ethanol                       | 3.75             | 3.53       | 3.04        | 94.0     | 81.2      | 52.0-158    |               | 7                | 1.7  | 25         |
| Propene                       | 3.75             | 3.68       | 3.70        | 98.1     | 98.7      | 54.0-155    |               | 0                | .543 | 25         |
| Dichlorodifluoromethane       | 3.75             | 4.02       | 3.90        | 107      | 104       | 69.0-143    |               | 3                | .13  | 25         |
| 1,2-Dichlorotetrafluoroethane | 3.75             | 3.89       | 3.91        | 104      | 104       | 70.0-130    |               | 0                | .479 | 25         |
|                               |                  |            |             |          |           |             |               |                  |      |            |

DATE/TIME: 07/30/18 17.19

SDG: L1011512

PROJECT:

Hall Environmental Analysis Laboratory

×

# QUALITY CONTROL SUMMARY

12-09

L1011512-0

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

Volatile Organic Compounds (MS) by Method TO-15

WG1144720

RPD Limits 25 25 25 25 25 25 25 25 25 25 25 0.00830 0.0844 0.480 0.210 0.653 0.435 0.372 0.181 0.204 0.116 0.441 0.709 0.118 0.158 0.166 2.47 3.34 1.08 4.01 8. 5 1.56 2.35 1.97 7.68 2.20 33 1.40 10. 9 LCSD Qualifier LCS Qualifier Rec. Limits 70.0-130 70.0-130 70.0-130 70.0-130 70.0-130 70.0-130 70.0-130 70.0-130 70.0-130 70.0-130 70.0-130 70.0-130 70.0-130 70.0-130 70.0-130 66.0-150 70.0-130 70.0-130 70.0-130 70.0-130 70.0-130 70.0-130 70.0-130 70.0-130 70.0-130 70.0-130 70.0-130 70.0-130 70.0-130 70.0-152 70.0-130 70.0-142 70.0-130 70.0-130 70.0-130 70.0-130 70.0-130 70.0-150 70.0-130 70.0-130 LCSD Rec. 96.3 98.9 98.9 99.3 98.8 03 8 8 001 103 102 102 03 103 99.7 5 9 33 102 5 LCS Rec. 98.5 5 5 10 5 103 8 5 104 101 5 33 õ 102 102 5 100 5 102 102 8 (LCS) R3329391-1 07/29/18 08:20 • (LCSD) R3329391-2 07/29/18 09:19 LCSD Result 3.66 3.78 3.75 3.61 3.76 3.77 3.73 3.83 3.78 3.85 3.85 3.72 3.86 3.96 3.92 3.84 3.71 3.87 3.83 3.7 3.81 3.91 3.97 Spike Amount LCS Result 3.66 3.88 3.72 3.80 3.69 3.79 3.79 3.82 3.80 3.65 3.66 3.83 3.86 3.81 3.80 3.86 3.62 3.76 3.91 3.86 3.84 3.8 3.8 3.87 3.69 3.89 3.92 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 4-Methyl-2-pentanone (MIBK) 1,1,2-Trichlorotrifluoroethane trans-1,3-Dichloropropene trans-1,2-Dichloroethene Trichlorofluoromethane Bromodichloromethane cis-1,3-Dichloropropene Dibromochloromethane cis-1,2-Dichloroethene Carbon tetrachloride 1,1,2-Trichloroethane Methyl Ethyl Ketone 1,1,1-Trichloroethane 1,2-Dichloropropane **Tetrachloroethylene** Methyl Butyl Ketone Methylene Chloride 1,2-Dibromoethane 1,1-Dichloroethane 1,2-Dichloroethane 1,1-Dichloroethene Trichloroethylene Carbon disuffide Bromomethane Chlorobenzene Chloromethane 1,3-Butadiene Chloroethane Vinyl chloride Vinyl acetate Cyclohexane 1,4-Dioxane 2-Propanol Chloroform n-Hexane Benzene Heptane Acetone Toluene MTBE

DATE/TIME: 07/30/18 17:19

SDG: L1011512

PROJECT:

Hall Environmental Analysis Laboratory

ဝင

 $\overline{\mathbb{Q}}$ 

ίħ

SS

4

Ü.

Ss

Laboratory Control Sample (LCS) • Laboratory Centrol Sample Duplicate (LCSD)

Volatile Organic Compounds (MS) by Method TO-15

WG1144720

| (LCS) R3329391-1 07/29/18 08:20 • (LCSD) R3329391-2 07/29/18 09:19 | '18 08:20 • (LCS) | D) R3329391-2 | 07/29/18 09:1 | 6        | 8 09:19   |             |               | -              |          |            |
|--------------------------------------------------------------------|-------------------|---------------|---------------|----------|-----------|-------------|---------------|----------------|----------|------------|
|                                                                    | Spike Amount      | LCS Result    | LCSD Resuft   | LCS Rec. | LCSD Rec. | Rec. Limits | LCS Qualifier | LCSD Qualifier | RPD      | RPD Limits |
| Analyte                                                            | hdbv              | <b>a</b> qdd  | \ddd          | %        | %         | 95          |               |                | <b>%</b> | *          |
| Ethylbenzene                                                       | 3.75              | 4.02          | 4.08          | 107      | 109       | 70.0-130    |               |                | 1.50     | 25         |
| m&p-Xylene                                                         | 7.50              | 7.90          | 8.01          | 105      | 107       | 70.0-130    |               |                | 1.38     | 25         |
| o•Xylene                                                           | 3.75              | 3.97          | 4.03          | 106      | 107       | 70.0-130    |               |                | 1.34     | 25         |
| Styrene                                                            | 3.75              | 3.88          | 3.97          | 104      | 106       | 70.0-130    |               |                | 2.24     | 25         |
| Вготобогт                                                          | 3.75              | 4.01          | 4.03          | 107      | 108       | 70.0-130    |               |                | 0.693    | 25         |
| 1,1,2,2-Tetrachloroethane                                          | 3.75              | 3.85          | 3.90          | 103      | 104       | 70.0-130    |               |                | 1.35     | 25         |
| 4-Ethyltoluene                                                     | 3.75              | 3.93          | 4.00          | 105      | 107       | 70.0-130    |               |                | 1.76     | 25         |
| 1,3,5-Trimethylbenzene                                             | 3.75              | 3.90          | 3.98          | 104      | 106       | 70.0-130    |               |                | 2.12     | 25         |
| 1,2,4-Trimethylbenzene                                             | 3.75              | 3.88          | 3.93          | 104      | 105       | 70.0-130    |               |                | 1.08     | 25         |
| 1,3-Dichlorobenzene                                                | 3.75              | 3.70          | 3.72          | 28.7     | 99.1      | 70.0-130    |               |                | 0.409    | 25         |
| 1,4-Dichlorobenzene                                                | 3.75              | 3.78          | 3.80          | 101      | 101       | 70.0-130    |               |                | 0.423    | 25         |
| Benzyl Chloride                                                    | 3.75              | 3.94          | 3.94          | 105      | 105       | 70.0-144    |               |                | 0.0638   | 25         |
| 1,2-Dichlorobenzene                                                | 3.75              | 3.64          | 3.71          | 97.1     | 0.66      | 70.0-130    |               | •              | 1.88     | 25         |
| 1,2,4-Trichlorobenzene                                             | 3.75              | 3.73          | 3.71          | 99.5     | 98.8      | 70.0-155    |               |                | 0.661    | 25         |
| Hexachloro-1,3-butadiene                                           | 3.75              | 3.82          | 3.92          | 102      | 105       | 70.0-145    |               |                | 2.52     | 25         |
| Naphthalene                                                        | 3.75              | 3.90          | 4.04          | 104      | 108       | 70.0-155    |               |                | 3.62     | 25         |
| TPH (GC/MS) Low Fraction                                           | 176               | 173           | 176           | 98.3     | 966       | 70.0-130    |               |                | 1.27     | 25         |
| Allyl Chioride                                                     | 3.75              | 3.67          | 3.70          | 6'16     | 98.6      | 70.0-130    |               |                | 869'0    | 25         |
| 2-Chlorotoluene                                                    | 3.75              | 3.83          | 3.87          | 102      | 103       | 70.0-130    |               |                | 1.13     | 25         |
| Methyl Methacrylate                                                | 3.75              | 3.89          | 3.94          | 104      | 105       | 70.0-130    |               | •              | 1.21     | 25         |
| Tetrahydrofuran                                                    | 3.75              | 3.64          | 3.67          | 97.1     | 98.0      | 70.0-140    |               | _              | 97.67    | 25         |
| 2,2,4-Trimethylpentane                                             | 3.75              | 3.81          | 3.82          | 102      | 102       | 70.0-130    |               | _              | 0.176    | 25         |
| Vinyl Bromide                                                      | 3.75              | 3.96          | 3.95          | 106      | 105       | 70.0-130    |               |                | 0960.0   | 25         |
| isopropylbenzene                                                   | 3.75              | 3.95          | 4.00          | 105      | 107       | 70,0-130    |               | •              | 1.38     | 25         |
| (S) 1,4-Bromofluorobenzene                                         |                   |               |               | 67.6     | 97.2      | 60.0-140    |               |                |          |            |

Ö Ö

SC

SS

'n

Ś



## Guide to Reading and Understanding Your Laporatory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

## Abbreviations and Definitions

| MDL                             | Method Detection Limit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|---------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ND                              | Not detected at the Reporting Limit (or MDL where applicable)                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| ROL                             | Reported Detection Limit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Res                             | Recovery.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| RPD                             | Relative Percent Difference.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| SDG                             | Semple Delivery Group                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| (5)                             | Surrogate (Surrogate Standard) - Applytes added to every blank sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical officiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.                                                                                                                                                                                                                                                |
| U                               | Not detected at the Reporting Limit (or MDL where applicable)                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Analyte                         | The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported                                                                                                                                                                                                                                                                                                                                                                                                  |
| Dilubon                         | If the sample matrix contains an interfering material. The sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.                                                                                    |
| Limits                          | These are the target % recovery ranges or % difference value that the laperatory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.                                                                                                                                                                                                                                                      |
| Qualifier                       | This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.                                                                                                                                                                  |
| Resurt                          | The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte. |
| Case Narrative (Ciri)           | A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed entire at semple recept by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.                                                                                                                                                                           |
| Quality Control<br>Summary (QCI | This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These arisiyees are not being performed on your samples typically, but on laboratory generated material.                                                                                                                                                                                             |
| Sample Chain of<br>Custody (Sc) | This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.                                                               |
| Sample Results (Sr)             | This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analysis section for each sample will provide the name and method number for the analysis reported.                                                                                                                                                                                                                                                        |
| Sample Summary (Ss)             | This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.                                                                                                                                                                                                                                                                                                                                                            |

| Qualifier | Description                                                                                                                               |  |  |  |  |  |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| В         | The same analyte is found in the associated blank.                                                                                        |  |  |  |  |  |
| E         | The analyte concentration exceeds the upper limit of the calibration range of the instrument established by the in<br>calibration (ICAL). |  |  |  |  |  |
| Li .      | The identification of the analyte is acceptable, the reported value is an estimate.                                                       |  |  |  |  |  |
| 14        | The associated batch OC was outside the established quality control range for eccurary                                                    |  |  |  |  |  |



Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

## Sample Log-In Check List

| Client Name:                                                                     | City of Albuquerque Env                      | Work Order Numb      | er: 1807A94   |                    | RcptNo                            | : 1                 |
|----------------------------------------------------------------------------------|----------------------------------------------|----------------------|---------------|--------------------|-----------------------------------|---------------------|
| Received By:                                                                     | Received By: Anne Thome 7/19/2018 12:23:00 I |                      |               | Onn. II.           |                                   |                     |
| Completed By:                                                                    | -                                            |                      |               | Aone Sh<br>Aone Sh | <del></del>                       |                     |
| Reviewed By: 50 7, 2018                                                          |                                              |                      |               | Clane Str          |                                   |                     |
|                                                                                  | by! AT07/2011                                | 7                    |               |                    |                                   |                     |
| Chain of Cus                                                                     | stody                                        |                      |               |                    |                                   |                     |
| 1. Is Chain of C                                                                 | ustody complete?                             |                      | Yes 🗹         | No 🗌               | Not Present                       |                     |
| 2. How was the sample delivered?                                                 |                                              |                      | <u>Client</u> |                    |                                   |                     |
| Log In                                                                           |                                              |                      |               |                    |                                   |                     |
| 3. Was an atten                                                                  | npt made to cool the samples                 | ?                    | Yes 🗌         | No 🗀               | NA 🗹                              |                     |
| 4. Were all samp                                                                 | ples received at a temperatur                | re of >0° C to 6.0°C | Yes 🗹         | No 🗔               | na 🗆                              |                     |
| 5. Sample(s) in                                                                  | proper container(s)?                         |                      | Yes 🗹         | No 🗌               |                                   |                     |
| 6. Sufficient sam                                                                | nple volume for indicated test               | (s)?                 | Yes 🗹         | No 🗌               |                                   |                     |
| 7. Are samples (except VOA and ONG) properly preserved?                          |                                              |                      | Yes 🗸         | No 🗆               |                                   |                     |
| 8. Was preserva                                                                  | tive added to bottles?                       |                      | Yes 🗌         | No 🗹               | NA 🗆                              |                     |
| 9. VOA vials hav                                                                 | e zero headspace?                            |                      | Yes           | No 🗆               | No VOA Vials                      |                     |
| 10. Were any sample containers received broken?                                  |                                              |                      | Yes           | No 🗹               |                                   |                     |
|                                                                                  |                                              |                      |               |                    | # of preserved<br>bottles checked |                     |
| 11. Does paperwork match bottle labels? (Note discrepancies on chain of custody) |                                              |                      | Yes 🗹         | No 🗀               | for pH:                           | r >12 unless noted) |
|                                                                                  | correctly identified on Chain of             | of Custody?          | Yes 🗹         | No 🗆               | Adjusted?                         |                     |
| 13. Is it clear what analyses were requested?                                    |                                              |                      | Yes 🗹         | No 🗆               |                                   |                     |
| 14. Were all holding times able to be met?                                       |                                              |                      | Yes 🗹         | No 🗆               | Checked by:                       |                     |
| (If no, notify co                                                                | ustomer for authorization.)                  |                      |               | l                  |                                   |                     |
| Special Handi                                                                    | <u>ling (if applicable)</u>                  |                      |               |                    |                                   |                     |
| 15. Was client no                                                                | otified of all discrepancies with            | h this order?        | Yes 🗌         | No 🗀               | NA 🗹                              |                     |
| Person                                                                           | Notified:                                    | Date                 |               |                    |                                   |                     |
| By Who                                                                           | om:                                          | Via:                 | eMail         | Phone  Fax         | In Person                         |                     |
| Regardi                                                                          | ing:                                         |                      |               |                    |                                   |                     |
| Client In                                                                        | nstructions:                                 |                      |               |                    | :                                 |                     |
| 16. Additional rei                                                               | marks:                                       |                      |               |                    |                                   | _                   |
| 17. Cooler Infor                                                                 | mation                                       |                      |               |                    |                                   |                     |

CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custory is a LEGAL DOCUMENT. At Inferent fields must be completed and apparent.

ਰ ਹ

Š X X N/N Υ'N Trip Trip Task: COA Q03 2018 VP 07 19 2018 Ø N/N Ϋ́ Semple Intact? <u>></u> Sample Receipt Conditions Z/X X/N Samples on tee? ni qmeT 00 Page: Cooler # (23 20180719-1151 (21/18/1 Turn Around Time # 000 × × × × SOIXOT RIA SI-OT × × × × × de 280 100 97 8 182  $\vec{q}$ क्ष 8 807 202 T Comments/Lab Sample 1.D. 1807.494 DATE Skyrod Send EDD to krziegler@caba.gov
CC Hardcopy report to krziegler@caba.gov, and via mail
CC Hardcopy report to 1223 Ken Ziegler, City of Albuquerque EHD #ОГ СОИТАІМЕЙЯ Abuquerque, NM 87102 81-61-E Other Information:
Send Invoice to: Ken Ziegler, City of Alb
Address: One Civic Plaza, Room 3023 07/19/2018 11:19 07/19/2018 10:24 07/19/2018 10:29 07/19/2018 11:25 07/19/2018 10:46 07/19/2018 10:51 07/19/2018 11:32 07/19/2018 11:09 07/19/2018 11:14 07/19/2018 10:34 07/19/2018 10:12 07/19/2018 11:40 07/19/2018 10:56 07/19/2018 11:01 PRINT Name of SAMPLER: SIGNATURE of SAMPLER: SAMPLE DATE 80 Company: Tracking #: O ø O o. Ø g Ø O g Ö O O დ Ō еевк∧в с=сомР AE ¥ 吊 ΑĒ Æ Æ Æ Æ 峈 Æ 퓌 Ą Æ Æ **EGOD XISTAM** Site PM Name Ken Zlegler
Phone/Pax: 505-788-2689
Site PM Email: krziegler@cabt.gov State, Zip. NM RYSV0801R RYSV0802R RYSV0810R RYSV0803 RYSV0808R RYSV0809R SAMPLE RYSV0702 RYSV0703 RYSV0704 RYSV0804 RYSV0805 RYSV0806 RYSV0701 RYSV0807 Site Address Shy Alb Project # SAMPLE ID Samples IDs MUST BE UNIQUE RYSV0801R-20180719-AE RYSV0809R-20180719-AE RYSV0802R-20180719-AE RYSV0808R-20180719-AE RYSV0810R-20180719-AE RYSV0702-20180719-AE RYSV0703-20180719-AE RYSV0704-20180719-AE RYSV0803-20180719-AE RYSV0804-20180719-AE RYSV0805-20180719-AE RYSV0806-20180719-AE RYSV0807-20180719-AE RYSV0701-20180719-AE tional Comments/Special Instructions: 4901 Hawkins St NE # a-D PhoneFax 505-345-3975 Lab PM email Albuquerque, NM 87109 Lab PM: Andy Freeman