microbialinsights

How are QuantArray® results reported?

One of the primary advantages of the QuantArray®-Chlor is the simultaneous quantification of a broad spectrum of different
microorganisms and key functional genes involved in a variety of pathways for chlorinated hydrocarbon biodegradation. However,
highly parallel quantification combined with the various metabolic and cometabolic capabilities of different target organisms can
complicate data presentation. Therefore, in addition to Summary Tables, QuantArray® results will be presented as Microbial
Population Summary and Comparison Figures to aid in data interpretation and subsequent evaluation of site management activities.

Types of Tables and Figures:

Figure presenting the concentrations of QuantArray®-Chlor target pop-
ulations (e.g. Dehalococcoides) and functional genes (e.g. vinyl chloride
reductase) relative to typically observed values.

Microbial Population
Summary

Tables of target population concentrations grouped by biodegradation
pathway and contaminant type.

Summary Tables

Depending on the project, sample results can be presented to compare
Comparison Figures changes over time or examine differences in microbial populations along
a transect of the dissolved plume.
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Results

Table 1: Summary of the QuantArray®-Chlor results obtained for samples LALF12-W-201908081111, LALF24-W-
201908081345, and LALF09-W-201908150927.

Sample Name LALF12-W- LALF24-W- LALF09-W-

201908081111 201908081345 201908150927
Sample Date 08/08/2019 08/08/2019 08/15/2019

Reductive Dechlorination cells/mL cells/mL cells/mL
Dehalococcoides (DHC) 4.16E+01 2.00E-01 (J) 3.63E+01
tceA Reductase (TCE) <5.00E-01 <5.00E-01 <5.00E-01
BAV1 Vinyl Chloride Reductase (BVC) <5.00E-01 <5.00E-01 <5.00E-01
Vinyl Chloride Reductase (VCR) <5.00E-01 <5.00E-01 <5.00E-01
Dehalobacter spp. (DHBt) 1.74E+01 <4.90E+00 1.08E+02
Dehalobacter DCM (DCM) <4.90E+00 <4.90E+00 <4.80E+00
Dehalogenimonas spp. (DHG) <4.90E+00 <4.90E+00 <4.80E+00
cerA Reductase (CER) <4.90E+00 <4.90E+00 <4.80E+00
trans-1,2-DCE Reductase (TDR) <4.90E+00 <4.90E+00 <4.80E+00
Desulfitobacterium spp. (DSB) <4.90E+00 1.37E+01 4.10E+02
Dehalobium chlorocoercia (DECO) 1.22E+01 <4.90E+00 1.17E+03
Desulfuromonas spp. (DSM) <4.90E+00 <4.90E+00 <4.80E+00
PCE Reductase (PCE-1) <4.90E+00 <4.90E+00 <4.80E+00
PCE Reductase (PCE-2) <4.90E+00 <4.90E+00 <4.80E+00
Chloroform Reductase (CFR) <4.90E+00 <4.90E+00 <4.80E+00
1,1 DCA Reductase (DCA) <4.90E+00 <4.90E+00 <4.80E+00
1,2 DCA Reductase (DCAR) <4.90E+00 <4.90E+00 <4.80E+00
Aerobic (Co)Metabolic
Soluble Methane Monooxygenase (SMMO) <4.90E+00 <4.90E+00 <4.80E+00
Toluene Dioxygenase (TOD) 8.50E+00 1.80E+00 (J) <4.80E+00
Phenol Hydroxylase (PHE) 8.00E-01 (J) 3.30E+00 (J) 1.66E+01
Trichlorobenzene Dioxygenase (TCBO) <4.90E+00 <4.90E+00 <4.80E+00
Toluene Monooxygenase 2 (RDEG) <4.90E+00 4.99E+01 <4.80E+00
Toluene Monooxygenase (RMO) <4.90E+00 <4.90E+00 <4.80E+00
Ethene Monooxygenase (EtnC) <4.90E+00 <4.90E+00 <4.80E+00
Epoxyalkane Transferase (EtnE) <4.90E+00 <4.90E+00 <4.80E+00
Dichloromethane Dehalogenase (DCMA) <4.90E+00 <4.90E+00 <4.80E+00
Other
Total Eubacteria (EBAC) 1.55E+04 1.14E+05 7.80E+04
Sulfate Reducing Bacteria (APS) 1.53E+02 <4.90E+00 7.18E+02
Methanogens (MGN) <4.90E+00 <4.90E+00 <4.80E+00
Legend:
NA = Not Analyzed NS = Not Sampled ] = Estimated Gene Copies Below PQL but Above LQL
I = Inhibited < = Result Not Detected
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Table 2: Summary of the QuantArray®-Chlor results obtained for samples LALF10-W-201908151100, GWEX2-W-
201908151257, and GWEX4-W-201908151440.

Sample Name LALF10-W- GWEX2-W- GWEX4-W-

201908151100 201908151257 201908151440
Sample Date 08/15/2019 08/15/2019 08/15/2019

Reductive Dechlorination cells/mL cells/mL cells/mL
Dehalococcoides (DHC) 7.40E+00 4.00E-01 (J) 9.00E-01
tceA Reductase (TCE) <5.00E-01 <5.00E-01 <5.00E-01
BAV1 Vinyl Chloride Reductase (BVC) <5.00E-01 <5.00E-01 <5.00E-01
Vinyl Chloride Reductase (VCR) <5.00E-01 <5.00E-01 <5.00E-01
Dehalobacter spp. (DHBt) <4.90E+00 7.15E+02 8.47E+02
Dehalobacter DCM (DCM) <4.90E+00 <5.10E+00 <4.80E+00
Dehalogenimonas spp. (DHG) 4.72E+01 <5.10E+00 <4.80E+00
cerA Reductase (CER) <4.90E+00 <5.10E+00 <4.80E+00
trans-1,2-DCE Reductase (TDR) <4.90E+00 <5.10E+00 <4.80E+00
Desulfitobacterium spp. (DSB) 1.38E+01 <5.10E+00 5.95E+02
Dehalobium chlorocoercia (DECO) 2.56E+02 1.20E+03 1.99E+02
Desulfuromonas spp. (DSM) <4.90E+00 1.24E+02 2.60E+00 (J)
PCE Reductase (PCE-1) <4.90E+00 <5.10E+00 <4.80E+00
PCE Reductase (PCE-2) <4.90E+00 <5.10E+00 <4.80E+00
Chloroform Reductase (CFR) <4.90E+00 <5.10E+00 <4.80E+00
1,1 DCA Reductase (DCA) <4.90E+00 <5.10E+00 <4.80E+00
1,2 DCA Reductase (DCAR) <4.90E+00 <5.10E+00 <4.80E+00
Aerobic (Co)Metabolic
Soluble Methane Monooxygenase (SMMO) 1.42E+02 2.42E+02 <4.80E+00
Toluene Dioxygenase (TOD) <4.90E+00 <5.10E+00 <4.80E+00
Phenol Hydroxylase (PHE) 1.01E+02 5.83E+02 1.66E+02
Trichlorobenzene Dioxygenase (TCBO) <4.90E+00 <5.10E+00 <4.80E+00
Toluene Monooxygenase 2 (RDEG) 1.04E+02 5.65E+02 4.13E+02
Toluene Monooxygenase (RMO) <4.90E+00 <5.10E+00 1.91E+02
Ethene Monooxygenase (EtnC) 5.30E+00 1.23E+01 <4.80E+00
Epoxyalkane Transferase (EtnE) <4.90E+00 <5.10E+00 <4.80E+00
Dichloromethane Dehalogenase (DCMA) <4.90E+00 <5.10E+00 <4.80E+00
Other
Total Eubacteria (EBAC) 1.49E+05 7.86E+05 2.62E+05
Sulfate Reducing Bacteria (APS) 5.79E+02 7.60E+03 2.55E+03
Methanogens (MGN) <4.90E+00 <5.10E+00 <4.80E+00
Legend:
NA = Not Analyzed NS = Not Sampled ] = Estimated Gene Copies Below PQL but Above LQL
I = Inhibited < = Result Not Detected
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Microbial Populations LALF12-W-201908081111

Anaerobic Anaerobic Anaerobic bil bi bi Anaerobic Anaerobic Aerobic Aerobic Aerobic
Chlorinated Chlorinated Chlorinated Chlorinated Chlorinated Chlorinated Chlorinated Chlorinated Cometabolic (Co)metabolic Chlorinated
Ethenes Ethenes Ethenes Ethanes Methanes Benzenes Phenols Propanes Chlorinated Vinyl Benzenes

(PCE,TCE) (PCE,TCE,DCEVC) (trans-1,2- (TCA,DCA) (Chloroform) Ethenes Chloride

DCE\VC)

Figure 1: Microbial population summary to aid in evaluating potential pathways and biodegradation of specific con-

taminants.

Anaerobic - Reductive Dechlorination or Dichloroelimination

Chlorinated Ethenes (PCE, TCE)
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DHC, DHBt, DSB, DSM, PCE-1, PCE-2 Chlorinated Ethenes (TCE,DCE,VC) sMMO, TOD, PHE, RDEG, RMO
DHC, BVC, VCR (Co)metabolic Vinyl Chloride etnC, etnE
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DHC, DHBt, DHG, DSB!, DCA,
DCAR

DHBt, DCM, CER

DHC, DHBt?, DECO

DHC, DSB

DHC, DHG, DSB!

Desulfitobacterium dichloroeliminans DCA1. *Implicated in reductive dechlorination of dichlorobenzene and potentially chlorobenzene.
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Microbial Populations LALF24-W-201908081345

Anaerobic Anaerobic Anaerobic bil bi bi Anaerobic Anaerobic Aerobic Aerobic Aerobic
Chlorinated Chlorinated Chlorinated Chlorinated Chlorinated Chlorinated Chlorinated Chlorinated Cometabolic (Co)metabolic Chlorinated
Ethenes Ethenes Ethenes Ethanes Methanes Benzenes Phenols Propanes Chlorinated Vinyl Benzenes

(PCE,TCE) (PCE,TCE,DCEVC) (trans-1,2- (TCA,DCA) (Chloroform) Ethenes Chloride

DCE\VC)

Figure 2: Microbial population summary to aid in evaluating potential pathways and biodegradation of specific con-

taminants.

Anaerobic - Reductive Dechlorination or Dichloroelimination

Chlorinated Ethenes (PCE, TCE)
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Aerobic - (Co)metabolism

DHC, DHBt, DSB, DSM, PCE-1, PCE-2 Chlorinated Ethenes (TCE,DCE,VC) sMMO, TOD, PHE, RDEG, RMO
DHC, BVC, VCR (Co)metabolic Vinyl Chloride etnC, etnE
TDR, CER Chlorinated Benzenes TOD, TCBO, PHE

DHC, DHBt, DHG, DSB!, DCA,
DCAR

DHBt, DCM, CER

DHC, DHBt?, DECO
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Desulfitobacterium dichloroeliminans DCA1. *Implicated in reductive dechlorination of dichlorobenzene and potentially chlorobenzene.
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Microbial Populations LALF09-W-201908150927
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DCE\VC)

Figure 3: Microbial population summary to aid in evaluating potential pathways and biodegradation of specific con-

taminants.

Anaerobic - Reductive Dechlorination or Dichloroelimination
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Aerobic - (Co)metabolism

DHC, DHBt, DSB, DSM, PCE-1, PCE-2 Chlorinated Ethenes (TCE,DCE,VC) sMMO, TOD, PHE, RDEG, RMO
DHC, BVC, VCR (Co)metabolic Vinyl Chloride etnC, etnE
TDR, CER Chlorinated Benzenes TOD, TCBO, PHE

DHC, DHBt, DHG, DSB!, DCA,
DCAR

DHBt, DCM, CER

DHC, DHBt?, DECO

DHC, DSB

DHC, DHG, DSB!

Desulfitobacterium dichloroeliminans DCA1. *Implicated in reductive dechlorination of dichlorobenzene and potentially chlorobenzene.
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Figure 4: Microbial population summary to aid in evaluating potential pathways and biodegradation of specific con-

taminants.

Anaerobic - Reductive Dechlorination or Dichloroelimination
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Desulfitobacterium dichloroeliminans DCA1. *Implicated in reductive dechlorination of dichlorobenzene and potentially chlorobenzene.
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Figure 5: Microbial population summary to aid in evaluating potential pathways and biodegradation of specific con-

taminants.

Anaerobic - Reductive Dechlorination or Dichloroelimination
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Desulfitobacterium dichloroeliminans DCA1. *Implicated in reductive dechlorination of dichlorobenzene and potentially chlorobenzene.
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Microbial Populations GWEX4-W-201908151440
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Figure 6: Microbial population summary to aid in evaluating potential pathways and biodegradation of specific con-

taminants.

Anaerobic - Reductive Dechlorination or Dichloroelimination

Chlorinated Ethenes (PCE, TCE)
Chlorinated Ethenes (PCE, TCE, DCE,
\(@)
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Aerobic - (Co)metabolism

DHC, DHBt, DSB, DSM, PCE-1, PCE-2 Chlorinated Ethenes (TCE,DCE,VC) sMMO, TOD, PHE, RDEG, RMO
DHC, BVC, VCR (Co)metabolic Vinyl Chloride etnC, etnE
TDR, CER Chlorinated Benzenes TOD, TCBO, PHE

DHC, DHBt, DHG, DSB!, DCA,
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DHBt, DCM, CER

DHC, DHBt?, DECO

DHC, DSB

DHC, DHG, DSB!

Desulfitobacterium dichloroeliminans DCA1. *Implicated in reductive dechlorination of dichlorobenzene and potentially chlorobenzene.
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Table 3: Summary of the QuantArray®-Chlor results for microorganisms responsible for reductive dechlorination for
samples LALF12-W-201908081111, LALF24-W-201908081345, and LALF09-W-201908150927.

Sample Name LALF12-W- LALF24-W- LALF09-W-

201908081111 201908081345 201908150927
Sample Date 08/08/2019 08/08/2019 08/15/2019

Reductive Dechlorination cells/mL cells/mL cells/mL
Dehalococcoides (DHC) 4.16E+01 2.00E-01 (J) 3.63E+01
tceA Reductase (TCE) <5.00E-01 <5.00E-01 <5.00E-01
BAV1 Vinyl Chloride Reductase (BVC) <5.00E-01 <5.00E-01 <5.00E-01
Vinyl Chloride Reductase (VCR) <5.00E-01 <5.00E-01 <5.00E-01
Dehalobacter spp. (DHBt) 1.74E+01 <4.90E+00 1.08E+02
Dehalobacter DCM (DCM) <4.90E+00 <4.90E+00 <4.80E+00
Dehalogenimonas spp. (DHG) <4.90E+00 <4.90E+00 <4.80E+00
Desulfitobacterium spp. (DSB) <4.90E+00 1.37E+01 4.10E+02
Dehalobium chlorocoercia (DECO) 1.22E+01 <4.90E+00 1.17E+03
Desulfuromonas spp. (DSM) <4.90E+00 <4.90E+00 <4.80E+00

Microbial Populations - Reductive Dechlorination
1.00E04 A

1.00E03 -

1.00E02 - ]

cells/mL

1.00E01 1

100E00' T T T T T T T T T
DHC TCE BVC VCR DHBt DCM DHG DSB DECO DSM

B LALF12-W-201908081111 [lll LALF24-W-201908081345 [] LALF09-W-20190815092;

Figure 7: Comparison - microbial populations involved in reductive dechlorination.

11 10515 Research Drive
Knoxville, TN 37932

Phone: 865.573.8188

Fax: 865.573.8133

Web: www.microbe.com



microbialinsights

Table 4: Summary of the QuantArray®-Chlor results for microorganisms responsible for reductive dechlorination for
samples LALF12-W-201908081111, LALF24-W-201908081345, and LALF09-W-201908150927.

Sample Name LALF12-W- LALF24-W- LALF09-W-

201908081111 201908081345 201908150927
Sample Date 08/08/2019 08/08/2019 08/15/2019

Reductive Dechlorination cells/mL cells/mL cells/mL

Chloroform Reductase (CFR) <4.90E+00 <4.90E+00 <4.80E+00
1,1 DCA Reductase (DCA) <4.90E+00 <4.90E+00 <4.80E+00
1,2 DCA Reductase (DCAR) <4.90E+00 <4.90E+00 <4.80E+00
PCE Reductase (PCE-1) <4.90E+00 <4.90E+00 <4.80E+00
PCE Reductase (PCE-2) <4.90E+00 <4.90E+00 <4.80E+00
Dehalogenimonas trans-1,2-DCE Reductase (TDR) <4.90E+00 <4.90E+00 <4.80E+00
Dehalogenimonas cerA Reductase (CER) <4.90E+00 <4.90E+00 <4.80E+00

Microbial Populations - Reductive Dechlorination
1.00E01 -

cells/mL

1.00E00 T T T ; T T r
CFR DCA DCAR PCE-1 PCE-2 TDR CER

B LALF12-W-201908081111 [l LALF24-W-201908081345 [[] LALF09-W-20190815092;

Figure 8: Comparison - microbial populations involved in reductive dechlorination.
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Table 5: Summary of the QuantArray®-Chlor results for microorganisms responsible for reductive dechlorination for
samples LALF10-W-201908151100, GWEX2-W-201908151257, and GWEX4-W-201908151440.

Sample Name LALF10-W- GWEX2-W- GWEX4-W-

201908151100 201908151257 201908151440
Sample Date 08/15/2019 08/15/2019 08/15/2019

Reductive Dechlorination cells/mL cells/mL cells/mL
Dehalococcoides (DHC) 7.40E+00 4.00E-01 (J) 9.00E-01
tceA Reductase (TCE) <5.00E-01 <5.00E-01 <5.00E-01
BAV1 Vinyl Chloride Reductase (BVC) <5.00E-01 <5.00E-01 <5.00E-01
Vinyl Chloride Reductase (VCR) <5.00E-01 <5.00E-01 <5.00E-01
Dehalobacter spp. (DHBt) <4.90E+00 7.15E+02 8.47E+02
Dehalobacter DCM (DCM) <4.90E+00 <5.10E+00 <4.80E+00
Dehalogenimonas spp. (DHG) 4.72E+01 <5.10E+00 <4.80E+00
Desulfitobacterium spp. (DSB) 1.38E+01 <5.10E+00 5.95E+02
Dehalobium chlorocoercia (DECO) 2.56E+02 1.20E+03 1.99E+02
Desulfuromonas spp. (DSM) <4.90E+00 1.24E+02 2.60E+00 (J)

Microbial Populations - Reductive Dechlorination
1.00E04 -

1.00E03 -
1.00E02
1.00E01 - I I

1.00E00 - . : :

DHC TCE BVC VCR DHBt DCM DHG DSB DECO DSM

cells/mL

B LALF10-W-201908151100 [l GWEX2-W-201908151257 [[] GWEX4-W-20190815144(

Figure 9: Comparison - microbial populations involved in reductive dechlorination.
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Table 6: Summary of the QuantArray®-Chlor results for microorganisms responsible for reductive dechlorination for
samples LALF10-W-201908151100, GWEX2-W-201908151257, and GWEX4-W-201908151440.

Sample Name LALF10-W- GWEX2-W- GWEX4-W-

201908151100 201908151257 201908151440
Sample Date 08/15/2019 08/15/2019 08/15/2019

Reductive Dechlorination cells/mL cells/mL cells/mL

Chloroform Reductase (CFR) <4.90E+00 <5.10E+00 <4.80E+00
1,1 DCA Reductase (DCA) <4.90E+00 <5.10E+00 <4.80E+00
1,2 DCA Reductase (DCAR) <4.90E+00 <5.10E+00 <4.80E+00
PCE Reductase (PCE-1) <4.90E+00 <5.10E+00 <4.80E+00
PCE Reductase (PCE-2) <4.90E+00 <5.10E+00 <4.80E+00
Dehalogenimonas trans-1,2-DCE Reductase (TDR) <4.90E+00 <5.10E+00 <4.80E+00
Dehalogenimonas cerA Reductase (CER) <4.90E+00 <5.10E+00 <4.80E+00

Microbial Populations - Reductive Dechlorination
1.00E01 -

cells/mL

1.00E00 T T T ; T T r
CFR DCA DCAR PCE-1 PCE-2 TDR CER

B LALF10-W-201908151100 [l GWEX2-W-201908151257 [[] GWEX4-W-20190815144(

Figure 10: Comparison - microbial populations involved in reductive dechlorination.
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Table 7: Summary of the QuantArray®-Chlor results for microorganisms responsible for aerobic (co)metabolism for
samples LALF12-W-201908081111, LALF24-W-201908081345, and LALF09-W-201908150927.

Sample Name LALF12-W- LALF24-W- LALF09-W-

201908081111 201908081345 201908150927
Sample Date 08/08/2019 08/08/2019 08/15/2019

Aerobic (Co)Metabolic cells/mL cells/mL cells/mL

Soluble Methane Monooxygenase (SMMO) <4.90E+00 <4.90E+00 <4.80E+00
Toluene Dioxygenase (TOD) 8.50E+00 1.80E+00 (J) <4.80E+00
Phenol Hydroxylase (PHE) 8.00E-01 (J) 3.30E+00 (J) 1.66E+01

Trichlorobenzene Dioxygenase (TCBO) <4.90E+00 <4.90E+00 <4.80E+00
Toluene Monooxygenase 2 (RDEG) <4.90E+00 4.99E+01 <4.80E+00
Toluene Monooxygenase (RMO) <4.90E+00 <4.90E+00 <4.80E+00
Ethene Monooxygenase (EtnC) <4.90E+00 <4.90E+00 <4.80E+00
Epoxyalkane Transferase (EtnE) <4.90E+00 <4.90E+00 <4.80E+00
Dichloromethane Dehalogenase (DCMA) <4.90E+00 <4.90E+00 <4.80E+00

Microbial Populations - Aerobic (Co)metabolism

1.00E02 1

cells/mL

1.00E01 1

1 OOEOO I T T T T T
SMMO  TOD PHE TCBO RDEG RMO EtnC EtnE DCMA

B LALF12-W-201908081111 [l LALF24-W-201908081345 [[] LALF09-W-20190815092:;

Figure 11: Comparison - microbial populations involved in aerobic (co)metabolism.
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Table 8: Summary of the QuantArray®-Chlor results for microorganisms responsible for aerobic (co)metabolism for
samples LALF10-W-201908151100, GWEX2-W-201908151257, and GWEX4-W-201908151440.

Sample Name LALF10-W- GWEX2-W- GWEX4-W-

201908151100 201908151257 201908151440
Sample Date 08/15/2019 08/15/2019 08/15/2019

Aerobic (Co)Metabolic cells/mL cells/mL cells/mL
Soluble Methane Monooxygenase (SMMO) 1.42E+02 2.42E+02 <4.80E+00
Toluene Dioxygenase (TOD) <4.90E+00 <5.10E+00 <4.80E+00
Phenol Hydroxylase (PHE) 1.01E+02 5.83E+02 1.66E+02
Trichlorobenzene Dioxygenase (TCBO) <4.90E+00 <5.10E+00 <4.80E+00
Toluene Monooxygenase 2 (RDEG) 1.04E+02 5.65E+02 4.13E+02
Toluene Monooxygenase (RMO) <4.90E+00 <5.10E+00 1.91E+02
Ethene Monooxygenase (EtnC) 5.30E+00 1.23E+01 <4.80E+00
Epoxyalkane Transferase (EtnE) <4.90E+00 <5.10E+00 <4.80E+00
Dichloromethane Dehalogenase (DCMA) <4.90E+00 <5.10E+00 <4.80E+00

Microbial Populations - Aerobic (Co)metabolism

1.00E03 -

1.00E02 -

cells/mL

1.00E01 1

1.00E00 - - T . . .
SMMO  TOD PHE TCBO RDEG RMO EtnC EtnE  DCMA

B LALF10-W-201908151100 [l GWEX2-W-201908151257 [[] GWEX4-W-20190815144(

Figure 12: Comparison - microbial populations involved in aerobic (co)metabolism.
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Table 9: Summary of the QuantArray® results for total bacteria and other populations for samples LALF12-W-
201908081111, LALF24-W-201908081345, and LALF09-W-201908150927.

Sample Name LALF12-W- LALF24-W- LALF09-W-

201908081111 201908081345 201908150927
Sample Date 08/08/2019 08/08/2019 08/15/2019

Other cells/mL cells/mL cells/mL
Total Eubacteria (EBAC) 1.55E+04 1.14E+05 7.80E+04
Sulfate Reducing Bacteria (APS) 1.53E+02 <4.90E+00 7.18E+02
Methanogens (MGN) <4.90E+00 <4.90E+00 <4.80E+00

Microbial Populations - Total Bacteria and Other Populations
1.00EO06 1

1.00EO05 A
1.00E04 1

1.00E03 -

cells/mL

1.00E02 1

1.00E01 1

1.00E00 - T .
EBAC APS MGN

B LALF12-W-201908081111 [l LALF24-W-201908081345 [[] LALF09-W-20190815092:;

Figure 13: Comparison - microbial populations.
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Table 10: Summary of the QuantArray® results for total bacteria and other populations for samples LALF10-W-
201908151100, GWEX2-W-201908151257, and GWEX4-W-201908151440.

Sample Name LALF10-W- GWEX2-W- GWEX4-W-

201908151100 201908151257 201908151440
Sample Date 08/15/2019 08/15/2019 08/15/2019

Other cells/mL cells/mL cells/mL
Total Eubacteria (EBAC) 1.49E+05 7.86E+05 2.62E+05
Sulfate Reducing Bacteria (APS) 5.79E+02 7.60E+03 2.55E+03
Methanogens (MGN) <4.90E+00 <5.10E+00 <4.80E+00

Microbial Populations - Total Bacteria and Other Populations

1.00E06 -
1.00E05 -

1.00E04 1

cells/mL

1.00E03 -

1.00E02 1

1.00E01 1

1.00E00 - .
EBAC APS MGN

B LALF10-W-201908151100 [l GWEX2-W-201908151257 [[] GWEX4-W-20190815144(

Figure 14: Comparison - microbial populations.
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Interpretation

The overall purpose of the QuantArray®-Chlor is to give site managers the ability to simultaneously yet economically evaluate
the potential for biodegradation of a spectrum of common chlorinated contaminants through a multitude of anaerobic and aerobic
(co)metabolic pathways in order to provide a clearer and more comprehensive view of contaminant biodegradation. The following
discussion describes the interpretation of results in general terms and is meant to serve as a guide.

Reductive Dechlorination - Chlorinated Ethenes: While a number of bacterial cultures including Dehalococcoides, Dehalobacter, Desul-
fitobacterium, and Desulfuromonas spp. capable of utilizing PCE and TCE as growth-supporting electron acceptors have been isolated
[1-5], Dehalococcoides may be the most important because they are the only bacterial group that has been isolated to date which is
capable of complete reductive dechlorination of PCE to ethene [6]. In fact, the presence of Dehalococcoides has been associated with
complete reductive dechlorination to ethene at sites across North America and Europe [7], and Lu et al. [8] have proposed using a
Dehalococcoides concentration of 1 x 10* cells/mL as a screening criterion to identify sites where biological reductive dechlorination is
predicted to proceed at “generally useful” rates.

At chlorinated ethene sites, any “stall” leading to the accumulation of daughter products, especially vinyl chloride, would be a sub-
stantial concern. While Delalococcoides concentrations greater than 1 x 10* cells/mL correspond to ethene production and useful rates
of dechlorination, the range of chlorinated ethenes degraded varies by strain within the Dehalococcoides genus [6, 9], and the pres-
ence of co-contaminants and competitors can have complex impacts on the halorespiring microbial community [10-15]. Therefore,
QuantArray®-Chlor also provides quantification of a suite of reductive dehalogenase genes (PCE, TCE, BVC, VCR, CER, and TDR)
to more definitively confirm the potential for reductive dechlorination of all chlorinated ethene compounds including vinyl chloride.

Perhaps most importantly, QuantArray®—Chlor quantifies TCE reductase (TCE) and both known vinyl chloride reductase genes (BVC,
VCR) from Dehalococcoides to conclusively evaluate the potential for complete reductive dechlorination of chlorinated ethenes to non-
toxic ethene [16-18]. In addition, the analysis also includes quantification of reductive dehalogenase genes from Dehalogenimonas spp.
capable of reductive dechlorination of chlorinated ethenes. More specifically, these are the trans-1,2-DCE dehalogenase gene (TDR)
from strain WBC-2 [19] and the vinyl chloride reductase gene (CER) from GP, the only known organisms other than Dehalococcoides
capable of vinyl chloride reduction [20]. Finally, PCE reductase genes responsible for sequential reductive dechlorination of PCE
to ¢is-DCE by Sulfurospirillum and Geobacter spp. are also quantified. In mixed cultures, evidence increasingly suggests that partial
dechlorinators like Sulfurospirillum and Geobacter may be responsible for the majority of reductive dechlorination of PCE to TCE and
cis-DCE while Dehalococcoides functions more as cis-DCE and vinyl chloride reducing specialists [10, 21].

Reductive Dechlorination - Chlorinated Ethanes: Under anaerobic conditions, chlorinated ethanes are susceptible to reductive
dechlorination by several groups of halorespiring bacteria including Dehalobacter, Dehalogenimonas, and Dehalococcoides. While the
reported range of chlorinated ethanes utilized varies by genus, species, and sometimes at the strain level, several general observa-
tions can be made regarding biodegradation pathways and daughter product formation. Dehalobacter spp. have been isolated that
are capable of sequential reductive dechlorination of 1,1,1-TCA through 1,1-DCA to chloroethane [13]. Biodegradation of 1,1,2-TCA
by several halorespiring bacteria including Dehalobacter and Dehalogenimonas spp. proceeds via dichloroelimination producing vinyl
chloride [22-24]. Similarly, 1,2-DCA biodegradation by Dehalobacter, Dehalogenimonas, and Dehalococcoides occurs via dichloroelimina-
tion producing ethene. While not utilized by many Desulfitobacterium isolates, at least one strain, Desulfitobacterium dichloroeliminans
strain DCA1, is also capable of dichloroelimination of 1,2-DCA [25]. The 1,2-dichloroethane reductive dehalogenase gene (DCAR)
from members of Desulfitobacterium and Dehalobacter is known to dechlorinate 1,2-DCA to ethene, while the 1,1-dichloroethane re-
ductive dehalogenase (DCA) targets the gene responsible for 1,1-DCA dechlorination in some strains of Dehalobacter. In addition to
chloroform,chloroform reductase (CFR) has also been shown to be responsible for reductivedechlorination of 1,1,1-TCA [26].

Reductive Dechlorination - Chlorinated Methanes: Chloroform is a common co-contaminant at chlorinated solvent sites and can
inhibit reductive dechlorination of chlorinated ethenes. Grostern et al. demonstrated that a Dehalobacter population was capable of
reductive dechlorination of chloroform to produce dichloromethane [27]. The cfrA gene encodes the reductase which catalyzes this
initial step in chloroform biodegradation [26]. Justicia-Leon et al. have since shown that dichloromethane can support growth of a
distinct group of Dehalobacter strains via fermentation [28]. The Dehalobacter DCM assay targets the 165 rRNA gene of these strains.

Reductive Dechlorination - Chlorinated Benzenes: Chlorinated benzenes are an important class of industrial solvents and chem-
ical intermediates in the production of drugs, dyes, herbicides, and insecticides. The physical-chemical properties of chlorinated
benzenes as well as susceptibility to biodegradation are functions of their degree of chlorination and the positions of chlorine sub-
stituents. Under anaerobic conditions, reductive dechlorination of higher chlorinated benzenes including hexachlorobenzene (HCB),
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pentachlorobenzene (PeCB), tetrachlorobenzene (TeCB) isomers, and trichlorobenzene (TCB) isomers has been well documented [29],
although biodegradation of individual compounds and isomers varies between isolates. For example, Dehalococcoides strain CBDB1
reductively dechlorinats HCB, PeCB, all three TeCB isomers, 1,2,3-TCB, and 1,2,4-TCB [9, 30]. Dehalobium chlorocoercia DF-1 has been
shown to be capable of reductive dechlorination of HCB, PeCB, and 1,2,3,5-TeCB [31]. The dichlorobenzene (DCB) isomers and
chlorobenzene (CB) were considered relatively recalcitrant under anaerobic conditions. However, new evidence has demonstrated
reductive dechlorination of DCBs to CB and CB to benzene [32] with corresponding increases in concentrations of Dehalobacter spp.
[33].

Reductive Dechlorination - Chlorinated Phenols: Pentachlorophenol (PCP) was one of the most widely used biocides in the
U.S. and despite residential use restrictions, is still extensively used industrially as a wood preservative. Along with PCP, the
tetrachlorophenol and trichlorophenol isomers were also used as fungicides in wood preserving formulations. 2,4-Dichlorophenol
and 2,4,5-TCP were used as chemical intermediates in herbicide production (e.g. 2,4-D) and chlorophenols are known byproducts
of chlorine bleaching in the pulp and paper industry. While the range of compounds utilized varies by strain, some Dehalococ-
coides isolates are capable of reductive dechlorination of PCP and other chlorinated phenols. For example, Dehalococcoides strain
CBDBL is capable of utilizing PCP, all three tetrachlorophenol (TeCP) congeners, all six trichlorophenol (TCP) congeners, and
2,3-dichlorophenol (2,3-DCP). PCP dechlorination by strain CBDB1 produces a mixture of 3,5-DCP, 3,4-DCP, 2,4-DCP, 3-CP, and 4-CP
[34]. In the same study, however, Dehalococcoides strain 195 dechlorinated a more narrow spectrum of chlorophenols which included
2,3-DCP, 2,3,4-TCP, and 2,3,6-TCP, but no other TCPs or PCP. Similar to Dehalococcoides, some species and strains of Desulfitobacterium
are capable of utilizing PCP and other chlorinated phenols. Desulfitobacterium hafniense PCP-1 is capable of reductive dechlorination
of PCP to 3-CP [35]. However, the ability to biodegrade PCP is not universal among Desulfitobacterium isolates. Desulfitobacterium
sp. strain PCE1 and D. chlororespirans strain Co23, for example, can utilize some TCP and DCP isomers, but not PCP for growth [2, 36].

Reductive Dechlorination - Chlorinated Propanes: Dehalogenimonas is a recently described bacterial genus of the phylum Chlo-
roflexi which also includes the well-known chloroethene-respiring Dehalococcoides [23]. The Dehalogenimonas isolates characterized to
date are also halorespiring bacteria, but utilize a rather unique range of chlorinated compounds as electron acceptors including chlo-
rinated propanes (1,2,3-TCP and 1,2-DCP) and a variety of other vicinally chlorinated alkanes including 1,1,2,2-tetrachloroethane,
1,1,2-trichloroethane, and 1,2-dichloroethane [23].

Aerobic - Chlorinated Ethene Cometabolism: Under aerobic conditions, several different types of bacteria including methane-
oxidizing bacteria (methanotrophs), and many benzene, toluene, ethylbenzene, xylene, and (BTEX)-utilizing bacteria can
cometabolize or co-oxidize TCE, DCE, and vinyl chloride [37]. In general, cometabolism of chlorinated ethenes is mediated
by monooxygenase enzymes with “relaxed” specificity that oxidize a primary (growth supporting) substrate (e.g. methane)
and co-oxidize the chlorinated compound (e.g.TCE). QuantArray®-Chlor provides quantification of a suite of genes encoding
oxygenase enzymes capable of co-oxidation of chlorinated ethenes including soluble methane monooxygenase (sSMMO). Soluble
methane monooxygenases co-oxidize a broad range of chlorinated compounds [38-41] including TCE, cis-DCE, and vinyl chloride.
Furthermore, soluble methane monooxygenases are generally believed to support greater rates of aerobic cometabolism [40].
QuantArray®-Chlor also quantifies aromatic oxygenase genes encoding ring hydroxylating toluene monooxygenase genes (RMO,
RDEG), toluene dioxygenase (TOD) and phenol hydroxylases (PHE) capable of TCE co-oxidation [42—-46]. TCE or a degradation
product has been shown to induce expression of toluene monooxygenases in some laboratory studies [43, 47] raising the possibility
of TCE cometabolism with an alternative (non-aromatic) growth substrate. Moreover, while a number of additional factors must be
considered, recent research under ESTCP Project 201584 has shown positive correlations between concentrations of monooxygenase
genes (soluble methane monooxygenase, ring hydroxylating monooxygenases, and phenol hydroxylase) and the rate of TCE
degradation [48].

Aerobic - Chlorinated Ethane Cometabolism: While less widely studied than cometabolism of chlorinated ethenes, some chlori-
nated ethanes are also susceptible to co-oxidation. As mentioned previously, soluble methane monooxygenases (sSMMO) exhibit very
relaxed specificity. In laboratory studies, sMMO has been shown to co-oxidize a number of chlorinated ethanes including 1,1,1-TCA
and 1,2-DCA [38, 40].

Aerobic - Vinyl Chloride Cometabolism: Beginning in the early 1990s, numerous microcosm studies demonstrated aerobic ox-
idation of vinyl chloride under MNA conditions without the addition of exogenous primary substrates. Since then, strains of
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Moycobacterium, Nocardioides, Pseudomonas, Ochrobactrum, and Ralstonia species have been isolated which are capable of aerobic
growth on both ethene and vinyl chloride (see Mattes et al. [49] for a review). The initial steps in the pathway are the monooxygenase
(etnABCD) catalyzed conversion of ethene and vinyl chloride to their respective epoxyalkanes (epoxyethane and chlorooxirane),
followed by epoxyalkane:CoM transferase (etnE) mediated conjugation and breaking of the epoxide [50].

Aerobic - Chlorinated Benzenes: In general, chlorobenzenes with four or less chlorine groups are susceptible to aerobic biodegra-
dation and can serve as growth-supporting substrates. Toluene dioxygenase (TOD) has a relatively relaxed substrate specificity
and mediates the incorporation of both atoms of oxygen into the aromatic ring of benzene and substituted benzenes (toluene
and chlorobenzene). Comparison of TOD levels in background and source zone samples from a CB-impacted site suggested that
CBs promoted growth of TOD-containing bacteria [51]. In addition, aerobic biodegradation of some trichlorobenzene and even
tetrachlorobenzene isomers is initiated by a group of related trichlorobenzene dioxygenase genes (TCBO). Finally, phenol hydrox-
ylases catalyze the continued oxidation and in some cases, the initial oxidation of a variety of monoaromatic compounds. In an
independent study, significant increases in numbers of bacteria containing PHE genes corresponded to increases in biodegradation
of DCB isomers [51].

Aerobic - Chlorinated Methanes: Many aerobic methylotrophic bacteria, belonging to diverse genera (Hyphomicrobium, Methylobac-
terium, Methylophilus, Pseudomonas, Paracoccus, and Alibacter) have been isolated which are capable of utilizing dichloromethane
(DCM) as a growth substrate. The DCM metabolic pathway in methylotrophic bacteria is initiated by a dichloromethane dehalo-
genase (DCMA) gene. DCMA is responsible for aerobic biodegradation of dichloromethane by methylotrophs by first producing
formaldehyde which is then further oxidized [52]. As discussed in previous sections, soluble methane monooxygenase (sMMO)
exhibits relaxed specificity and co-oxidizes a broad spectrum of chlorinated hydrocarbons. In addition to chlorinated ethenes, sMMO
has been shown to co-oxidize chloroform in laboratory studies [38, 41].
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