Corridor Alternatives

Rick Hall, P.E. - Hall Planning \& Engineering, Inc.

Content

1. Key Issues

2. Traffic Flow Concepts
3. WIN-WIN Recommendation
4. Safety
5. Other examples

Key Issues

- River Crossings are Constrained
- This Constrained Facility needs special attention
- HOV moves People, not just cars
- Safety by design
- Community concerns are addressed

Transportation Management

- Constrained facility
- Limited ability to enlarge
- Facility Management (FHWA)
- Supply \& Demand
- Get more from existing lanes (supply)
- Operate differently, changes behavior (demand)
- Demand Management
- Get more use w/ HOV incentives for new, efficient travel patterns (demand)

$4^{\text {th }}$ Street Redevelopment

- 2nd Street becomes a major arterial
- 4th Street redesign for improved parking, transit \& pedestrian safety

$4^{\text {th }}$ Street Becomes Walkable

Planning for Regional HOV

- High Occupancy Vehicle (HOV)
- Other HOV as "Managed Lanes"
- In conjunction with High Capacity Transit Corridors
- Rapid Ride Success

Mid-Region Council of Governments

- By the year 2010 all Four Lanes of Montano will be Congested to the point of stand still
- Projected Need for 12 to 16 additional Lanes
- HOV \& Transit planned to supplement supply

Traffic Flow in One Lane

- A vehicle every 2 seconds (max.)
- Equals ≈ 30 vehicles per minute (60/2=30)
- Yields 1,800 vehicles per hour! $(30 \times 60=1,800)$

AM Traffic Flow $-4^{\text {th }} \&$ Montaño

- Morning eastbound, how many vehicles per hour (vph).
- Average Green time is 35% of cycle $1,800 \times 0.35=630 \mathrm{vph}$
- Left \& Right lanes are less, $25 \% 1,800 \times 0.25=450 \mathrm{vph}$

Total flow $\approx 2,160$ vehicles per hour

$(630+630+450+450=2,160)$

Balanced Design?

- One lane $\approx 1,800 \mathrm{vph}$
- w/ Two lanes, 3,600 vph
- $4^{\text {th }} \&$ Montaño intersection accepts $\approx 2,160 \mathrm{vph}$
- Over capacity by 1,440 vph
($3,600-2,160=1,440$)
demand - supply $=$ excess

w/ HOV-Bus Lane

- Emphasizes moving people
- Faster lane as an incentive
- 2+ cars \& trucks, now 16% ~ 300 vph
- If HOV use is doubled
$1,800+600=2,400$ vehicle demand
- Flow is Balanced btw. road \& intersection $2,400-2,140=260 \mathrm{vph}$ demand - supply $=$ balance
- People flow is $3,000+$

Vehicle Flow Balance $4^{\text {th }}$ \& Montaño - eastbound in a.m.

Recommended

Alt E-3 lane@ Rio Grande

Alt E-3lane@ Rio Grande looking west

HOV Safety Gate

Alt E-3 lane@ Rio Grande looking east

Historic Montaño Crossings

- Pedestrian crossings of Montaño need attention for improved walkability

Historic Montaño Crossings

\author{

- Elements of Design
}

HOV \& Montaño Crossings

Safety Issues

- Opposing flows have separation
- Recommended Improvements manage speed to a safe level
- Lower speeds allow for reaction time
- Lower speeds minimize fatalities
- Improved community context

Nicholasville Road - Lexington, KY

- 2 miles in length
- 5 lane section
- 1 lane in off peak direction
- 4 lanes in peak direction
- From UK Campus to New Circle Road
- Controlled by signals, no barriers

The Lions' Gate Bridge

- Vancouver, British Columbia
- Reversible center lane
- $4,978 \mathrm{ft}$ Br. \& approaches
- 60,000 to 70,000 vehicles/day
- Originally two lanes
- Repainted to 3 lanes
- 1990s proposals to widen, but City objected to increased lanes into the urban center

