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Synopsis  of  Research Report 94, Par t  I I
S T A T E M E N T

This Statement, prepared by the Health Effects Institute, summarizes a research project funded by HEI since 1996 and conducted by Dr Jonathan
M Samet of Johns Hopkins University School of Public Health, Baltimore MD. The following Research Report contains a preface, the detailed
Investigators’ Report, Part II, and a Commentary on Part II prepared by a panel of the Institute’s Health Review Committee.

The National Morbidity, Mortality, and Air Pollution 
Study: Morbidity and Mortality from  Air Pollution 
in the United States

BACKGROUND

Epidemiologic time-series studies conducted in a
number of cities have identified, in general, an associ-
ation between daily changes in concentration of
ambient particulate matter (PM) and daily number of
deaths (mortality). Increased hospitalization (a mea-
sure of morbidity) among the elderly for specific
causes has also been associated with PM. These
studies have raised concerns about public health
effects of particulate air pollution and have contrib-
uted to regulatory decisions in the United States.
However, scientists have pointed out uncertainties
that raise questions about the interpretation of these
studies.

One limitation to previous time-series studies of
PM and adverse health effects is that the evidence for
an association is derived from studies conducted in
single locations using diverse analytic methods. Sta-
tistical procedures have been used to combine the
results of these single location studies in order to pro-
duce a summary estimate of the health effects of PM.
Difficulties with this approach include the process by
which cities were selected to be studied, the different
analytic methods applied to each single study, and the
variety of methods used to measure or account for
variables included in the analysis. These individual
studies were also not able to account for the effects of
gaseous air pollutants in a systematic manner.

APPROACH

HEI funded the National Morbidity, Mortality, and
Air Pollution Study (NMMAPS) to characterize the
effects of airborne particles less than 10 �m in aerody-
namic diameter (PM10) alone and in combination with
gaseous air pollutants in a consistent way, in a large
number of cities. The study was designed to select
multiple locations based on the specific criteria of

population size and availability of PM10 data from the
US Environmental Protection Agency=s Aerometric
Information Retrieval System (AIRS) database, and to
apply the same statistical procedures to all locations.
Dr Jonathan Samet and his colleagues at Johns
Hopkins University conducted a time-series study of
mortality effects in large US cities representing various
levels of PM10 and gaseous pollutants. In their anal-
ysis, the investigators first estimated risk in each city
using the same method and then combined these
results systematically to draw more information than
any single city could provide. The 20 and 90 largest
cities were analyzed for effects of PM10 and other pol-
lutants on mortality; the 90 largest cities were ana-
lyzed for possible modification of PM10 effects among
cities by factors other than air pollutants. Dr Samet=s
coinvestigators at Harvard University also applied a
unified statistical method, although different from the
one used in the mortality analysis, to 14 cities with
daily PM10 data to examine effects on hospitalization
among those 65 years of age or older.

RESULTS AND IMPLICATIONS

NMMAPS has made a substantial contribution in
addressing major limitations of previous studies.  The
mortality analysis used one analytic approach to
examine the PM10 effect in many cities that cover a
wide geographic area and have varying levels of dif-
ferent air pollutants. The results of both the 20 cities
and 90 cities analyses are generally consistent with an
average approximate 0.5% increase in overall mor-
tality for every 10 �g/m3 increase in PM10 measured
the day before death. This effect was slightly greater
for deaths due to heart and lung disease than for total
deaths. Effects of PM10 measured on the day of death
or 2 days before did not vary substantially from one
another for total or for heart and lung deaths. The
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PM10 effect on mortality also did not appear to be
affected by other pollutants in the model. 

Although individual estimates for each of the 90
cities varied, as expected, the strength of the analysis
was in its ability to combine data from nearby cities in
a particular region to estimate a PM10 effect. Com-
bining the data in this systematic way provided addi-
tional statistical power to the analysis that is not
available in single-city analyses. Some differences in
PM10 effect on mortality were seen by region of the
US: for the 90 cities, the largest effect was evident in
the Northeast. The investigators did not identify any
factor or factors that might explain these differences.
This analysis is an important first step, and further
evaluation of the reasons for these regional differences
will advance our understanding of the association
between PM10 and mortality. The heterogeneity of
effect across cities offers the potential to identify fac-
tors that could influence the effects of PM10 on health
and thus provide valuable insights into the mecha-
nisms by which PM10 causes adverse health effects.

The morbidity analysis also used a unified analytic
method to examine the association of PM10 with hos-
pitalization of those 65 years of age or older in 14
cities with daily PM10 measurements. The results
were consistent with an approximate 1% increase in
admissions for cardiovascular disease and about a 2%
increase in admissions for pneumonia and chronic
obstructive pulmonary disease for each 10 �g/m3

increase in PM10. A greater estimate of effect on hos-
pitalizations at lower concentrations (less than 50 �g/
m3) was found for the three diagnoses considered, but
the meaning of these findings should await comple-
tion of concentration-response analyses for mortality
now under way using data from 20 cities.

NMMAPS has made substantial contributions to our
understanding of the relationship between exposure to
PM10 and health effects.  Further analyses in these data-
bases of regional differences, the effects on morbidity
and mortality combined, and concentration-response
relationships will enhance our understanding.
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PREFACE

ORIGINS AND OBJECTIVES

In 1996, HEI initiated the National Morbidity, Mortality,
and Air Pollution Study (NMMAPS)*, based on the real-
ization that a national study could address one of the
major questions regarding air pollution and daily mor-
tality: whether particulate air pollution is responsible for
the associations between air pollution and daily mortality
that have been observed in multiple studies, or whether
these associations are due, in part or completely, to other
air pollutants. This realization emerged both from the
experience of the Particle Epidemiology Evaluation Project
(PEEP), funded by HEI from 1994 to 1997, and from an
evaluation of the literature at that point, which largely
included studies of single cities. 

PEEP was designed to (1) address the replicability and
validity of key epidemiologic studies of particulate air
pollution and daily mortality by conducting detailed
reanalyses of selected data sets, and (2) explore in more
extensive data sets some of the larger scientific and public
health issues raised by the findings of these earlier epide-
miologic studies. PEEP investigators, led by Drs Jonathan
Samet and Scott Zeger, successfully replicated the numer-
ical results of the earlier studies, including the previously
reported associations between total suspended particles
(TSP) and daily mortality in Philadelphia (Schwartz and
Dockery 1992). More detailed analysis of the Philadelphia
data led Samet and Zeger to conclude, however, that the
associations with air pollution in that city could not be
attributed to particulate air pollution alone. In its Com-
mentary on the contributions and limitations of PEEP
(Samet et al 1997), the Oversight Committee concluded:
“Although individual air pollutants (TSP, SO2, and ozone)
are associated with increased daily mortality [in Philadel-
phia], the limitations of the … data make it impossible to
establish that particulate air pollution alone is responsible
for the widely observed associations between increased
mortality and air pollution in that city. All we can con-
clude is that it appears to play a role. … Ultimately, it will
require joint analyses of data from multiple cities with dif-
ferent copollutant correlations … to address further the
role of multiple pollutants.”

NMMAPS was also designed to address two additional
issues that complicated interpretation of the results of daily
mortality and air pollution studies considered in PEEP: the
effect of measurement error in exposure estimates on

relative risk estimates, and whether any effect of life-short-
ening (mortality displacement) associated with increased
daily mortality can be removed from estimates of risk asso-
ciated with air pollution. With regard to exposure measure-
ment error,  the Oversight Committee stated in its
Commentary on PEEP that “Errors in exposure measure-
ments as a result of using data provided by centrally
located monitors rather than exposures or doses measured
in individuals, could, in the context of complex multivari-
able models for daily mortality, affect the relative risk esti-
mates in ways that are difficult to predict. The possibility
of such errors are an important source of uncertainty about
the true magnitude of the estimated effects of individual air
pollutants on daily mortality.” For this reason, the Over-
sight Committee recommended “… developing models to
assess exposure measurement errors in daily time-series
analyses, and applying those models to a national data set
using more detailed exposure data, if available.”

The extent of life-span reduction associated with pollu-
tion-related daily mortality in Philadelphia and other
locales remained unclear. If such reductions were small,
due mainly to the advancement of the date of death for
frail individuals by a matter of days (mortality displace-
ment), then the public health implications would be less
profound. The Oversight Committee remarked that “Esti-
mating the extent of life-shortening caused by short-term
elevations in air pollution remains one of the most impor-
tant tasks for future studies.” Developing methods for
addressing the questions of whether any excess daily mor-
tality is associated with air pollution only, or of whether
any association largely reflects short-term mortality dis-
placement, became an important methodologic objective
of NMMAPS.

To address these questions, NMMAPS had the following
two broad objectives:

• To conduct a nationwide study of acute health effects 
of air pollution on morbidity and mortality. NMMAPS 
is based on data from the US national air monitoring 
network provided by the US Environmental Protection 
Agency’s  (EPA’s) Aerometric Information Retrieval 
System (AIRS) database, which contains information 
on particulate matter less that 10 �g in aerodynamic 
diameter (PM10) and other criteria pollutants from 
1987 to 1994, as well as from information on health and 
the population from the National Centers for Health 
Statistics, the Health Care Financing Administration, 
and the US Census.  NMMAPS evaluates two issues: 
(1) air pollution and daily mortality in the 20 and * A list of abbreviations and other terms appears after the Investigators’ Report.
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90 largest US cities, and; (2) daily hospital admissions 
of the elderly (� 65 years old) in 14 US cities with daily 
measurements of PM10. A combined analysis using 
daily mortality and hospital admissions in the same 
cities is planned.

• To develop the statistical and epidemiologic methods 
required for data analysis and interpretation of results 
from such an investigation. NMMAPS investigators 
have developed methods for combining the evidence 
across multiple locations and for assessing the impact 
of exposure misclassification on the estimated associ-
ation between daily mortality and air pollution. They 
have also developed approaches that begin to answer 
the question of whether or not the excess daily mortal-
ity that has been associated with air pollution reflects 
only, or largely, small reductions in survival among 
frail individuals.

NMMAPS focuses on the acute health effects of particu-
late air pollution, measured as PM10. Its design, however,
was intended by the investigators also to provide a frame-
work for the study of pollutants other than particles. 

STUDY PARTICIPANTS AND CONDUCT

NMMAPS has been conducted by a team of investigators
from the Johns Hopkins School of Public Health, led by
Principal Investigator Jonathan Samet and including Drs
Scott Zeger and Francesca Dominici. As discussed above,
Samet and Zeger had conducted PEEP, from which
NMMAPS developed. The Johns Hopkins investigators
were responsible for the design and analysis of the mor-
tality component of NMMAPS. They have worked in col-
laboration with Drs Douglas Dockery and Joel Schwartz of
the Harvard School of Public Health on methods for
addressing mortality displacement and measurement
error. Dockery and Schwartz designed and conducted the
morbidity analyses.

NMMAPS has been overseen by the same Oversight
Committee that worked on PEEP, on HEI’s behalf. This
committee, chaired by Dr Gerald van Belle of the Univer-
sity of Washington, comprises leading experts in epidemi-
ology, biostatistics, pulmonary medicine, and aerometric
measurement. The Oversight Committee was responsible
for working with the investigators to develop, and ulti-
mately to approve the analytic plan that has guided
NMMAPS from its inception.

As the analytic plan for NMMAPS was being developed,
HEI sought the comments of a broad range of scientists and
technical experts from industry, government, and public
interest groups. To provide continuing updates on the

progress of the study to these diverse groups, HEI has orga-
nized regular presentations of interim results at its Annual
Conference (1997 to 1999), a symposium at the Interna-
tional Society for Environmental Epidemiology (Sep-
tember 1999), and briefings for HEI sponsors (July 1997,
February 1998, and December 1998). Besides providing
interested parties with up-to-date information on the
progress of NMMAPS, these events provided HEI, the
Oversight Committee, and the investigators with valuable
comments and suggestions for their work.

REVIEW OF INVESTIGATORS’ REPORT

All HEI reports are reviewed by the HEI Health Review
Committee and external reviewers with relevant expertise
as required by the subject matter of the report. NMMAPS
was reviewed by a Panel that included members of the HEI
Health Review Committee as well as several other individ-
uals with expertise relevant to the methods and analyses
in this report. The Panel also wrote the Commentaries for
Part I and Part II of the NMMAPS report with input from
the full HEI Health Review Committee, members of the
NMMAPS Oversight Committee, and the HEI Research
Committee.

STRUCTURE OF INVESTIGATORS’ REPORT

The results of NMMAPS are presented as two reports.
Part I: Methods and Methodologic Issues comprises a collec-
tion of methodologic papers on three topics: (1) meas-
urement error in air pollution exposure, (2) mortality
displacement, and (3) methods for combining the evidence
in multiple locations using Bayesian hierarchical models.
Part II: Morbidity, Mortality, and Air Pollution in the United
States presents the results of analyses of daily mortality in
the 20 and 90 largest US cities and in hospital admissions of
the elderly (those 65 years old or older) in 14 US cities.
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INVESTIGATORS’ REPORT
The National Morbidity, Mortality, and Air Pollution Study
Part II: Morbidity and Mortality from Air Pollution in the United States

Jonathan M Samet, Scott L Zeger, Francesca Dominici, Frank Curriero, Ivan Coursac,
Douglas W Dockery, Joel Schwartz, and Antonella Zanobetti
OVERVIEW

PROJECT OBJECTIVES

The National Morbidity, Mortality, and Air Pollution
Study (NMMAPS)* comprises analyses of air pollution and
mortality and morbidity set in a national sampling frame
created from the Aerometric Information Retrieval System
(AIRS), the monitoring database of the US Environmental
Protection Agency. The project is a collaboration between
investigators at Johns Hopkins University School of Public
Health (Drs Samet, Zeger, and Dominici) and Harvard
School of Public Health (Drs Dockery, Schwartz, and Zano-
betti). The project’s overall objectives lie in the comple-
mentary domains of methods development and methods
application.

This Report, Part II of NMMAPS, presents the findings
on air pollution and morbidity and mortality in detail. For
daily mortality, we have analyzed data for the 20 and 90
largest cities in the United States. (Throughout this Report,
we refer to the selected study communities as cities
although, because of the data structure, the counties
making up the cities were the actual units of analysis.)
Using a hierarchical modeling approach, we have assessed
the mortality risks associated with particulate matter (PM)

less than 10 �m in aerodynamic diameter (PM10) and the
other combustion-related criteria pollutants: ozone (O3),
nitrogen dioxide (NO2), sulfur dioxide (SO2), and carbon
monoxide (CO). In the 20-city analysis, we provide
detailed findings on the full set of pollutants, combining
evidence across the cities to estimate the effects of the
individual pollutants while controlling to the extent pos-
sible for the effects of the other pollutants. These analyses
are then extended to the 90-city database, which we use to
explore heterogeneity of effects across broad geographic
regions and the determinants of the heterogeneity. The
morbidity analysis, which uses hospitalization data from
the Health Care Financing Administration (HCFA) for
Medicare enrollees, addresses the association of hospital-
ization risk with PM10 and other pollutants in 14 cities.
Hierarchical models are used to summarize the effects of
air pollution on hospitalization risk. In a separate
NMMAPS report, we will provide the findings of a
planned joint analysis of morbidity and mortality.

Part I of the NMMAPS Report, Methods and Method-
ologic Issues (Samet et al 2000b), provides comprehensive
descriptions of the methods used in the present report to
summarize evidence on air pollution and mortality across
multiple locations. It also presents a systematic analysis of
the problem of measurement error in time-series studies of
air pollution and proposes an approach to correcting for the
consequences of measurement error, using data from
studies with measurements for PM from both personal
monitors and central sites. The report also describes 2 con-
ceptually similar analytic approaches to evaluating the
extent of associations found in daily time series on short-
term mortality displacement (also termed harvesting).
These methodologic topics, measurement error and mor-
tality displacement, were selected for development because
both were proposed as potentially severe limitations to
interpretation of the time-series studies.

The objectives for developing specific methodologic
components for NMMAPS are fivefold.

1. To develop semiautomated or automated approaches
for database construction using databases of the EPA,

*A list of abbreviations and other terms appears at the end of the Investiga-
tors’ Report.

This Investigators’ Report is Part II of Health Effects Institute Research
Report 94, which also includes a Commentary by the Health Review Com-
mittee and an HEI Statement about the research project. Correspondence
concerning the Investigators’ Report may be addressed to Dr Jonathan M
Samet, Department of Epidemiology, School of Public Health, Johns Hop-
kins University, 615 North Wolfe Street, Ste W 6041, Baltimore MD 21205-
2179.

Although this document was produced with partial funding by the United
States Environmental Protection Agency under Assistance Award R824835
to the Health Effects Institute, it has not been subjected to the Agency’s
peer and administrative review and therefore may not necessarily reflect
the views of the Agency, and no official endorsement by it should be
inferred. The contents of this document also have not been reviewed by
private party institutions, including those that support the Health Effects
Institute; therefore, it may not reflect the views or policies of these parties,
and no endorsement by them should be inferred.
Health Effects Institute Research Report 94, Part II © 2000 5
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the National Center for Health Statistics (NCHS), the
Health Care Financing Administration (HCFA), the
Census Bureau, and the National Weather Service;

2. To develop and apply statistical methods for regres-
sion analyses of the multisite data and to develop spa-
tial time-series methods to estimate spatial maps of
the relative rates of mortality associated with air pol-
lution, while accounting, as necessary, for the spatial
and temporal correlations in the mortality data;

3. To develop and apply methods that adjust for smooth
trends and seasonality on mortality caused by chang-
ing demographics and health behaviors, influenza
epidemics, and other unidentified factors;

4. To examine the consequences of measurement error in
the exposure variables for assessing pollutant-mortal-
ity associations; and

5. To examine the degree to which pollution-related mor-
tality reduces years of life (mortality displacement).

The objectives for application of methods developed for
NMMAPS are threefold.

1. To assess the relation between air pollution and mor-
tality in the largest US cities monitored for PM10 from
1987 forward;

2. To assess the relation between air pollution and mor-
bidity in selected US cities monitored for PM10 from 1987
forward; and

3. To conduct paired analyses of morbidity and mortality
in the same locations.

The design for NMMAPS builds on prior work supported
by the Health Effects Institute in the Particle Epidemiology
Evaluation Project (PEEP) (Samet et al 1995, 1997). This
project was initiated in 1994 with the objectives of vali-
dating the data and replicating the findings in several of the
time-series studies of air pollution and mortality reported
during the 1990s. In a second phase, PEEP addressed
several methodologic issues. These included selecting the
approach for controlling for potential confounding by
weather (Samet et al 1998) and determining the sensitivity
of findings to model-building strategies (Kelsall et al 1997;
Samet et al 1997).

The present project, NMMAPS, evolved from PEEP. The
objectives encompassed methodologic issues that were per-
sistent sources of uncertainty in interpreting the epidemio-
logic evidence: mortality displacement and exposure
measurement error. The plan for multicity analyses was
prompted by questioning the rationale for the study loca-
tions previously selected and by the prospect of setting this
concern aside with analyses conducted using a defined
sampling frame. Additionally, advances in hardware and

software made this type of analysis feasible. The NMMAPS
project was initiated at the end of 1996, as PEEP was
ending.

INTRODUCTION TO NMMAPS PART II

This report provides an integrated synthesis of the key
findings of NMMAPS on air pollution and morbidity and
mortality. The report begins by introducing the rationale
for the multicity approach that is used in NMMAPS and
briefly describing the statistical methods used to combine
evidence across locations. The findings on mortality are
then presented for the 2 databases: the 20 and 90 largest
US cities. In the analysis of the 20 cities, the primary ana-
lytic thrust was toward estimating the overall effects of
PM10 and other criteria air pollutants. We used the previ-
ously described Bayesian hierarchical model developed
for this purpose (Dominici et al 2000; Samet et al 2000a).
Air pollution–mortality associations are assessed within
the individual cities with previously described methods
(Kelsall et al 1997); the evidence is then combined across
the cities using the model of Dominici and coworkers. We
next provide the results of using a multistage, regional
modeling approach for exploring spatial heterogeneity in
the 90-city database. We also evaluate sociodemographic
and other characteristics of the cities as determinants of
heterogeneity in the effects of PM10.

Hospitalization data are also analyzed by combining
information across cities. For morbidity, the cities were
selected with preference given to those 14 locations having
the most abundant PM10 measurements. The within-cities
time-series analyses are accomplished with a distributed
lag approach developed by Schwartz (2000b). Evidence is
then combined across locations using hierarchical methods
common to meta-analysis. This approach also allows the
examination of sociodemographic characteristics of the
population as modifiers of the effect of PM10 on heart and
lung disease. In addition, the assessment of confounding by
other pollutants was done in the second stage of the hierar-
chical model.

BACKGROUND

NMMAPS was initiated to follow up on evidence from
daily time-series studies that showed associations between
mortality and morbidity—primarily hospitalization in the
elderly—at levels of particulate air pollution found in many
cities in the United States, Europe, and other developed
countries. These observations, published in increasing
numbers of reports from the early 1990s (Bascom et al 1996;
Pope and Dockery 1999), have motivated reassessment of
6
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air quality standards in many countries throughout the
world, including the United States, the United Kingdom,
and the countries in the European Union. The key findings
on mortality have come from 2 types of epidemiologic
studies: (1) time-series studies that address associations
between levels of air pollutants and the daily numbers of
deaths, both total and within specific categories of cause-of-
death; and (2) prospective cohort studies that have assessed
associations of estimates of longer-term air pollution expo-
sure with mortality during follow-up of the participants
(Pope et al 1995b; Dockery et al 1993). The evidence from
these 2 types of studies is complementary. The time-series
studies can be readily carried out using publicly available
data; their findings provide a warning that air pollution
may be adversely affecting public health. The findings of
the cohort studies, showing associations between pollution
exposure and long-term mortality, suggest that the findings
of the time-series studies represent an effect beyond mor-
tality displacement alone.

Although this evidence has motivated reevaluation of
the health effects of air pollution, potential limitations of
the time-series studies of both mortality and morbidity
have been recognized (Lipfert and Wyzga 1997; Vedal
1997; EPA 1996b). Two of the limitations—bias from error
in the exposure measures and lack of information on life-
shortening arising from associations found on the daily
timeframe for mortality—were addressed in NMMAPS
Part I. Evidence from the time-series studies was also ques-
tioned because the study locations had been seemingly
identified without a defined sampling plan and the ability
of the findings to be generalized to other locations was
uncertain. The data had also been analyzed using some-
what different models, with differing specifications of
weather variables, of the lag intervals between the pollu-
tion measures, of the averaging time for the pollutants, and
of the outcomes. Additionally, the ability of multivariable
models to separate the effect of a single component of a
pollutant mixture, such as PM10, from the effects of other
pollutants was questioned repeatedly (Lipfert and Wyzga
1997; Moolgavkar et al 1995). In its 1996 Review of the
National Ambient Air Quality Standards for Particulate
Matter, the EPA (1996a) acknowledged the limitations of
the individual time-series studies while interpreting the
pattern of effects across different locations with different
air pollution mixtures as indicating adverse effects of PM.
Others had similarly interpreted the evidence (Dockery
and Pope 1994; Schwartz 1994).

NMMAPS addresses the limitations of evidence derived
from time-series studies within single locations. The AIRS
database offered a potential sampling frame for selecting
study locations based on specific criteria, such as popula-

tion size or availability of PM10 data (AIRS 1999). Addi-
tionally, in 1996 when NMMAPS began, PM10 data for the
United States had been accumulating since 1987 and the
monitoring data were sufficiently abundant to support
time-series analyses for a number of cities. Software and
hardware were no longer a barrier to the analysis of large
databases, so feasibility was not an obstacle to carrying out
NMMAPS.

A central objective of NMMAPS was to characterize the
effects of PM10 and each of the other criteria pollutants
alone and in combination. In the time-series studies
within individual cities, this goal had been met analyti-
cally by using multivariable regression models that
included PM10 and the other pollutants. Regression coeffi-
cients estimated from such models are often construed as
providing “independent” effects of the various pollutants
under the assumption that estimates of log-relative risks
are approximately additive. Limitations to this interpreta-
tion of model findings are well known. The model, as a
representation of underlying biological phenomena, may
be misspecified and consequently misleading. In urban air,
pollutant levels are typically correlated, often to a mod-
erate degree, because of shared sources and a common
relationship to weather, and the model may not be able to
separate fully the effects of the pollutants in the model.
Errors in the pollution estimates, possibly variable in
extent across the pollutants, may complicate model inter-
pretation (Zeger et al 1999a). Sample size may further limit
interpretation of model findings within single cities
because lengthy series of PM measurements are available
for only a few locations and the EPA has required moni-
toring of PM10 every 6 days for regulatory purposes.

Information concerning the effect of a particular pol-
lutant, such as PM10, can also be gained by assessing the
effect of the pollutant across different locations that have
differing levels of other pollutants such as O3, or different
correlations of those other pollutants with PM10. In fact,
concern for PM as the pollutant causing the positive asso-
ciations found in the daily time-series studies initially
came from the coherence of the findings across multiple
locations. For example, in the earliest reports of time-
series studies during the 1990s, positive associations of
PM with mortality were found in Philadelphia (SO2, NO2,
CO, and O3 present) (Schwartz and Dockery 1992); the
Utah Valley (CO present) (Pope et al 1992); and Santa Clara
(low levels of other pollutants) (Fairley 1990). The coher-
ence of the evidence across locations was repeatedly cited
in interpreting the evidence as supporting an adverse
effect of PM on health (Dockery and Pope 1994; Schwartz
1994; EPA 1996b).
7
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Multicity approaches have the additional advantage of
facilitating evaluation of potential modifying factors. As
for air pollution, variation across populations is evident in
factors that may determine susceptibility, such as socio-
economic status and the underlying mortality rates for
heart and lung disease.

Model-based methods offer a more valuable approach
than informal syntheses for using the across-city informa-
tion on the effects of pollutants and potential modifiers. In
a 2-step modeling approach, within-city time-series regres-
sions are fit in the first stage. In the second stage, levels of
other pollutants or correlations among pollutants are
included in the model to explore (1) modification of the
effect of a single pollutant by another pollutant, and (2)
heterogeneity in pollution effects across cities associated
with demographic and other city-specific factors. This
approach uses the variation in pollution mixture charac-
teristics across locations in its second stage. For this
2-stage approach to be informative, data from a sufficient
number of locations are needed, and there must be hetero-
geneity of air pollution mixtures across locations. In
NMMAPS, we use the hierarchical model developed by
Dominici and colleagues (2000) to implement this multi-
stage approach for mortality.

In several reports (Dockery and Pope 1994; Schwartz
1994), meta-analysis was used to combine information
across locations in order to derive a summary estimate of
the effect of PM on daily mortality counts. The reports
commented on the seeming consistency of effect estimates
across locations, but the authors did not formally explore
confounding or modification of the effect of PM by
including other pollutants in a meta-regression.

Air Pollution and Health: A European Approach
(APHEA) was a project designed to derive summary esti-
mates of the effects of air pollutants using data from
15 European cities in 10 countries; its methods are similar
in principle to those of NMMAPS (Katsouyanni et al 1996).
The initial APHEA project included data on mortality and
hospital emergency admissions for locations selected
because of availability of data and a local team of investiga-
tors. The data for each city were analyzed by time-series
regression according to a standard protocol, and the
city-specific estimates were then combined using a meta-
analytic regression approach. Multiple pollutants were
considered in the second-stage regression, as were variables
for meteorological factors, the accuracy of measurements,
and the health of the population. Both fixed-effects and
random-effects models were used. For example, an analysis
of data from 12 cities addressed the effects of PM and SO2
on mortality; models were fit to the estimates from the 12
cities that included the pollutants by themselves and

together (Katsouyanni et al 1997). APHEA II, now in
progress, extends the number of locations.

NMMAPS represents a further evolution of these multi-
city approaches. The cities for both the mortality and
morbidity analyses were selected from a defined sampling
frame, and the findings were pooled in a weighted fashion
in a second stage of analysis, while controlling for the
effects of other potentially relevant factors and pollutants.
The sample-based selection of study communities has
been extended to both morbidity and mortality, and fur-
ther analyses will explore the relationship between the
effect of air pollution on both morbidity and mortality.

In NMMAPS, the analyses of the hospitalization data
have been carried out using distributed lag models
(Schwartz 2000b), a further advance in time-series models
applied to air pollution and health. Most prior studies had
used ad hoc approaches to selecting lag intervals, some-
times exploring the sensitivity of findings to the particular
choice of lag. The distributed lag approach allows an
assumption-free exploration of the lag structure, and it also
allows the lag structure to be constrained on an a priori
basis. By combining information across cities, estimates of
the effects of air pollutants over multiple days can be made
with greater precision than using data from any single city
and can be used to  examine effect modification and con-
founding by other pollutants or socioeconomic factors.

MORTALITY

Two sets of mortality analyses are reported: the first is
based on the 20 largest cities and the second on the 90
largest cities, including the 20 largest (Figure 1). The 90
cities were selected to encompass the largest locations
with the largest number of deaths (Figures 2 and 3) and
also with the expectation that monitoring data would be

Figure 1. Map of the US showing the 90 cities (the 20 cities are circled)
and the 7 regions considered in the geographic analysis.
8
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available for multiple pollutants, including PM10 (Figures
4 through 8). These data were symmetrically analyzed to
explore not only the effect of PM10 but also the effects of
other pollutants. The data set was then expanded to
include the largest 90 cities. This larger data set was used
primarily to explore spatial variation in the effect of PM10
and determinants of heterogeneity of the effect. The ana-
lytic methods for the 20 cities were those developed by
Dominici and colleagues (2000) and described fully in
NMMAPS Part I.

Methods for the 90-cities analysis are novel. A 3-stage
regional model was developed to estimate PM10 effects in
several US regions. Estimation was performed using
Markov chain Monte Carlo (MCMC) methods. Second-
stage regressions to identify determinants of heterogeneity
of the effects were performed by using a weighted regres-
sion method. The univariate effects of all pollutants for the
90 cities were estimated using the MCMC method. All
additional data analyses focused on estimating adjusted
effects of pollutants, and sensitivity analyses and other
model checking used a random-effect weighted-average
approach as in DerSimonian and Laird (1986). We found
that the weighted-average approach and MCMC yielded
very similar results (Figure 9), and for computational prac-
ticability we used the weighted-average method.

A multistage analysis was used because a uniform ana-
lytic approach was applied to each city, power is gained
from the pooled sample, and heterogeneity can be explored
across the locations. Hierarchical models offer a flexible
approach to the analysis of multilevel data (Morris and
Normand 1992; Lindley and Smith 1972). The hierarchical
approach provides a unified framework for estimating indi-
vidual pollutant effects for particular cities, covariate
effects, and components of variation. This approach facili-
tates more precise estimation of relative rates within each

city than can be accomplished by analysis for each city
individually. In addition, multistage analyses allow estima-
tion of overall or average pollution effects while taking into
account the variability in the air pollution–mortality asso-
ciation across cities. For example, if there is substantial het-
erogeneity in the relative rates across cities, the estimate of
the overall pollution effect will be less precise. The estima-
tion of city-specific and overall relative rates, and of the
within-cities and between-cities variability, is carried out
with MCMC methods (Gelfand and Smith 1990). One
useful feature of these methods is that they provide, in
addition to the point estimate, an approximation of the
entire posterior distribution of the unknown parameter.

METHODS

Data

We obtained data on mortality, weather, and air pollu-
tion for the selected metropolitan areas in the United
States from publicly available data sources. In initially
selecting the locations, we first listed the cities in rank
order by population according to the 1990 Census. Be-
cause mortality data were available only at the county
level, we then used the deaths for the counties comprising
the selected cities. For some locations, it was possible to
separate the city and the county deaths, as the city was a
subunit of the county or distinct from the county: Cook
County and Chicago, Los Angeles County and the city of
Los Angeles, and Baltimore County and Baltimore City.
The selected counties and associated cities, along with the
abbreviations that are used in this report, are provided in
Appendix A.

Daily mortality counts were obtained from the NCHS.
After excluding deaths from external causes and deaths of
nonresidents of the county, we classified the deaths by age
group (< 65 years, 65–74 years, and ��75 years) and by cause
according to the ninth revision of the International Classi-
fication of Diseases (ICD-9): cardiac (390–448); respiratory,
including chronic obstructive pulmonary disease (COPD)
and related disorders (490–496); influenza (487); pneu-
monia (480–486, 507); and the other remaining diseases.
Hourly temperature and dew point were available from the
National Climatic Data Center, as assembled in the Earth-
Info CD database. For analysis, we used the 24-hour mean
temperature and mean dew point for each day.

The air pollution data were obtained from the AIRS data-
base, a computerized repository of information about air-
borne pollution in the United States and various other
countries. Its information includes air quality, emissions,
compliance, and enforcement. The air pollution data are
collected using reference methods established by the EPA

Figure 2. Populations for the 90 cities in the 1990 census. 
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Figure 5. Daily mean concentrations of O3 for the 90 cities, 1987–1994. Boxplots show the median and IQR (box) with the 1% to 99% range. (Pollution values are
based on a 10% trimmed mean as described in Appendix E.)
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Figure 6. Daily mean concentrations of NO2 for the 90 cities, 1987–1994. Boxplots show the median and IQR (box) with the 1% to 99% range. (Pollution values are
based on a 10% trimmed mean as described in Appendix E.)
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Figure 7. Daily mean concentrations of SO2 for the 90 cities, 1987–1994. Boxplots show the median and IQR (box) with the 1% to 99% range. (Pollution values are
based on a 10% trimmed mean as described in Appendix E.)
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Figure 8. Boxplots of daily mean concentrations of CO for the 90 cities, 1987–1994. Boxplots show the median and IQR (box) with the 1% to 99% range. (Pollution
values are based on a 10% trimmed mean as described in Appendix E.)



NMMAPS II: Morbidity and Mortality from Air Pollution in the US
(www.epa.gov/airs/airs.html). We downloaded all available
data for PM10, O3, CO, SO2, and NO2. For the pollutants
measured on an hourly basis, we calculated the 24-hour
average. If multiple monitors were available for a metropol-
itan area, we averaged the data. To protect against the
potential consequences of outlying values, a 10% trimmed
mean was used to average across monitors, after correction
for yearly averages for each monitor. Details of analysis
methods are in NMMAPS Part I (Samet et al 2000b) and in
Dominici and colleagues (2000).

While the 24-hour average O3 value was used, the
average concentration is tightly correlated with the max-
imum value. For example, for 1987-1994 for the cities of
Chicago, Los Angeles, and New York, correlation coeffi-
cients of the maximum 24-hour O3 value with the average
24-hour O3 value were above 0.9 in each location.

Time-series plots of the raw data were generated for
quality control purposes and inspected for unexplained
extreme outlying values, for sudden changes in the day-to-
day variation in the series indicative of possible reporting
errors, and for missing data. Some exclusions were made
based on this review, including several gaps in the mor-
tality series for specific cities and for selected pollutants in
specific cities when data were available for only a brief
interval. 

Data Analysis: 20 Cities

Full details of the analytic methods for the analyses of
the 20 cities have been described in NMMAPS Part I
(Samet et al 2000b) and are only briefly summarized here.
In the first stage of the analysis, the basic model for each
city is a log-linear generalized additive model that

accounts for smooth longer-term fluctuations in mortality
(Hastie and Tibshirani 1990), potentially confounding the
pollution-mortality associations at the daily level. In the
second stage of the analysis, the pollution-mortality asso-
ciations in the individual locations are combined using
hierarchical models (Morris and Normand 1992; Lindley
and Smith 1972). We used the Bayesian hierarchical model
developed by Dominici and colleagues (2000). The Data
Analysis: 90 Cities section in this report provides further
key details.

In the first-stage models, the outcome measure in the
log-linear model is the observed daily mortality. The log-
linear model allows the mortality counts to have variances
that may exceed their means (ie, be overdispersed) and the
overdispersion parameter is allowed to vary by location.
To control for possible confounding by longer-term trends
due to changes in population size and characteristics,
health status, and health care, and to control for possible
confounding by shorter-term factors such as seasonality
and influenza epidemics, we introduced smooth functions
of calendar time for each city, allowing 7 degrees of free-
dom (df) for each year when the mortality record was com-
plete. We allowed these smoothing functions to vary by
age group, adding a separate smooth function of time with
8 df for each age group. To control for the effect of weather
on mortality, we also fit smooth functions of the same day’s
temperature and average temperature for the 3 previous
days, along with comparable functions for dew point.
Finally, we included indicator variables for the day of the
week. These model specifications were based on extensive
exploratory analyses that have been previously reported
(Samet et al 1996; Kelsall et al 1997). The sensitivity of
findings to key assumptions with regard to smoothing for
time and to control of weather variables was explored (see
Figure A.1).

As there were missing values for some variables on some
days, we restricted analyses to days with no missing values
for all covariates. More specifically, to estimate the main
effect of PM10 on mortality, we restricted the analysis to
days with data for PM10. To estimate the effect of PM10 on
mortality with adjustment for O3, however, we restricted
the analysis to days with no missing data for either pol-
lutant. Consequently, because of missing data, the estimates
of the main effects of PM10 were more precise than the esti-
mates of the effects of PM10 adjusted by other pollutants.
The model estimates the log-relative rate for each pollutant
in the model (that is, a coefficient gives the percentage
change in mortality per unit change in the pollutant). In this
report, we express all results as the percentage change in
mortality per 10-unit change in the pollutant. The model
fitting also supplies the estimated covariance matrix for

Figure 9. Comparison of univariate lag-1 results of all pollutants for the
90 cities, first pooled by the MCMC method, then by the weighted
16
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log-relative risks, which is needed for the second stage of
the analysis.

Because the PM10 data were often available only on
every sixth day, it is difficult to estimate distributed lag
models for the full set of cities. Hence, we restricted our
attention to models in which pollutant levels on a single
day were used to predict future mortality. We did, how-
ever, explore a range of lags for the pollutant variables,
including the current day’s pollution data, and 1-day and
2-day lags. In the second stage of the analysis, we further
explored the consequences of varying the lag interval.

In our data set, for 3 of the 20 cities (Chicago, Minneapolis/
St Paul, and Pittsburgh) we have at least 85% of possible
daily PM10 values. For these 3 cities, we fit unconstrained
distributed lag models as proposed by the Harvard group
(see Appendix B).

We approached the assessment of the effects of indi-
vidual pollutants by including multiple pollutants in
models in a sequential fashion. The levels of combustion-
related pollutants tend to be correlated, and consequently
estimates from models that include multiple pollutants
need to be interpreted with caution (Kelsall et al 1997). On
the other hand, estimates from models with only a single
pollutant may also capture some effect from other, uncon-
trolled pollutants. We initially carried out univariate anal-
yses for PM10 and O3, and then considered their effects in
a bivariate model that included both pollutants. Because
O3 levels are substantially higher in the summer than in
the winter, the univariate analyses for O3 were repeated
with stratification by season. We next explored the sensi-
tivity of the estimates to the addition, one at a time, of the
remaining pollutants—CO, SO2, and NO2—into trivariate
models for air pollution. We further explored the effects of
CO, SO2, and NO2 on mortality while including PM10 and
O3 in the models.

Data Analysis: 90 Cities

The analysis of the data from the 90 cities was directed at
describing the heterogeneity of effects across the cities, at
the determinants of heterogeneity, and at estimating
regional effects. We used a new 3-stage regional model to
estimate PM10 effects for multiple US regions and a
weighted linear regression approach to identify determi-
nants of heterogeneity of PM10 coefficients across locations.

To estimate regional effects, a 3-stage regional model
was then applied to the data from the 90 cities. The
3 stages of the regional model describe (1) within-city
variability, (2) within-region variability, and (3) between-
regions variability. In the first stage, we estimated the
log-relative mortality rate associated with PM10 and its

standard error for each location using a semiparametric
log-linear model, as in Dominici and colleagues (2000):

log(�t
c) = �R

c PMc
10t + confounders (1)

where �R
c denotes the log-relative of mortality for location c

in region R. The second stage of the model describes
between-city variation in the true log-relative rates within
region and estimates regional effects �R

c = �R + �R
c. The third

stage describes between-region variation in the true
regional coefficients and estimates the overall vector of
regression coefficients and the overall variance of the
regional coefficients �R = �* + �R.

Specifying dispersed but proper baseline conjugate
prior distributions completes the Bayesian formulation. To
approximate the posterior distribution of all the unknown
parameters, we implement an MCMC algorithm with a
block Gibbs sampler. The full conditional distributions
were available in closed form. Their derivation was rou-
tine and is not detailed here.

Combining the data across cities requires an assumption
concerning the extent of heterogeneity in the air pollution
effect on mortality among the locations. The analyses of
both the 20 and 90 cities shown to this point have assumed
some heterogeneity (that is, the possibility of homogeneity
has been excluded). We explored the consequences of this
assumption by also considering a prior assumption that
gave some weight to complete homogeneity.

This prior model, designated model  A [inverse
gamma(3,3) for �2; inverse gamma(3,1) for �2] assumes het-
erogeneity across cities and regions, possibly substantial
in size, and excludes homogeneity. The effect of this prior
assumption is twofold: the city-specific relative risk esti-
mates draw more heavily on data from some cities and less
heavily on data from other cities; and this model yields
conservative confidence bands on the overall relative risk.
To be conservative, this prior assumption was used in all
analyses of the 20-cities data because only 20 cities does
not provide a strong picture of the degree of heterogeneity
in the data.

In the second approach, the alternative assumption in
the 90-city analysis, we allowed for little or no heteroge-
neity as well as more substantial heterogeneity (model B)
[half normal(0,1) for �2, half normal(0,1) for �2]. Under B,
the data from the 90 cities were themselves used to inform
the degree of heterogeneity assumed by the model. The
resulting city-specific estimates draw on data for each city,
but more heavily from other cities than in model A. This
second approach provides more realistic, less conservative
intervals for the overall effect. Comparison of the two sets
of estimates shows, as anticipated, less homogeneity
17
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within region for model B. Results are provided in
Appendix C.

For the regression analyses on the predictor variables in
Table 1, we used weighted linear regression. The weight
for each city was the inverse of the sum of the statistical
variance for its PM10 relative rate, determined from the
first stage, and an estimate of the natural variability in true
relative rates, determined from a full Bayesian analysis
using MCMC. The best models were chosen to have the
smallest Cp value (Mallows 1973). Mallows Cp statistic is
used as a covariate selection criterion in linear regression
analysis. Better-fitting models have small Cp values that
are close to the number of predictors.

Data Analysis: A Weighted Second-Stage Regression 
Method

Multiple predictor variables were considered in the
second stage of the analysis for the 90 cities. From the air
pollution and mortality databases assembled for NMMAPS
and from the 1990 CensusCD (www.censuscd.com), we con-
structed a data set of county-specific variables. We then
organized the variables into 5 distinct groups for the pur-
pose of variable selection: (1) mean levels of pollutants,
temperature, and dew point; (2) mortality variables,
including crude mortality rate over the time span of the
analysis; (3) sociodemographic variables from the 1990
Census, including percentages of persons in poverty and
persons lacking a high school degree; (4) several variables
related to urbanization, including the percentage of the
population classified as urban and the percentage of the
population using public transportation; and (5) variables
related to the measurement error of PM10 exposure levels.
The 33 variables considered are listed in Table 1. Within
each of these 5 categories, we examined pairwise scatter-
plots of the 90 PM10 coefficients with the variables. Based
on the pattern of correlation, we limited the number of
variables in each of the 5 subsets and created several sum-
mary variables. The resulting new set of 9 variables is
identified in Table 1 with a footnote.

We fit weighted linear regression to estimate the effects
of the county-specific variables on the PM10 coefficients.
All predictors were centered with respect to their mean, so
that the intercept can be interpreted as the log-relative rate
of mortality for PM10 when the predictor is centered at its
mean value.

We consider the following model:

�̂c = �0 + �
j=1

k
�j(X

c
j 	 X̄ c) + �c. (2)

Estimates of �̂0 and �̂ j are found by weighted least squares
regression with weights ŵ c

j based on a random-effects
model, defined as

ŵ c
j  = 1—

v̂ c + �2
,

where v̂ c is the estimated statistical variance of �̂c and �2

measures the heterogeneity of the true slopes across loca-
tions, which was fixed at the estimate obtained from the

Table 1. City-Level Variables Evaluated for Second-Stage 
Models by Group

Mean levels of pollutants, temperature, and dew point
Effect of PM10 lag 1 on total mortalityb

Mean of PM10 levels (PM10)b

Median PM10 cross correlation (MCC)b

Mean of O3 levels (O3)b

Mean of NO2 levels (NO2)b

Mean of SO2 levels (SO2)
Mean of CO levels (CO)
Mean temperature
Mean dew point 

Total mortality ratea

Mean total mortality
Crude mortality rate (CMR)b

log(%RESP/%OTHER)
log(%CVD/%OTHER)
log(%<65/%>75)
log(%65–75/%>75)

Sociodemographic variables from 1990 US Census
% High school degree or above (%NoHS)b

% College educated 
% Unemployed (%Unemp)
% Drive alone to work 
% Public transportation (%PubTrans)
Mean travel time to work 
Median household income (HsInc/1000)b

Median family income 
Median per capita income 
% Poverty (%Pov)

Variables related to urbanization
Total population 
Area 
% Urban population 
% Drive alone to work 
% Public transportation (%PubTrans)b

Mean travel time to work

Variables related to measurement error
Number of monitors
Median of all pairwise correlations between monitors (PC)

a Calculated as the crude mortality rate over the time span of the analysis.
b Variables selected for the second-stage analysis.
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MCMC analysis under the first prior model of substantial
heterogeneity (model A).

Because all cities do not monitor all pollutants, the
second-stage regressions must take account of missing
explanatory variables, particularly mean NO2, O3, and the
median cross-correlation among PM10 monitors. We there-
fore used multiple imputation (Little and Rubin 1987) to
estimate the stage 2 regression in the presence of missing
covariate information. Briefly, we created 5 complete data
sets by simulating imputed values for the missing covariate
from its posterior distribution, given all the other covariates
and log-relative risk for that city. For each of the 5 complete
data sets, we refit the stage 2 model, obtaining regression
coefficients and their estimated covariance matrix. The
final regression coefficients are the mean of the 5 sets of
coefficients. The variances (standard deviations squared)
are the sum of the average of the 5 statistical variances cal-
culated from each complete data set plus the variance of
the 5 sets of coefficients across the replications. By incorpo-
rating the variation in the coefficients across 5 distinct
imputations of the missing covariates, we see that the stan-
dard errors in Table 5 reflect increased uncertainty from
having partial covariate information for some cities.

All analyses were carried out using the statistical lan-
guage S-plus.

RESULTS

City Characteristics

The selected cities represent nearly every region and
state of the United States excepting only the sparsely pop-
ulated states (Figure 1). Population ranged from nearly 9
million (Los Angeles) to 160,976 (Topeka) for the 90 cities
and to 1,185,394 (San Antonio) for the 20 cities (Figure 2).
The numbers of deaths followed a similarly broad range
(Figure 3). Detailed tables concerning the selected counties
are provided in Appendix A.

Box plots for the daily values of the 5 criteria pollutants
considered in these analyses are represented in Figures 4
through 8. The extent of  monitoring data available varied
among the pollutants (see Appendix A). Mean daily values
for PM10 ranged from about 20 �g/m3 to near 50 �g/m3.
The present 24-hour standard of the EPA is 150 �g/m3. For
PM10, substantial variation was evident from day to day
(Figure 4); median values tended to drop with population
size. Values for O3 were also variable but had no relation to
population size (Figure 5). Data were not as abundant for
the remaining pollutants (Figures 6 through 8). Conse-
quently, multipollutant models drew on different sets of
locations, depending on the selected pollutants.

Numbers of PM10 monitors varied across the locations.
To characterize the quality of PM10 exposure estimates
better, we have calculated the median of all pairwise corre-
lations among monitors within each location. Figure 10
shows the median correlations for each location. The num-
bers following  city name denote number of monitors.

Results for PM10

The initial univariate analysis for the 20 cities, con-
ducted with prior assumption of substantial heterogeneity,
indicated that the lag-1 PM10 concentration was positively
associated with total mortality in most locations (Figure
11; Appendix A provides the coefficient values and 95%
confidence intervals [CIs]). The estimated effects ranged
from over 1% per 10 �g/m3 in New York City, San Diego
and Oakland to no effect or even a negative effect in
Dallas/Fort Worth, Cleveland, and Atlanta.

We next explored the sensitivity of the findings for PM10
to the inclusion of other pollutants to the model. We ini-
tially included O3 with PM10 to make the 2-pollutant or
bivariate model and then added the other pollutants (NO2,
SO2, or CO), yielding 3-variable or trivariate models.The
associations of PM10 with mortality changed little with the
addition of O3 to the model or with the addition of a third
pollutant in the trivariate models. The stability of the asso-
ciations of PM10 with total mortality is shown in pairwise
plots of the estimated relative rates (Figure 12). The points
in these plots, with 1 point for each city, represent the
values of the PM10 coefficients with (vertical axis) and
without (horizontal axis) control for additional pollutants.
The larger circle is plotted in correspondence to the
pooled PM10 coefficients with and without adjustment.
The sets of coefficients generally tracked along the line of
identity for PM10. This figure suggests that the effect of
PM10 is robust to the inclusion of other pollutants.

A similar pattern of effects of PM10 was evident for the
grouping of cardiovascular and respiratory deaths (Figure
13). The associations of PM10 with mortality from these
causes, as for total mortality, were robust to the inclusion
of other pollutants in the model. In general, PM10 was not
associated with mortality for the grouping of other causes
of death (Figure 14).

The pooled analysis of the 20-cities data confirmed the
association of PM10 with total mortality and with cardio-
vascular and respiratory deaths. Figures 15 and 16 provide
the marginal posterior distributions of the overall effect of
PM10 on total mortality and cardiorespiratory deaths,
respectively, at lags 0, 1, and 2.

The posterior distributions indicate the strength of
evidence that the pollutant effect is greater than 0. The
posterior probability that the overall effect is greater than 0
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Figure 10. Median correlations for each of the 90 locations (and number of monitors). Aggregation of the measured PM10 levels across monitors is done by
a 10% trimmed mean.
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is given in the plot in the box. Note that these posterior dis-
tributions are conservatively wide because they are based
on the prior model of substantial heterogeneity across
cities. For total mortality, the distributions are shifted
toward the right and centered on an effect of approxi-
mately 0.5% for each 10 µg/m3 increase in PM10 at lag 1;
the posterior distributions indicate that the effect is not
likely to be due to chance. For cardiorespiratory deaths
(Figure 16), the effect of PM10 is somewhat greater than it
is for total mortality, and there is an even greater posterior
probability that the effect is larger than 0. In contrast to the
PM10 findings for cardiorespiratory deaths, there was less
evidence for an effect of PM10 for noncardiorespiratory
deaths (Figure 17). The posterior distributions for PM10
did not shift with inclusion of other pollutants, suggesting
that the univariate findings were not affected by con-
founding by other pollutants (Figure 18).

Figure 19 shows the estimates of the PM10 effects for
Chicago, Minneapolis/St Paul, and Pittsburgh under the
unrestricted distributed lag model and estimates made
using the current day’s pollution data, or with 1-day and
2-day lags. The summary of the 7-day distributed lag coef-
ficients was greater than each of the estimates based on a
single day’s value. The 14-day estimate was substantially
lower than the 7-day estimate in Chicago and Minneapolis/
St Paul.

Figure 11. PM10 effect without adjustment for O3 in the 20 cities. Each
bar shows the regression coefficients and 95% CIs for total mortality.

Figure 12. Pairwise plots of the estimated relative rates for effects of
PM10 on mortality adjusted for O3, O3 and NO2, O3 and SO2, and O3 and
CO for the 20 cities. The empty circles are plotted at the posterior means
of the corresponding overall effects. Small dots are plotted at the MLE
estimates of each city. The number of the dots may be smaller than 20
because of the missing data.

Figure 13. PM10 effect without adjustment for O3. Regression coefficients
and 95% CIs for cardiorespiratory mortality for the 20 cities.

Figure 14. PM10 without adjustment for O3. Regression coefficients and
95% CIs for other mortality for the 20 cities.
21
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In the next phase of the analysis, we explored factors
modifying the effect of PM10 in the 90 cities as determined
using the prior assumption model of substantial heteroge-
neity. We first fit simple univariate weighted linear regres-
sion models to estimate the effects of the mean levels of
pollutants and also of the sociodemographic variables on
the PM10 coefficients (the weights were defined earlier).
The results are summarized in Tables 2 and 3. For the vari-
ables considered, effects were weak and none were statisti-
cally significant.

We then fit multivariate weighted linear regression
models to assess further factors that might predict the

PM10 coefficients, using the variables previously selected
(Table 1). More specifically, within each of the 5 groups of
variables (Table 1) we identified the optimal subset of pre-
dictors by the value of the prediction error, as measured by
the Cp statistic (Mallows 1973). In reviewing the optimal
subset of models, we identified a final list of 8 predictors:
mean PM10, O3, and NO2 levels; fraction of persons
without a high school degree (%NoHS); percentage of per-
sons using public transportation (%PubTrans); household
income (HsInc); crude mortality rates (CMR); and the
median of all pairwise correlations across monitors (MCC). 

Figure 15. Marginal posterior distributions for effects of PM10 on all-cause
mortality at lags 0, 1, and 2, without control for other pollutants, for the
20 cities. The box to the top right provides the posterior probabilities that
the overall effects are greater than 0.

Figure 16. Marginal posterior distributions for effects of PM10 on cardio-
respiratory mortality at lags 0, 1, and 2, without control for other pollut-
ants, for the 20 cities. The box to the top right provides the posterior
probabilities that the overall effects are greater than 0.
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Lag 2

0.84
0.83
0.80

% Change per 10 µg/m   Increase in PM3
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Figure 17. Marginal posterior distributions for effects of PM10 on other
mortality at lags 0, 1, and 2, without control for other pollutants, for the
20 cities. The box to the top right provides the posterior probabilities that
the overall effects are greater than 0.
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Figure 18. Marginal posterior distributions for effects of PM10 on total
mortality at lag 1 with and without control for other pollutants, for the 20
cities. The box to the top right provides the posterior probabilities that the
overall effects are greater than 0.
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Figure 20 shows all pairwise scatterplots of city-specific
coefficients for the effect of PM10 divided by the inverse of
their standard deviations and the final list of predictors.
We then found the best regressions among the identified

subset of 9 exploratory variables by using the leaps func-
tion in S-plus (Weisberg 1985). The leaps function pro-
vides a way to select a few promising regressions (sets of
exploratory variables) based on the prediction error as
measured by the Cp statistic.

Figure 19. Summary estimates of the PM10 effects for Chicago, Minneap-
olis/St Paul, and Pittsburgh under the unrestricted distributed lag model
for 7 days and 14 days as well as estimates made for lags 0, 1, and 2.

Table 2. Point Estimates of Weighted Linear Regression 
Model of PM10 Log-Relative Rates for 90 Cities Against 
Mean Levels of Pollutants in 90 Cities

Pollutant Slopea (SD)

PM10 (µg/m3) 	0.009  (0.010)
O3 (ppb) 0.008 (0.016)
NO2 (ppb) 0.016 (0.012)
SO2 (ppb) 0.023 (0.022)
CO (ppm) 0.0084  (0.020)

a The slope is the expected value of the PM10 log-relative rate per 1 unit 
change of mean level of pollutant (see Equation 2).

Figure 20. Pairwise scatterplots of city-specific coefficients for effect of PM10 (effpm10) with mean levels of PM10, O3, and NO2, crude mortality rate
(CMR), household income (HsInc), percentage of residents not graduating from high school (%NoHS), percentage using public transportation [logit (%Pub-
Trans)] and median PM10 concentrations (Med.Corr) for the 90 cities. Numbers along the x-axis and y-axis represent the ranges of the variables.
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Table 4 provides the best-fitting models by the Cp value
according to the number of indicators in the model. We
picked the best 1-variable, 2-variable, 3-variable and
4-variable models and the best model overall. Table 5 pro-
vides the results of these 5 models, each having the PM10
coefficient for total mortality and lag 1 as the outcome
measure. The coefficients that are statistically significant
in these 5 models are the mean levels of NO2 in models 3
and 4 and the mean level of PM10 in model 5.

We next performed a spatial analysis of the PM10 coeffi-
cients by grouping the 90 counties into 7 geographical
regions (Northwest, Upper Midwest, Industrial Midwest,
Northeast, Southern California, Southwest, Southeast), fol-
lowing the stratification of the United States used in the
1996 Review of the National Ambient Air Quality Stan-
dards for Particulate Matter (EPA 1996a) (see Figure 1).

More specifically, we fit the 3-stage regression model by
MCMC simulation with the index R denoting the 7 geo-
graphical regions. Figure 21 shows the maximum likeli-

hood point estimates (open circles) and associated 95%
CIs of the log-relative rates of mortality per 10 µg/m3

increase in PM10 at lag 1 for each location. Estimates for
the individual cities were made independently without
borrowing information from the other cities. The 90 cities
are grouped into the 7 regions in the figure. The bolded

Table 3. Point Estimates of Weighted Linear Regression 
Model of PM10 Log-Relative Rates for 90 Cities Against 
Sociodemographic Variables

Variable Slopea (SD)

HsInc/1000b 0.008 (0.015)
%NoHSc 0.011 (0.012)
%Unempd 0.020 (0.038)
%Pove 0.001 (0.017)

a The slope is the expected value of PM10 log-relative rate per 1 unit change 
of the level of the predictor variable.

b HsInc/1000 = Median income/1,000.
c %NoHS = % of adults without high school diploma.
d %Unemp = % unemployed.
e %Pov = % of households below poverty level.

Table 4. Best-Fitting Models as Determined by Smaller Cp 
Values with 1, 2, 3, 4, or 5 Predictors Chosen from Table 1

Number of
Predictors Predictor Variables Cp

1 PM10 10.8
NO2 11.5
% Public transportation (%PubTrans) 11.9
% No high school (%NoHS) 13.3
Household income (HsInc) 13.4
Median PM10 cross correlation (MCC) 13.6
Crude mortality rate (CMR) 13.7

2 PM10, %NoHS 8.4
PM10, NO2 8.8
PM10, O3 10.6
PM10, CMR 12.5

3 PM10, O3, NO2 6.8
PM10, O3, %NoHS 7.7
PM10, NO2, %NoHS 8.4
PM10, HsInc, %NoHS 10.3

4 PM10, O3, NO2, MCC 5.8
PM10, O3, NO2, %NoHS 6.4
PM10, O3, %NoHS, %PubTrans 6.4
PM10, O3, NO2, %PubTrans 6.5

5 PM10, O3, NO2, %NoHS, MCC 4.6
PM10, O3, NO2, %NoHS, %PubTrans 6.4
PM10, O3, CMR, %NoHS, %PubTrans 7.2
PM10, O3, NO2, HsInc, %NoHS 8.1

Table 5. Results of Weighted Linear Regressions for Best Model (Smallest Cp) for 1 to 5 Predictor Variables 
Chosen from Table 4a 

Model PM10 O3 NO2 %NoHSb MCCc

1 0.009 (0.010) — — — —
2 	0.017 (0.011) — — 0.019 (0.012) —
3 	0.021 (0.012) 0.020 (0.017) 0.025 (0.013)d — —
4 	0.025 (0.015) 0.020 (0.017) 0.026 (0.013)d — 	0.33 (0.70)
5 	0.032 (0.016)d 0.023 (0.018) 0.024 (0.013) 0.059 (0.012) 	0.30 (0.70)

a Coefficient (SD).
b %NoHS = percentage without a high school diploma.
c MCC = median PM10 cross correlation.
d Coefficient is statistically significant (P < 0.05).
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Figure 21. Effects of PM10 on total mortality and 95% CIs for each of the 90 cities, grouped by region.



NMMAPS II: Morbidity and Mortality from Air Pollution in the US
segments represent the posterior means and 95% posterior
intervals of the pooled regional effects under the more con-
servative prior A for the heterogeneity across both regions
and cities within regions. The solid circle and the square
denote the overall regional means without and with bor-
rowing information from the other regions, respectively. At
the extreme right, marked with triangles and bolded seg-
ments, are displayed the overall effects of PM10 for all
cities, minus those in the Northeast, and the overall effect
of PM10 for all cities. The effect of PM10 varied somewhat
across the 7 regions (Figure 22). The effect of PM10 was
estimated to be greatest in the Northeast, with a log-rela-
tive rate of 0.9 (95% CI, 0.58, 1.31). Appendix C explores
the sensitivity of these findings to the prior assumption
with regard to heterogeneity across cities and regions.

Figure 22. Posterior means/posterior standard error (t ratio) of regional
effects of PM10 at lag 1.

Figure 23. Posterior means and 95% posterior intervals of regional effects of PM10 at lags 0, 1, and 2 for the 90 cities. At the far right are the overall effects
at lags 0, 1, and 2.
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Results for Other Pollutants

We further explored whether the regional effects of
PM10 were sensitive to the lag specification and to adjust-
ment of other pollutants. Figures 23 and 24 show Bayesian
regional and overall estimates and 95% credible regions of
the PM10 effects on total mortality at lags 0, 1, and 2,
respectively. As for the 20 cities, the evidence suggests a
positive effect and a small variation among the three lags.
Figure 25 shows the posterior distribution of PM10 effect
on total mortality for the 90 cities at lag 1 as well as the
effect of PM10 adjusted for other pollutants. As for the 20
cities, the effect of PM10 changed little with control for the
other pollutants.

Figures 26 through 29 provide the findings of models for
the other pollutants (O3, SO2, NO2, and CO) in 20 cities.
For total mortality, each figure presents the regression
coefficients and 95% CIs at lags 0, 1, and 2 for univariate,
bivariate (adding PM10), and trivariate (adding PM10 and
1 of the remaining pollutants). For O3, there was little evi-
dence of an effect except at lag 2, although the univariate
estimate was negative at lag 2. For SO2 (Figure 27), the
univariate models had the highest coefficients and adjust-
ment for other pollutants tended to reduce the effect, sug-
gesting confounding. There was no consistent pattern of
association for NO2 (Figure 28). For CO, effects were posi-
tive and generally significant (Figure 29). Adjustment for
other pollutants tended to reduce the effect.

Figure 24. Marginal posterior distributions for effects of PM10 on all-
cause mortality at lag 0, 1, and 2, without control for other pollutants, for
the 90 cities. The box at the top right provides the posterior probabilities
that the overall effects are greater than 0.

Figure 25. Marginal posterior distributions for effects of PM10 on total
mortality at lag 1 with and without control for other polltants, for the 90
cities. The box at the top right provides the posterior probabilities that the
overall effects are greater than 0.
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Figure 26. Weighted mean effects of O3 on total mortality at lags 0, 1, and
2 in the 20 cities. Models A = O3 alone; B = O3 + PM10; C = O3 + PM10 +
NO2; D = O3 + PM10 + SO2; E = O3 + PM10 + CO.
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Figure 27. Weighted mean effects of SO2 on total mortality at lags 0, 1, and 2
in the 20 cities. Models A = SO2 alone; B = SO2 + PM10; C = SO2 + PM10 + O3;
D = SO2 + PM10 + NO2; E = SO2 + PM10 + CO.
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The effect of O3 was examined across the whole year
and by season because of the generally higher levels dur-
ing the summer. Overall, for the full year, the distributions
for the effects of O3 are centered on 0 and there is only an
even chance that the effect is larger than 0 for both total
and cardiorespiratory deaths. Because O3 levels vary
widely by season, we compared the effects of O3 during
the 3 hottest months (June, July, and August) and winter
months (December, January, and February). With stratifica-
tion, there was reasonably strong evidence of an effect of
O3 during the summer (posterior mean = 0.41 ppb; 95% CI
[	0.20, 1.01]), but not during the winter (posterior
mean = 	1.86 ppb, 95% CI [	2.70, 	0.96]) (Figure 30).

HOSPITALIZATION OF THE ELDERLY

In the last decade, many studies have assessed the
association of air pollution with daily numbers of hospital-
izations and emergency room admissions (reviewed by
Pope and Dockery 1999). Although positive findings were
reported for most of the studies, the study methods dif-
fered substantially. As for the NMMAPS mortality anal-
ysis, we applied a systematic 2-stage approach to data from
14 cities selected from the sampling frame afforded by the
AIRS database. We used the distributed lag models
(Appendix B) for this analysis; to gain the most precise
estimates possible with these models, we restricted the
analysis to those cities with daily PM10 measurements.

The distributed lag models differ conceptually from the
ad hoc approaches based on best fit in individual cities,
which have been generally used. These distributed lag
models assume that the effect of PM10 on hospital admis-
sions may be distributed over several days. To test this
assumption, we included PM10 concentrations on the same
and several prior days in the model to estimate the effect on
each lag simultaneously. Estimates based on such
approaches can be subject to substantial variability due to
stochastic error. The multicity approach reduces stochastic
variability by combining information from different loca-
tions. Most past studies have also used simple moving aver-
ages of pollution to assess whether the effect of air pollution
on health persists for more than 1 day following exposure.
The effect of air pollution might plausibly, however,
diminish gradually over several days or be initially
delayed, resulting in an estimated effect that is larger for air
pollution exposures on the prior day than on the day of

Figure 29. Weighted mean effects of CO on total mortality at lags 0, 1,
and 2 in the 20 cities. Models A = CO alone; B = CO + PM10; C = CO +
PM10 + O3; D = CO + PM10 + NO2; E = CO + PM10 + SO2. The weighted
mean effect of CO on total mortality at lag 0 under model D is not
reported because the confidence interval was too wide to be considered
informative.

Figure 28. Weighted mean effects of NO2 on total mortality at lags 0, 1, and 2
in the 20 cities. Models A = NO2 alone; B = NO2 + PM10; C = NO2 + PM10 + O3;
D = NO2 + PM10 + SO2; E = NO2 + PM10 + CO.

% Change in Mortality per 10 ppb
1.5 1.0 0.5 0.0 0.5 1.0

all seasons
winter
summer

Figure 30. Marginal posterior distributions of the overall effects of O3 at
lag 0 for all seasons, Summer (June, July, August) and Winter (December,
January, February) for the 90 cities.
28



JM Samet et al
detected response. In modeling time-series data, it is
possible to include air pollution values on multiple days to
estimate directly the effects at different lags, but this
approach is limited in analyses of data from single cities
because multicollinearity makes the estimated effects at dif-
ferent lags very imprecise. Although imprecise, the esti-
mates are unbiased; hence a multiple-city analysis, which
can average out the noise, makes the distributed lag
approach feasible. We have used the distributed lag model
to estimate the association between PM10 and hospital
admission for heart and lung disease, including the distri-
bution of effects over time.

METHODS

Cities

Cities were sorted by the number of days with PM10
observations for the period 1985 through 1994. The goal
was to select cities with extended daily PM10 measure-
ments for the period 1985 through 1994 (years of available
hospital admission data) from cities distributed geograph-
ically across the United States. Eighteen cities met the
following criteria for inclusion:

• At least 1,460 days (4 years) with PM10 measurements 
between 1985 and 1994.

• Daily PM10 measurements on at least 50% of days be-
tween the city-specific start and end of measurements.

To maintain geographic diversity, no more than 2 cities
were included in each state. Cincinnati was excluded
based on this criterion. Denver was excluded because for
most of the years it did not have daily data, making it diffi-
cult to fit distributed lag models. In addition, in order to
focus on combustion-related particles, Albuquerque (1,751
days of observations) was excluded because of the influ-
ence of wind-blown dust.

We chose the metropolitan county containing each city
except for Minneapolis and St Paul, which were combined
and analyzed as a single city, and Birmingham, which
included some suburban counties to increase the popula-
tion (Table 6). Thus, 14 cities were selected for inclusion:
Birmingham, Boulder, Canton, Chicago, Colorado Springs,
Detroit, Minneapolis/St Paul, Nashville, New Haven, Pitts-
burgh, Provo/Orem, Seattle, Spokane, and Youngstown.

Hospital Admissions Data

Daily counts of hospital admissions were extracted from
HCFA using Medicare billing records. Data were requested
for respiratory and cardiovascular admissions for the
entire United States. These data, more than 75 million
records, were received on 264 IBM 9-track tapes. Most of
the data were received in Medical Provider Analysis and

Table 6. Cities with Daily Measurements of PM10 Included in Analysis, Counties Used to Define Cities, and Demographic 
Characteristics of Cities Based on 1990 Census

City County Population 

> 65 
Years
(%)

College 
Educated

(%)
Unemployed

(%)
Poverty

(%)
Nonwhite 

(%)

Birmingham Blount, Jefferson, 
Shelby, St Clair, 
Walker

907,810 14.0 19.9 6.5 16.0 36.0

Boulder Boulder 225,339 7.6 17.9 2.7 10.5 6.5
Canton Stark 367,585 14.4 14.3 7.2 11.1 8.0
Chicago Cook 5,105,067 12.4 22.8 8.0 14.2 37.0

Colorado Springs El Paso 397,014 8.0 25.8 7.3 10.4 14.0
Detroit Wayne 2,111,687 12.5 13.7 12.4 20.1 43.0
Minneapolis/St Paul Hennepin, Ramsey 1,518,196 12.2 30.7 4.8 9.9 11.0
Nashville Davidson 510,784 11.6 11.6 2.7 12.4 25.2

New Haven New Haven 804,219 14.7 24.2 5.8 7.9 14.0
Pittsburgh Allegheny 1,336,449 17.4 22.6 6.3 11.5 12.0
Provo/Orem Utah 263,590 7.0 8.7 2.2 14.8 3.6
Seattle King 1,507,319 11.1 32.8 4.1 8.0 15.0

Spokane Spokane 361,364 13.3 20.6 7.3 13.7 5.0
Youngstown Columbiana, 

Mahoning
373,082 16.4 5.9 3.9 15.7 12.2
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Review (MEDPAR) format—that is, 1 record for each
admission. Data for 2 years, 1992 and 1993, were received
as Standard Analytic Files (SAF), with 1 record for each
billing. In the SAF format, a single admission may generate
multiple records. The multiple SAF records were therefore
combined into a single record for each admission.

For each county, day-specific counts of hospital admis-
sions by diagnostic categories were calculated for cardio-
vascular disease (CVD) (ICD-9, 390–429); COPD (ICD-9,
490–492, 494–496); and pneumonia (ICD-9, 480–487), in
persons aged 65 years and older.

Table 7 presents the average number of HCFA respiratory
and cardiovascular hospital admissions per day for

NMMAPS morbidity cities. For comparison across commu-
nities, admissions per 10,000 person-years were calculated.

We excluded days when the hospital admissions showed
outliers in daily counts, defined as more than 4 times the
interquartile range above the median for pneumonia. For
COPD, the outliers were defined as the values that were
3 times the interquartile range above the median, or at least
100% higher than the mean of the nearby data. These errors
can occur for clerical reasons; for example, records without
the date of admission are coded to the first day of the
month or year. Alternatively they may represent epidemics,
of influenza for example. This exclusion eliminated a total
of 2 days of data for CVD in all of the 14 cities, 44 days of
data for pneumonia, and 13 days of data for COPD.

Table 7. Mean Number of Admissions Per Person 65 Years of Age or Older for Cardiovascular Disease (CVD), Chronic 
Obstructive Pulmonary Disease (COPD), and Pneumoniaa

City
 Population

65+ yr

Mean Medicare Admissions 
per Day

Admissions per 10,000
Person-Years

CVD COPD Pneumonia CVD COPD Pneumonia

Birmingham 119,400 17.28 1.63 5.33 528 50 163
Boulder 17,100 1.98 0.27 0.60 423 58 128
Canton 52,900 9.39 0.33 2.39 648 23 165
Chicago 633,000 102.10 7.82 26.67 589 45 154

Colorado Springs 31,800 2.92 0.42 0.98 335 48 112
Detroit 264,000 50.03 4.18 10.80 692 58 149
Minneapolis/St Paul 175,900 16.57 1.74 5.09 344 36 106
Nashville 59,300 9.23 1.02 2.79 568 63 172

New Haven 118,200 16.18 0.98 4.07 500 30 126
Pittsburgh 232,500 47.73 5.75 10.39 749 90 163
Provo/Orem 18,500 2.30 0.14 0.70 454 28 138
Seattle 167,300 16.81 1.68 4.42 367 37 96

Spokane 48,100 5.81 0.75 1.79 441 57 136
Youngstown 61,150 11.69 1.25 2.69 698 75 161

a Estimated admissions per 10,000 person-years based on 65+ population.
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Weather Data

Daily mean meteorologic measurements (temperature,
barometric pressure, and relative humidity) were obtained
from the NCDC Surface Airways CD (EarthInfo). The
nearest National Weather Service station was selected for
each city (Table 8).

Air Pollution Data

As for the mortality analyses, air pollution data for the
years 1985 through 1994 were obtained from the EPA’s
AIRS database (Nehls and Akland 1973). We selected cities
that had an extended period of daily PM10 measurements
between 1984 and 1995 (Table 9). Many of the cities have

Table 8. Weather Stations and Mean Temperature, Relative Humidity, and Barometric Pressure by City

City Weather Station

     Weather

Temperature 
(
F)

Relative Humidity 
(%)

Barometic Pressure
(inches H2O)

Birmingham Birmingham Airport 63 71 29.4
Boulder Denver Stapleton Airport 52 53 24.7
Canton Akron-Canton Airport 50 74 28.7
Chicago Chicago O'Hare Airport 50 71 29.3

Colorado Springs Colorado Springs Municipal Airport 49 52 24.0
Detroit Detroit Metropolitan Airport 51 71 29.3
Minneapolis/St Paul Minneapolis–St Paul Airport 47 68 29.1
Nashville Nashville Metropolitan Airport 56 65 30.0

New Haven Hartford Bradley Airport 52 67 29.8
Pittsburgh Pittsburgh 52 70 28.8
Provo/Orem Salt Lake City Airport 53 55 25.8
Seattle Seattle-Tacoma Airport 53 75 29.6

Spokane Spokane Airport 48 67 27.5
Youngstown Youngstown Municipal Airport 50 74 29.0

Table 9. PM10 Monitoring in 14 Cities: Start and End Dates, Number of Days and Percentage of Days with PM10 Samples, 
Mean and Maximum PM10

a

City
Number
of Sites Start Date End Date

Number
of Days

Number of 
Observations

% 
Observations

Mean
(�g/m3)

Max
(�g/m3)

Birmingham 7 1-Apr-87 31-Dec-93 2,467 2,417 98 34.8 124.8
Boulder 2 1-May-89 24-Dec-94 2,064 1,879 91 24.4 125.0
Canton 2 1-Jan-89 24-Dec-94 2,189 1,642 75 28.4 94.8
Chicago 6 1-Mar-88 24-Dec-94 2,547 2,354 92 36.4 144.7

Colorado Springs 4 1-Jul-87 24-Dec-94 2,734 2,427 89 26.9 147.2
Detroit 4 1-May-86 24-Dec-94 3,159 2,764 87 36.8 133.6
Minneapolis/St Paul 4 1-Apr-87 24-Dec-94 2,824 2,672 95 27.4 141.5
Nashville 6 1-Sep-89 24-Dec-94 1,941 1,588 82 31.6 128.0

New Haven 2 1-May-87 31-Dec-91 1,707 1,475 86 29.3 95.4
Pittsburgh 6 1-Jan-87 24-Dec-94 2,915 2,891 99 36.0 139.3
Provo/Orem 3 1-Apr-87 24-Dec-94 2,825 2,682 95 38.9 241.0
Seattle 4 1-Jan-86 24-Dec-94 3,280 3,195 97 31.0 145.9

Spokane 4 1-Oct-85 24-Dec-94 3,372 2,778 82 45.3 605.8
Youngstown 2 1-Jan-89 31-Dec-92 1,461 1,215 83 33.1 104.0

a Days above 150 �g/m3 were excluded from analysis.
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more than 1 monitoring location. Monitors were excluded
if they had fewer than 300 observations within the period.
To ensure that our exposure measure best represented gen-
eral population exposure and not unique local conditions,
monitors within the lowest 10th percentile of the correla-
tion among monitors across all counties were excluded.
Data from both population-oriented monitors and moni-
tors sited for other purposes were reviewed. A complete
list of the air monitors and the number of PM10 observa-
tions for each monitor is included in Appendix D (see
Table D.1). Even with the selection of cities with a high fre-
quency of PM10 sampling, some monitors within a
selected county measured PM10 only during 1 day in 6.
Concentrations measured by different monitors have dif-
ferent means and standard deviations. Data on gaseous air
pollutants (SO2, NO2, CO and O3) were also downloaded.

In calculating a daily PM10 value, we needed a scheme
that did not introduce changes in exposure estimates from
day to day because of the particular monitors contributing
data. The annual mean was computed for each monitor for
each year. This monitor-and-year-specific mean was sub-
tracted from the daily measurements for that monitor, and
the difference was divided by the monitor-specific stan-
dard deviation to produce a daily standardized deviation.
The standardized deviations for all reporting monitors
were averaged for each day. County-specific daily mean
was calculated as the average standardized deviation mul-
tiplied by the standard deviation of all the centered mea-
surements for the year and added to the annual average of
all the monitors. We excluded days when air pollution
exceeded the ambient air quality standard of 150 �g/m3

PM10 in order to study the association at common concen-
trations and limit the influence of outlier days.

A data set of the city-specific 24-hour mean concentra-
tions for criteria pollutants (PM10, SO2, and NO2) and
1-hour maximum concentrations for O3 and CO was cre-
ated using the above method. For the continuously mea-
sured gaseous pollutants, monitor-specific mean and
maximum values were calculated for each day having at
least 18 hours of observations. An 8-hour (10 am to 5 pm)
mean O3 concentration was also calculated for these days.

County-specific daily means for each pollutant were cal-
culated, adjusting for the expected value and variance of
any missing monitors on a given day. Table 10 presents the
city-specific averages of the daily mean concentrations for
PM10, SO2, and NO2 and the 1-hour maximum concentra-
tions for O3 and CO. As indicated by blanks in the table,
not all criteria pollutants are measured in all of these com-
munities.

Analytic Methods

In each city, the associations between hospital admis-
sions and PM10 were investigated with a generalized addi-
tive robust Poisson regression model (Hastie and Tibshirani
1990), which we introduced to the study of Poisson time
series (Schwartz 1993, 1994). In the generalized additive
model, the outcome is assumed to depend on a sum of non-
parametric smooth functions for each variable. This allows
us to model the potential nonlinear dependence of daily
admissions on weather and season better.

The model is of the form:

log[E(Yt)] = �0 + S1(X1) + … + Sp(Xp) (1)

where E(Yt) is the expected value of the daily count of
admissions Yt, and Si are the smooth functions of the cova-
riates Xi. The locally weighted smoother (LOESS) (Cleve-
land and Devlin 1988) was chosen as the smooth function.
All nonparametric smoothing functions are characterized by
a smoothing parameter, which determines the smoothness
of the fit. LOESS is a generalization of a weighted moving
average and estimates a smooth function by fitting a
weighted regression within a moving window (or fraction of
the data) centered about each value of the predictor variable.
The weights are close to 1 for the central third of the
window, and decline to 0 rapidly outside that range. Outside

Table 10. Average Concentrations of PM10, SO2, NO2, O3 
and CO) in 14 Cities

24-Hr Mean 1-Hr Max

City
PM10

(�g/m3)
SO2

(�g/m3)
NO2
(ppb)

O3
(ppb)

CO
(ppm)

Birmingham 34.8 19.9 11.0 52.0 2.88
Boulder 24.4 —a — 48.0 2.50
Canton 28.4 27.7 — 56.0 1.25
Chicago 36.4 14.7 26.0 39.0 2.02

Colorado Springs 26.9 7.5 — 44.0 3.81
Detroit 36.8 22.1 22.0 45.0 1.90
Minneapolis/
St Paul

27.4 9.8 20.0 — 3.11

Nashville 31.6 31.9 13.0 37.0 2.57

New Haven 29.3 28.6 28.0 54.0 3.39
Pittsburgh 36.0 45.6 27.0 44.0 2.36
Provo/Orem 38.9 — 24.0 60.0 4.14
Seattle 31.0 8.8 — 39.0 3.79

Spokane 45.3 8.8 — 45.0 5.37
Youngstown 33.1 39.7 18.0 52.0 0.99

a — = No measurement (or very limited measurement) taken.
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of the window, the weights are all 0. A window of 200 days
corresponds to a moving average of about 80 days. To con-
trol for weather variables and day of the week, we choose the
smoothing parameter that minimized the Akaike Informa-
tion Criterion (AIC) (Akaike 1973).

The control of seasonal patterns requires investigation
of the residuals to ensure that seasonal patterns have been
removed and to minimize autocorrelation of residuals. If
omitted confounding variables have subseasonal patterns
that are correlated with air pollution, removing those
patterns may reduce confounding. Excessive filtering,
however, reduces the power to find any association
because air pollution typically varies with multiple-day
patterns. In addition, it is well known in the filtering liter-
ature that overfiltering can produce high frequency ringing
in the data that induces autocorrelation (Rabiner and Gold
1965) and may distort the relationship between air pollu-
tion and morbidity or mortality. To make this tradeoff, we
chose the window size that minimized the autocorrelation
of the residuals. This approach was used because each
admission is an independent event, and autocorrelation in
residuals indicates there are omitted, time-dependent
covariates the variation of which may confound the effect
of air pollution. If the autocorrelation is removed,
remaining variation in omitted covariates has no system-
atic temporal pattern, and hence confounding is less likely
(Rabiner and Gold 1965). We chose smoothing parameters
in each city that met both objectives. In some cases, it was
necessary to use autoregressive terms to eliminate serial
correlation (Brumback et al 1999). This approach has been
used in previous studies (Schwartz 1999).

We built a model for each city in order to allow for city-
specific differences. The variables included in each model
were season, weather variables (temperature, relative
humidity, and barometric pressure) and day of the week.
As weather and season vary across the cities, however, the
smoothing parameter for each variable was optimized sep-
arately in each location.

We treated PM10 as a linear term in the analysis to assess
how its effects were distributed over different lags and to
allow the use of meta-analytic techniques to combine
results across cities.

Some have argued that there are thresholds for the
effects of air pollution and that no adverse responses occur
on most days. To test this hypothesis, we repeated our
analysis restricted to those days when PM10 was less than
50 �g/m3, which is one third of the current National
Ambient Air Quality Standard (NAAQS).

Distributed Lag Models

Distributed lag models were introduced by Almon
(1965) and have been applied mainly in econometrics and
social sciences. The models allow us to examine the possi-
bility that air pollution can influence hospital admissions
not only on the same day, but also on subsequent days.

Let (Y1, Z1),. . . ,(Yt, Zt) denote a regression data set that
is ordered with respect to time, where Zt represents a daily
pollution measure and Yt represents daily counts of hos-
pital admissions or of mortality. The unconstrained dis-
tributed lag model of order q is:

Yt = � + �0 Zt + �1 Zt–1 + … + �q Z t–q + �t (2)

where �t are independent random variables with mean
zero and constant variance. Hence, the outcome Yt at time
t may depend on the exposure (Zt) measured not only on
the current day but also on previous days. The overall
impact of a unit change in exposure on 1 day is the sum of
its impact on that day and its impacts on subsequent
days—that is, �0 + �1 +  . . .  + �q. The problem is that Zt is
correlated with Zt–1, . . . , Zt–q, and the high degree of col-
linearity will result in unstable estimates of the �j. Both the
�j and the sum of �j, however, will be unbiased estimators
of the effects at each lag and of the overall effects. Because
the estimators are unbiased, combining results across
cities will produce more stable unbiased estimates.

A 1-day exposure model can be seen as a constrained
model, where �j = 0 for j = 1 . . . q. If we have no strong bio-
logical basis for that constraint, it is preferable to let the
data inform us about the pattern of effect in time. The 1-
day model may be an unreasonably strong constraint,
which risks introducing bias. A more flexible constraint
may reduce the variance of the individual �j with less risk
of bias. One common approach is to constrain the �j to
follow a flexible polynomial (Judge et al 1985; Pindyck
and Rubinfeld 1998).

The polynomial distributed lag function constrains �j:

�j = �
d

k=0
ck j k (3)

where d is the degree of the polynomial. For d = 2, we
restrict the �j to be a quadratic function of j:

�j = c0 + c1 j + c2 j2 (4)

Rewriting the distributed lag in the context of a general
additive model, including the covariates that can be fit as
linear or smoothing function and applying a quadratic
polynomial constraint for the �j, for j = 1 … q, we have:
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log(E[Yt]) = � + covariates + c0Zt 

+ (c0 + c1 + c2)Zt–1 

+ (c0 + 2c1 + 22c2)Zt–1 + …  

+ (c0  + qc1 + q2c2)Zt–q (5)

If we factor out each ci, for i = 0, 1, 2,

log(E[Yt]) = � + covariates 

+ c0(Zt + Z t–1 + … + Zt–q) 

+ c1(Z t–1 + 2Zt–2 + … + qZt–q) 

+ c2(Z t–1 + 22Z t–2 + … + q2Zt–q), (6)

which can be written as

log(E[Yt]) = � + covariates 

+ c0W0 + c1W1 + c2W2. (7)

The parameters ci can be estimated from the regression
in equation (7), and we can obtain �j from equation (4).

The vector of �j of dimension (q × 1), given by equation
(4), can be expressed in matrix notation as:

��= a * c (8)

where c is the ([d + 1] × 1) vector of the estimated coeffi-
cients from the above regression, a is the (q × [d + 1])
matrix built from the index j.

Therefore the variance-covariance matrix of the vector � is

cov(�) = var(a *c) = at cov(c) a (9)

and the standard error (se) is given by

se(�) = sqrt(diag(cov(�)) (10)

In the distributed lag model, the overall effect of a unit
increase in pollution is given by the sum of the effects on
each day considered, that is �0 + �1 +  . . .  + �q ; therefore,
the standard error of the �(�) = �tv, where v is a (q × 1)
vector of 1 given by

sqrt(var(� �)) = sqrt(var(�tv)) = sqrt(vt(cov�)v) = 
sqrt(vt(atcov(c)a)v). (11)

We have used the unconstrained model as our primary
approach, relying on our ability to combine results across
cities to cancel out noise and provide reasonable esti-
mates. We have also used quadratic distributed lag models

as a sensitivity analysis, however. To compare our results
with those of the types of models that have been fit previ-
ously, we have used PM10 on the same day, the previous
day, and also the mean of the same and previous day as
exposure variables. We also repeated the analyses
restricted to days when PM10 was less than 50 µg/m3.

Second-Stage Assessment of Confounding and Effect 
Modification

In the second stage of the analysis, we used 2 different
approaches: the inverse variance weighted averages to
combine results across cities and a meta-regression to
analyze confounding. The first is equivalent to a meta-
regression with only an intercept.

The inverse variance weighted averages were computed
for both the estimated overall effect (the sum of �j) and for
the effect of each lag. In the weighted average, the pooled
summary of the effect is given by a weighted sum of the
results divided by the sum of the weights, where the
weights are the inverse of the variance of the effect. More
formal ly,  we  assume that  the ef fect  o f  PM1 0 is
�̂*

i ~ N I (�, Vi) and we estimate µ from the 14 city-specific
�i and their variances by computing an inverse variance
weighted average. A combined random effects estimate
was also computed, assuming

�̂i ~ N(�, Vi)

and that the true city-specific effect is

�i ~ N(�, �).

Therefore,

�̂i ~ N(�, Vi + �).

The between-city variance, �, is estimated as

�̂  = max(0, var(�) 	 V̂
¯

 i).

The random effects estimate of the combined effect is
then the weighted average with weights of 1/(Vi + �).

We estimated the random component of the variance
between the city-specific effect estimates as the total vari-
ance in � minus the within-city variance given the mean of
the city-specific variances. A chi-squared test of heteroge-
neity between city-specific effect estimates was calculated
following the methods of DerSimonian and Laird (1986).

To examine effect modification by socioeconomic
status, for example, we can fit a weighted least-squares
regression:
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�̂*
i = �* + Pi + �i (12)

where �̂*
i is the estimated PM10 effect in city i, Pi is the

city-specific socioeconomic status measure, and again the
city-specific estimates are weighted by the inverse vari-
ance. The coefficient  estimates change in the effect of
PM10 for a unit increase in the poverty rate. We examined
poverty rate and percentage of the population that was
nonwhite as potential modifiers of the effect of PM10 on
hospital admissions of the elderly using 1990 Census data
for the cities included.

Confounding is usually examined by including poten-
tial confounders in the equivalent of the first stage of a
hierarchical regression model. Since weather patterns tend
to increase or decrease all pollutants in parallel, however,
this approach risks substantial collinearity problems.
Although levels of most pollutants typically vary together,
the quantitative associations between pollutants vary sub-
stantially across locations. We have used this variation as a
basis for examining confounding in the second stage of our
analysis.

To illustrate this approach, suppose the true association
between our outcome (4) and pollutant X1 is:

Y = �0 + �1 X1 + �t. (13)

Assume X1 is correlated with another pollutant X2,
which itself is not causal for Y. Quantifying the association
between them as

X1 = �0 + �1X2 + �t (14)

and substituting (14) in (13), it follows that

Y = �0 + �1�0 + �1�1X2 + �t, (15)

and we see that the induced coefficient for the noncausal
variable X2 depends on �1, which is the slope of the rela-
tionship between X1 and X2. Thus, it is appropriate to
extend our meta-regression approach to use the slope
between pollutants as an explanatory factor in the second-
stage model. That is,

�*
i = �* + �i + �i (16)

where �i is the slope between two pollutants, for example,
SO2 and PM10. The parameter �*, the intercept term in this
regression, is the estimated effect of PM10 in a city where
PM10 has no correlation with SO2. This is the uncon-
founded estimated effect of PM10.

Note that in NMMAPS mortality analysis, confounding
by copollutants is addressed in the first stage of the model.
In the morbidity analysis, we examined confounding in
the second stage. In contrast, effect modification by the
mean level of PM10 is not examined in the second stage in
the morbidity analysis but in the first stage by restricting
the analysis to days with less than 50 �g/m3 PM10. These
differences will strengthen any common conclusions of
the parallel analysis.

Table 11. Quartiles of HCFA Hospital Admissions of Persons 65 Years of Age or Older for Cardiovascular Disease (CVD), 
Chronic Obstructive Pulmonary Disease (COPD), and Pneumonia

City

CVD COPD Pneumonia

25% 50% 75% 25% 50% 75% 25% 50% 75%

Birmingham 14 17 21 1 1 2 3 5 7
Boulder 1 2 3 0 0 0 0 0 1
Canton 7 9 12 0 1 2 1 2 3
Chicago 86 103 117 4 7 11 20 25 31

Colorado Springs 2 3 4 0 0 1 0 1 2
Detroit 41 50 59 2 4 6 7 10 13
Minneapolis/St Paul 13 16 20 1 1 3 3 5 7
Nashville 7 9 12 0 1 2 1 2 4

New Haven 12 16 20 0 1 1 2 4 5
Pittsburgh 38 48 56 3 5 8 7 10 13
Provo/Orem 1 2 3 0 0 0 0 0 1
Seattle 13 17 20 1 1 2 3 4 6

Spokane 4 6 7 0 1 1 1 1 3
Youngstown 9 11 14 0 1 2 1 2 4
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RESULTS

Table 11 provides the 25th, 50th, and 75th percentiles of
the city-specific daily counts of the Medicare hospital
admissions for CVD, COPD, and pneumonia. Table 12
similarly shows the quartiles of the daily air pollution con-
centrations. Boulder had the lowest median PM10 concen-
tration (22.0 µg/m3) and Spokane the highest (36.2 µg/m3).

Table 13 shows the correlations between PM10 concen-
trations and the weather variables. The correlations were
modest, and, for temperature, included both positive and
negative values. In 3 cities (Boulder, New Haven, and Spo-
kane), PM10 was essentially uncorrelated with temperature.
Table 13 also presents the correlations between daily PM10
concentrations and the other pollutants. Although PM10

Table 12. Quartiles of Daily Air Pollution for Criteria Air Pollutants in 14 Cities

City

PM10 (�g/m3) SO2 (�g/m3) O3 Max (ppb) NO2 (ppb) CO Max (ppm)

25% 50% 75%  25% 50% 75% 25% 50% 75% 25% 50% 75% 25% 50% 75%

Birmingham 19.9 30.6 46.2 11.2 16.7 25.0 39.1 50.2 63.9 — — — 1.7 2.5 3.6
Boulder 16.0 22.0 30.0 —a — — 35.0 47.0 60.0 — — — 1.4 1.9 3.1
Canton 19.2 25.6 34.5 13.9 23.4 36.5 42.1 54.6 68.6 0.0 0.0 0.0 0.7 1.0 1.5
Chicago 23.4 32.6 45.8 7.9 12.4 19.4 26.5 34.9 47.0 20.3 25.1 31.0 1.4 1.8 2.4

Colorado Springs 18.1 22.9 30.9 4.5 6.7 9.5 35.8 44.1 53.0 0.0 0.0 0.0 2.1 3.1 4.8
Detroit 20.7 32.0 48.9 12.0 19.5 29.4 30.9 42.3 56.7 16.1 21.3 27.0 1.1 1.6 2.4
Minneapolis/St Paul 16.8 24.1 34.7 3.2 7.6 14.4 — — — 14.4 19.2 25.0 2.2 2.9 3.7
Nashville 21.5 29.2 39.4 26.2 26.2 32.2 22.6 34.8 49.7 8.2 12.3 17.5 1.7 2.3 3.1

New Haven 17.3 26.0 37.5 13.2 20.6 36.4 35.7 47.0 63.4 21.3 27.1 33.2 2.2 3.0 4.1
Pittsburgh 19.5 30.5 46.9 25.3 39.3 58.8 28.8 39.3 54.6 20.7 26.1 31.9 1.4 2.0 2.9
Provo/Orem 21.3 30.3 44.1 — — — 53.0 60.0 68.0 16.3 21.3 28.3 — — —
Seattle 18.5 26.7 38.5 2.4 6.6 13.1 28.5 36.4 46.8 — — — 2.7 3.5 4.5

Spokane 23.0 36.2 56.5 0.0 3.3 12.0 38.0 44.0 52.0 — — — 3.6 4.8 6.5
Youngstown 21.9 29.4 40.5 25.3 36.8 49.4 36.5 50.0 68.0 12.6 16.8 21.9 0.5 1.0 1.5

a — = No measurement (or very limited measurement) taken.

Table 13. Pearson Correlation Coefficients Between PM10 and Other Environmental Variables in 14 Cities

City Temperature 
Relative 

Humidity SO2 O3 Max CO Max NO2

Birmingham 0.26 	0.30 0.20 0.57 0.63 0.31
Boulder 	0.02 	0.24 —a 	0.01 0.46 —
Canton 0.42 	0.13 0.39 0.69 0.31 —
Chicago 0.38 	0.31 0.41 0.51 0.32 0.54

Colorado Springs 	0.34 	0.13 0.38 	0.26 0.48 —
Detroit 0.33 	0.13 0.46 0.48 0.33 0.55
Minneapolis/St Paul 0.29 	0.35 0.46 — 0.29 0.41
Nashville 0.18 	0.15 0.13 0.39 0.44 0.32

New Haven 0.08 	0.14 0.41 0.50 0.41 0.60
Pittsburgh 0.46 	0.23 0.51 0.54 0.54 0.65
Provo/Orem 	0.37 0.29 — 0.14 0.55 0.79
Seattle 	0.21 	0.09 0.80 	0.03 0.76 —

Spokane 	0.06 	0.15 0.82 0.14 0.48 —
Youngstown 0.43 	0.25 0.26 0.62 0.34 0.23

a — = No measurement (or very limited measurement) taken.
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concentration was correlated positively with O3 in some
cities, (r > 0.50), there was no correlation in Boulder and
Seattle and a negative correlation in Colorado Springs.
PM10 was moderately correlated with SO2 in most cities.
There was a range of city-specific correlations between
PM10 and CO. These differences in the pollution mixtures
across the cities provide an opportunity to assess con-
founding and effect modification by these copollutants in
the second-stage analysis.

Base Models

The city-specific base models were adjusted for season,
mean temperature (same and previous day), relative
humidity, and barometric pressure using LOESS
smoothers, along with indicators for day of week and
autoregressive terms. The city-specific LOESS spans and
corresponding df for each parameter in the model, as well
as the included autoregressive terms for the CVD, COPD,
and pneumonia base models, are tabulated in Tables D.2,
D.3, and D.4, respectively.

The period of study (Table 9) averaged 2,617 days
(7.2 years) and ranged from 1,461 days (Youngstown) to
3,372 days (Spokane). The average spans for the LOESS
smooth on season were equivalent to 260 days for CVD,
264 days for COPD, and 196 days for pneumonia. The
fitted spans for temperature, relative humidity, and baro-
metric pressure were all approximately 0.5. After adjusting
for these parameters and day of week, adjustment for
autoregression was required in 3 cities for CVD admis-
sions, in 3 cities for COPD admissions, and in 7 cities for
pneumonia admissions (see Tables D.2 through D.4).

Overall Effects of PM10

Table 14 shows the combined overall estimate for the
constrained (current day, previous day, 2-day mean, and
quadratic distributed lag) and the unconstrained distrib-
uted lag model for a 10 µg/m3 increase in PM10. The city-
specific PM10 effect estimates are presented in Tables D.5
through D.7. The effect size estimates for the 2-day mean
and the quadratic distributed lag were quite similar to the
effect estimate using the unconstrained lag model, and all
3 estimates were higher than the value from the con-
strained 1-day lag model. When the analysis using the 2-
day mean of PM10 was repeated using only days with PM10
less than 50 µg/m3, the effect size increased by 20% or
more for all 3 outcomes. (City-specific analyses are pre-
sented in Table D.8.)

The city-specific estimates have considerable range (see
Tables D.5 through D.7). For example, the unrestricted dis-
tributed lag estimate of the net effect on CVD admission of
a 10 µg/m3 increase in PM10 ranges from 	1.2% in Canton
to 2.2% in Colorado Springs. The fixed effect estimate across
the 14 cities was 1.19% (95% CI, 0.97% to 1.41%) (Table 14).
The random effect estimate (Table 14) was similar, 1.07%,
although the 95% CI (0.67% to 1.46%) was wider. The
random effect estimates were larger but similar to the fixed
effect estimates for pneumonia and COPD admissions and
again had wider confidence intervals (Table 14).

The test for heterogeneity between the city-specific
unrestricted distributed lag estimate was statistically
significant for pneumonia and COPD, but not for CVD
(Table 15). In general, the heterogeneity of the city-specific
effect estimates was greatest for COPD admissions, fol-
lowed by pneumonia, and least for CVD. Recall that the

Table 14. Percent Increase in HCFA Hospital Admissions per 10 �g/m3 Increase in PM10 in 14 Cities

CVD COPD Pneumonia

% Increase (95% CI) % Increase (95% CI) % Increase (95% CI)

Constrained lag models (Fixed Effect Estimates)
One day meana 1.07 (0.93, 1.22) 1.44 (1.00, 1.89) 1.57 (1.27, 1.87)
Previous day mean 0.68 (0.54, 0.81) 1.46 (1.03, 1.88) 1.31 (1.03, 1.58)
Two day meanb 1.17 (1.01, 1.33) 1.98 (1.49, 2.47) 1.98 (1.65, 2.31)

PM10 < 50 �g/m3 (two day mean)b 1.47 (1.18, 1.76) 2.63 (1.71, 3.55) 2.84 (2.21, 3.48)

Quadratic distributed lag 1.18 (0.96, 1.39) 2.49 (1.78, 3.20) 1.68 (1.25, 2.11)

Unconstrained distributed lag
Fixed effects estimate 1.19 (0.97, 1.41) 2.45 (1.75, 3.17) 1.90 (1.46, 2.34)
Random effects estimate 1.07 (0.67, 1.46) 2.88 (0.19, 5.64) 2.07 (0.94, 3.22)

a Lag 0.
b Mean of lag 0 and lag 1.
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fewest admissions were reported for COPD, followed by
pneumonia, with the largest numbers for CVD admissions.
The estimated random variance of the PM10 associations
was similarly largest for COPD, followed by pneumonia,
and smallest for CVD admissions (Table 15).

Distributed Lag Effects Over Time

Figure 31 shows the combined city estimate of the unre-
stricted distributed lag associations between PM10 and the 3
analyzed causes of admissions. Cardiovascular admissions
show a higher effect at lag 0, dropping to a more modest

effect at lags 1 and 2, and then oscillates around 0 (no effect)
for longer lags.

For COPD admissions, the effect was similar for PM10
on the concurrent day and the previous day and dropped
to around 0 at lag 2 and subsequent days. For pneumonia
admissions, the effect decreased continuously for lags 0
through 2 and then oscillated about 0 for further lags. For
comparison, Figure 31 also presents the combined
constrained quadratic distributed lag associations for each
hospital admissions diagnosis.

Table 15. Decomposition of Total Variance (� 1,000) Between City-Specific Estimates of Effect of 10 �g/m3 Increase in 
PM10 into Estimated Within-City Variance and Random Variance for 14 Citiesa 

PM10
Lag 0

PM10
Lag 1

PM10
Lag 0/1

 Quadratic
Distributed 

Lag

Unrestricted 
Distributed

Lag

PM10 
Lag 0/1

(< 50 �g/m3)

CVD
Total variance 0.00054 0.00025 0.00029 0.00104 0.00108 0.00090
Within variance 0.00032 0.00030 0.00035 0.00083 0.00084 0.00085
Random variance 0.00022 0.00000 0.00000 0.00021 0.00024 0.00005
Heterogeneity �2 23.3b 20.4 24.5b 17.5 16.8 33.6b

COPD
Total variance 0.00527 0.00877 0.00352 0.02834 0.02668 0.01014
Within variance 0.00287 0.00264 0.00318 0.00703 0.00710 0.00887
Random variance 0.00240 0.00613 0.00034 0.02131 0.01959 0.00127
Heterogeneity �2 22.0 29.6c 22.9b 31.3c 30.5c 18.5

Pneumonia
Total variance 0.00176 0.00092 0.00157 0.00586 0.00576 0.00685
Within variance 0.00123 0.00113 0.00133 0.00275 0.00278 0.00325
Random variance 0.00053 0.00000 0.00023 0.00310 0.00298 0.00360
Heterogeneity �2 18.7 21.3 26.8b 21.4 28.0c 41.1c

a Chi squared (�2) test for heterogeneity between city-specific effects.
b P < 0.05.
c P < 0.01.

Table 16. Estimated Change in Effect of 10 µg/m3 PM10 for 5 Percentage Point Increase in College Education, 
Unemployment, Poverty and Nonwhite Percentages of the Population for 14 Cities, by Diagnosis

College Education Unemployment Poverty Nonwhite

% (95% CI) % (95% CI) % (95% CI) % (95% CI)

CVD 	0.00 �	0.21, 0.21) 0.38 �	0.02, 0.78) 0.16 �	0.16, 0.49) 0.06 �	0.02, 0.14)
COPD 0.55 �	0.32, 1.42) 	0.15 �	2.12, 1.86) 	0.84 �	2.21, 0.54) 	0.18 �	0.54, 0.19)
Pneumonia 0.38 �	0.03, 0.78) 	0.22 �	1.21, 0.78) 	0.55 �	1.24, 0.15) 	0.03 �	0.22, 0.16)
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Figure 31. Combined estimates across the 14 cities of the percentage change in HCFA hospital admissions per 10 µg/m3 PM10 by diagnosis for unrestricted
and quadratic distributed lag models.
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Second-Stage Models

Sociodemographic factors Neither the percentage of the
population living in poverty nor the percentage of the pop-
ulation that was nonwhite was a significant modifier of the
PM10 effect estimates in the selected 14 cities. Table 16
shows the change from the baseline PM10 effect size (as
percent increase in admission per 10 µg/m3 increase in
concentration) associated with a 5 percentage point
increase in each measure.

Hospitalization rates Neither hospital admission rates
for CVD, pneumonia, or COPD were associated with mod-
ification of the PM10 effect estimates.

Weather In the meta-regression with weather variables,
we found the coefficients for temperature and relative
humidity were highly nonsignificant for all 3 outcomes
(Figure 32). In addition, the intercept terms in these
models were similar in magnitude to those in the baseline
meta-analysis. Thus, temperature and relative humidity
did not modify the PM10 effect estimates.

Copollutants Figure 33 shows, for CVD, COPD, and
pneumonia admissions, the city-specific effects of PM10
plotted against the regression coefficients relating SO2 and
O3 to PM10 in each city. We also considered the CVD
regression coefficients for CO versus PM10.

The plots of Figure 33 give a picture of the range of the
results by city. The city-specific effect estimates ranged be-
tween 	2% and 2% for each 10 µg/m3 increase in PM10.
For pneumonia, estimated city-specific PM10 effects were
between 	2% and 9%. For COPD, the maximum city-spe-
cific effect was about 7%, except for an estimate of 19% in
Boulder (95% CI, 8%, 31%). They also show the range of
regression coefficients relating PM10 to the other pollut-
ants. For O3 they include both positive and negative
slopes, with a wide range among the positive slopes. For
SO2 and CO, the slopes were always positive but varied by
almost an order of magnitude.

As explained previously in the Methods section,
Second-Stage Assessment of Confounding and Effect
Modification, if the PM10 effect were due to con-
founding by other pollutants, the plots would show a
significantly increasing trend with increasing slope

Figure 32. Effect size estimates of PM10 versus the correlation of PM10 with temperature and relative humidity for the three diseases.
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between the pollutants. Figure 33 shows little evidence for
this pattern. These results are confirmed by the meta-regres-
sion estimates, shown in Figure 34. Here the baseline esti-
mate is  the result  of  a  s imple meta-analys is  not
incorporating any of the other pollutants. Plotted above
each pollutant is the estimated intercept in the meta-regres-
sion of the PM10 coefficients against the slopes between that
copollutant and PM10. For all 3 outcomes, the results
appear quite stable when controlling for confounding by
gaseous pollutants.

DISCUSSION

NMMAPS Part II provides the results of 2 complemen-
tary analyses of air pollution and health in the United
States: one on mortality in up to 90 cities and the other on

Figure 33. Effects of PM10 in each city plotted against the regression coefficients in relation to SO2 and O3 to PM10 for cardiovascular disease, COPD and
pneumonia.

Figure 34. Meta-Regression adjustment for copollutants. Estimated effects
of PM10 on cardiovascular disease, COPD, and pneumonia in each city
without adjustment (base) or with adjustment for individual gaseous pol-
lutants.
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hospitalization in persons 65 years of age and older in
14 cities. The 2 analyses are parallel in their methods, both
drawing on a national sampling frame for selection of
study locations and both using 2-stage analytic approaches
for combining evidence across locations while controlling
for potential confounding and also evaluating effect modi-
fication. Although the details of the implementation of the
statistical analyses were slightly different, reflecting dif-
ferent data sources and some differences in approach, the
underlying statistical approaches are conceptually similar.

 At the first stage, a time-series analysis is conducted
within each of the locations to estimate the effect of PM10
and other pollutants. The distributed lag approach as
applied to the hospitalization data is flexible in its assess-
ment of the lag-response relationship, and its use provided
new insights into the lag structure. Distributed lag models
have the strength of not requiring selection of specific lag
structures. For hospitalization, analyses using the distrib-
uted lag approach showed that the effect of a 24-hour
increase in PM10 is spread over that day and several subse-
quent days, so that using only a single day’s concentration
underestimates the impact of PM10. The lack of daily data
for PM10 was a barrier to applying a similar approach to
the mortality data, although a study of 10 cities (Appendix
B) similarly shows that the effects of PM10 are spread over
several days and are underestimated by a single-day
model. An analysis of mortality data in this study for Chi-
cago, Minneapolis/St Paul, and Pittsburgh (Figure 19)
using distributed lag methods gave generally similar find-
ings to those using specified lags. At the second stage of
the analysis, the Bayesian hierarchical model used to com-
bine the mortality data and the meta-analysis used for the
morbidity data provide point estimates that can be
adjusted for potential confounding factors.

Together, the 2 sets of analyses—that of mortality in 90
cities and of hospitalization in persons 65 years and older
in 14 cities—provide new and strong evidence linking par-
ticulate air pollution to adverse health effects. In locations
broadly representative of the United States, and, in fact,
capturing a substantial proportion of the population, PM10
concentration was associated with both daily mortality
counts and hospitalization of persons 65 years of age and
older. For mortality, the effect of PM10 was greater for car-
diorespiratory deaths, as would be expected if persons
with advanced, chronic heart and lung disease are particu-
larly susceptible to air pollution. For morbidity, effects
were found in specific diagnostic groups (CVD, COPD, and
pneumonia) included within the overall cardiopulmonary
grouping used for mortality. The effects of PM10 on mor-
tality and hospitalization persisted and were not substan-
tively changed with control for other pollutants. This is

noteworthy because the potential for confounding by other
pollutants was examined using different approaches (first
stage versus second stage) in the 2 sets of analyses. We
found some evidence for modification of the PM10 effect
by mean PM10 level, in a direction implying greater effect
at lower concentrations. These results were supported by
the morbidity analysis, which showed a higher slope when
restricted to days with PM10 less than 50 �g/m3. There was
some evidence for heterogeneity of the effect of PM10 by
geographic site, with greater effect in the Northeast.

The 20-city and 90-city analyses strongly support the
evidence from prior studies of PM and mortality. These
earlier studies, largely based on data from single cities,
used a variety of measures of PM, including total sus-
pended particles (TSP), British smoke, PM10, and PM2.5.
The statistical methods applied to assess the pollution-
mortality relationships were also heterogeneous among
the studies; for example, there was no uniformity in the
approaches used to control for temporally varying factors
or for other pollutants. Nonetheless, using a weight-of-evi-
dence approach, the EPA interpreted the study results as
indicating a possibly causal association between particu-
late matter and air pollution (EPA 1996a).

In a meta-analysis of US studies published through 1993,
Dockery and Pope (1994) estimated the effect of particulate
air pollution on mortality as an increase of 1% for each
10 µg/m3 increase in PM10. In a subsequent update using
reports published through 1995, there was little change in
this estimate (Pope et al 1995a). Schwartz (1994) also car-
ried out a meta-analysis of studies published through 1993,
but included London and Minneapolis in addition to the
8 cities considered by Dockery and Pope. The resulting
point estimate was 1.07% for each 10 µg/m3 increase in
PM10. In the APHEA project, common analysis techniques
were applied to data from 12 European cities. Summary
measures were then estimated in a second step. For the
6 western European cities, mortality was estimated to
increase by 0.4% for each 10 µg/m3 increase in PM10. In a
recent reanalysis of the APHEA data using generalized
additive models, Touloumi and colleagues (1996) report
higher results, above 0.6% for each 10 µg/m3 increase in
PM10. The estimate in our 20-city analysis, approximately
0.5% for each 10 µg/m3 increase in PM10 at lag 1, is close to
the APHEA project’s estimate. The lower value, in compar-
ison with the prior meta-analyses by Dockery and Pope
and by Schwartz, may reflect differences in analysis tech-
niques and the cities selected. The lower value may also
reflect the fact that the prior studies used multiple-day
averages of PM10, whereas our study could use only a
single day’s exposure.
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We did not find an effect of O3 on total mortality across
the full year (Figures 26 and 30), but an effect was
observed after limiting the analysis to the summer when
O3 levels were highest. Other recent studies have generally
shown associations of O3 with mortality (Thurston and Ito
1999). In the APHEA study, 1-hour maximum O3 levels
were associated with daily numbers of deaths in 4 cities
(London, Athens, Barcelona, and Paris), and a quantita-
tively similar effect was found in a group of 4 additional
cities considered by the authors (Amsterdam, Basel,
Geneva, and Zurich) (Touloumi et al 1997). For an increase
of 50 µg/m3 in the 1-hour maximum, the estimated relative
risk was 1.029 (1.1% for each 10 ppb), using a random
effects model for combining the city-specific data.
Thurston and Ito (1999) pooled data from 15 studies and
estimated the relative risk of death to be 1.036 for each 100
ppb (0.36% for each 10 ppb) increase in the daily 1-hour
maximum. For the summer months, we estimated a com-
parable level of effect, 0.25% for each 10 ppb. The findings
of these 3 analyses (APHEA, Thurston and Ito, and
NMMAPS) provide consistent data that O3 exposure is
associated with increased mortality. The negative associa-
tions in the winter remain puzzling and may reflect some
unmeasured confounding factor.

The effect of PM10 varied across the 90 cities and the
pooled estimates by region for mortality were higher in the
Northeast, Industrial Midwest, and Southern California
(Figures 21 and 22). These regions tend to have higher sul-
fate concentrations than the other regions (EPA 1996a),
and follow up on this observation with morbidity out-
comes is warranted. The higher effect in the Northeast
might also reflect a greater density of monitors and hence
less downward bias from measurement error.

Although we have analyzed a large data set based on the
90 largest cities of the United States, limitations of the
analyses need to be considered. Data on concentrations of
PM2.5, the respirable particles now regulated by the EPA,
are not yet available, as a monitoring network for particles
in this size range is only now being implemented. We used
PM10 because it has been monitored since 1987; there is
variation across the United States in the proportion of
PM10 mass that is made up of PM2.5. Additionally, for reg-
ulatory purposes, monitoring of PM10 is required only
every 6 days, limiting the extent of available data. Concen-
tration of PM10 measured at the outdoor monitors is a
surrogate in the time-series analyses for the contribution of
PM10 in ambient air to personal exposures of persons at
risk for dying. Measurement error arising from the
inherent assumption that outdoor concentration is valid
for this purpose has been proposed as a substantial limita-
tion of the time-series analyses (Lipfert and Wyzga 1997).

Our review of this issue, reported in NMMAPS Part I, sug-
gests that measurement error would generally tend to bias
estimates of the effect of PM10 downward.

Both the mortality and morbidity analyses provided
results for single cities. The point estimates of relative risk
varied across the cities to a degree; exploration of the
causes of this variation is a focus of the planned combined
analyses. We caution against attempts to interpret esti-
mates for any specific city, particularly if the goal is to
gauge whether PM is having a greater or lesser effect than
in other locations.

These daily time-series analyses do not address the
extent of life-shortening associated with these daily associ-
ations. The finding that the association is strongest for
cardiorespiratory causes of death is consistent with the
hypothesis that persons made frail by advanced heart and
lung disease are susceptible to the effects of air pollution.
The findings from several epidemiologic studies of longer-
term effects of air pollution on mortality suggest that air
pollution may have a more severe effect than simply
advancing death by a few days (Dockery et al 1993; Pope et
al 1995b). Analyses of daily time-series data, conducted at
different temporal frequencies, also indicate that the effect
of air pollution may go beyond only shortening life by a
few days (Azizi et al 1995; Schwartz 1999; Zeger et al
1999b). An appropriate next step is the application of the
new analytic tools described by Zeger and colleagues and
Schwartz to the multicity database.

The analyses of the HCFA data on hospitalization con-
firm the many previous reports, based primarily on single
cities, that PM10 levels are associated with hospital admis-
sions for heart and lung disease (Pope and Dockery 1999).
In general, the effect size estimates in NMMAPS are con-
sistent with the previous studies. This new analysis
involves more years of follow up than most previous stud-
ies and includes 14 cities spread across the country, with a
wide range of weather and copollutants. Burnett and col-
leagues (1995) have evaluated the association of cardiac
and respiratory admissions to 168 acute care hospitals in
Ontario, Canada, with daily levels of particulate sulfate.
Spatial detail was lacking in that study, as there were only
9 monitors. Both categories of admissions were signifi-
cantly associated with sulfate levels. In a subsequent
report for 16 Canadian cities, Burnett and colleagues
(1997) found that O3 concentration was associated with
respiratory hospitalizations from April through December.
In the 11 cities with coefficient of haze data, their surro-
gate for particle levels was also associated with respiratory
hospitalizations.

The substantial range of weather patterns in the 14 loca-
tions that are listed in Table 7 supports the conclusion that
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the results were not confounded by inadequate control for
weather. This was confirmed by the second-stage regres-
sions, which showed that the PM10 coefficients were not
influenced by the correlation between PM10 and weather.

For all 3 of the diagnostic categories, the effect of PM10
was shown to be spread over more than a single day in the
distributed lag model. As a consequence, use of a single
exposure day would underestimate the effect of PM10, sub-
stantially in some instances (Table 14). Summaries of the
health evidence for risk assessment and policy-making
purposes need to take this downward bias into account.
Most studies of air pollution have used multiday averages
of pollutant concentrations, but some have not, and this
will need to be taken into account in any future meta-anal-
ysis.

Overall, this study provides strong evidence of associa-
tion between PM10 levels and exacerbation of chronic heart
and lung disease sufficiently severe to warrant hospitaliza-
tion. The association cannot be explained by confounding
that is addressed in both stages of the analysis, although
there is always the possibility of some residual con-
founding. Confounding by weather was considered above
and can be set aside. Confounding by the gaseous pollut-
ants (NO2, SO2, and CO) has been raised as a major concern
in relation to the findings of prior studies (Lipfert 1997). We
have addressed this possibility in the second stage of the
regression modeling. We found that the effect size esti-
mates for PM10 and hospital admissions for CVD, COPD,
and pneumonia changed little after control for potential
confounding by the gaseous air pollutants. The standard
errors increased because our second-stage analysis had a
limited sample size (14 points in a regression estimating an
intercept and a slope), but overall the evidence for con-
founding was small.

We have not found evidence that key socioeconomic
factors such as poverty and race are modifiers of the effect
of PM10 on either mortality or hospitalization. The scale of
Poisson models needs to be considered in interpreting the
lack of effect modification. The Poisson models are rela-
tive risk models and inherently multiplicative. Hence, a
given change in PM10 is associated with a given percent
increase in the event rate. If a town with greater poverty or
a larger percentage of nonwhites has a higher baseline
event rate, then a 3% increase in the rate from baseline
will be a greater increase (per 10,000 persons aged 65 and
older) in that town than it would be in a town with a lower
baseline rate.

Further, it is possible that effect modification does not
occur. Alternatively, the medical conditions that predis-
pose to higher risk may not be well captured by the socio-
economic factors recorded by the Census. More specific

information on medical conditions, rather than on social
factors, may be needed to explore effect modification, par-
ticularly in relation to personal susceptibility. Finally, we
have used county-level data for these social factors
because our admissions and mortality data are on the
county level. The variation in socioeconomic status within
the typical urban county, however, is usually considerably
larger than the variation across counties. The sociodemo-
graphic factors considered in the second stages of the
models may be too ecologically coarse to be meaningful.
Future studies using finer geographical data may be able to
detect effect modification.

Recent observational and experimental studies provide
further insights into mechanisms by which PM could
increase morbidity and mortality. In animal models, expo-
sure to particles is associated with reduced heart rate vari-
ability and increased fibrinogen levels (Godleski et al
1997; Watkinson et al 1998a,b). These are risk factors for
arrhythmias and ischemic events, which underlie many
hospital admissions for heart disease. In human studies,
exposure to airborne particles has been associated with
increases in plasma viscosity (Peters et al 1997) and
decreases in heart rate variability (Pope et al 1999), paral-
leling the animal study findings.

Animal models of COPD or chronic lung inflammation
have been shown to have increased vulnerability to com-
bustion particles in comparison with normal animals
(Gilmour et al 1996; Li et al 1996; Pritchard et al 1996;
Costa and Dreher 1997). Exposure of animals previously
infected with strep pneumonia to concentrated air parti-
cles resulted in a doubling of streptococcal lung area
involved with pneumonia and in bacterial burdens. Exper-
imental influenza infections have been similarly shown to
be exacerbated by air pollution (Clarke et al 1997; Zelikoff
et al 1997).

In interpreting the associations of PM10 with mortality
and morbidity, we find that the shape of the exposure-
response relationship at typical ambient concentrations is
a critical uncertainty. For assessing the impact of air pollu-
tion on public health, we need to know whether the asso-
ciations are dominated by high pollution days or persist at
the concentrations seen on most days. For mortality, the
PM10 daily effect across the communities may be modified
by mean PM10 level (Table 5). This finding implies that a
tendency toward higher slopes at lower concentrations
was seen and is sometimes significant.

When we restricted our analysis of hospitalization to
days with concentrations below one-third of the current
NAAQS, we still found a significant association between
PM10 and hospital admissions for all 3 diagnostic catego-
ries. Moreover, the effect size increased by 20% or more
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with this restricted range of concentration. This increase
in effect size at lower concentrations has been noted previ-
ously in a mortality study and in the 90-city analysis
(Schwartz et al 1996). For a significant association to per-
sist and to be greater on days with PM10 levels below
50 µg/m3, any threshold would have to be far below that
level, probably down at background levels. These findings
suggest that if the true concentration-response curve is
curvilinear, the higher slopes occur at lower concentra-
tions and no threshold exists.

The epidemiologic evidence on PM and mortality and
morbidity has prompted the promulgation of a new stan-
dard in the United States and a rethinking of guidelines for
PM in Europe. Our analyses provide evidence that air pol-
lution with particles is still adversely affecting the public’s
health and strengthen the rationale for limiting concentra-
tions of respirable particles in outdoor air.
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APPENDIX A. Demographic and Pollution Data for 90-City Analysis

Table A.1. The 90 Cities and Their Included Counties by Population Size with Mean Daily Number of Deaths by 
Category, 1987–1994

Mean Daily Deaths

City Abbreviation    County State Population Total

CVD/
Respiratory 

Disease Other

Los Angeles la Los Angeles CA 8,863,164 148.1 87.0 61.1
New York ny Bronx, Kings, New York, 

Richmond, Queens, 
Westchester

NY 8,197,430 190.9 108.3 82.6

Chicago chic Cook IL 5,105,067 113.9 62.0 51.9
Dallas/Fort Worth dlft Collin, Dallas, 

Rockwall, Tarrant
TX 3,312,553 47.9 26.0 21.9

Houston hous Harris TX 2,818,199 39.9 20.0 19.8

San Diego sand San Diego CA 2,498,016 41.6 22.6 19.0
Santa Ana/Anaheim staa Orange CA 2,410,556 32.4 18.7 13.6
Phoenix phoe Maricopa AZ 2,122,101 38.4 20.9 17.5
Detroit det Wayne MI 2,111,687 46.9 26.5 20.4
Miami miam Dade FL 1,937,094 43.8 23.6 20.2

Philadelphia phil Philadelphia PA 1,585,577 42.3 21.5 20.8
Minneapolis/St Paul minn Hennepin, Ramsey MN 1,518,196 26.3 13.9 12.4
Seattle seat King WA 1,507,319 25.6 13.4 12.2
San Jose sanj Santa Clara CA 1,497,577 19.7 10.7 9.0
Cleveland clev Cuyahoga OH 1,412,140 36.5 20.1 16.4

San Bernardino sanb San Bernardino CA 1,418,380 20.6 12.1 8.5
Pittsburgh pitt Allegheny PA 1,336,449 37.6 21.0 16.9
Oakland oakl Alameda CA 1,279,182 22.2 12.2 10.0
Atlanta atla Fulton, De Kalb GA 1,194,788 17.5 8.8 8.7
San Antonio sana Bexar TX 1,185,394 20.1 10.5 9.6

Riverside rive Riverside CA 1,170,413 20.1 12.4 7.7
Denver denv Denver, Adams, Arapahoe CO 1,124,159 9.1 5.0 4.1
Sacramento sacr Sacramento CA 1,041,219 17.2 9.5 7.7
St Louis stlo St Louis City MO 993,529 10.7 6.0 4.7
Buffalo buff Erie NY 968,532 25.2 14.8 10.3

Columbus clmo Franklin OH 961,437 16.8 8.9 7.9
Cincinnati cinc Hamilton OH 866,228 19.9 11.0 8.9
St Petersburg stpe Pinellas FL 851,659 29.3 17.7 11.6
Kansas City kan Clay, Jackson, Platte MO 844,510 16.7 9.3 7.5
Honolulu hono Honolulu HI 836,231 11.9 6.4 5.5

Tampa tamp Hillsborough FL 834,054 16.9 9.1 7.8
Memphis memp Shelby TN 826,330 17.5 9.7 7.7
Indianapolis indi Marion IN 797,159 16.9 9.0 8.0
Newark nwk Essex NJ 778,206 18.4 8.7 9.7
Baltimore balt Baltimore City MD 736,014 20.2 9.8 10.4

(Table continues on next page.)
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Table A.1, continued. The 90 Cities and their Included Counties by Population Size with Mean Daily Number of Deaths 
by Category, 1987–1994

Mean Daily Deaths

City Abbreviation County State Population Total

CVD/
Respiratory 

Disease
Other 
Deaths

Salt Lake City salt Salt Lake UT 725,956 9.3 4.9 4.4
Rochester roch Monroe NY 713,968 14.6 7.9 6.7
Worcester wor Worcester MA 709,705 15.2 8.2 6.9
Orlando orla Orange FL 677,491 11.0 5.8 5.2
Jacksonville jckv Duval FL 672,971 13.0 7.0 6.0

Fresno fres Fresno CA 667,490 11.1 6.2 4.9
Louisville loui Jefferson KY 664,937 16.3 8.8 7.5
Boston bost Suffolk MA 663,906 13.2 6.5 6.7
Birmingham birm Jefferson AL 651,525 16.2 8.5 7.7
Washington dc Washington DC DC 606,900 15.5 7.0 8.5

Oklahoma City okla Oklahoma OK 599,611 12.9 7.3 5.6
Providence prov Providence RI 596,270 14.6 7.9 6.7
El Paso elpa El Paso TX 591,610 7.7 3.8 3.9
Tacoma taco Pierce WA 586,203 10.0 5.7 4.3
Austin aust Travis TX 576,407 7.0 3.4 3.6

Dayton dayt Montgomery OH 573,809 11.9 6.5 5.4
Jersey City jers Hudson NJ 553,099 11.5 5.9 5.6
Bakersfield bake Kern CA 543,477 8.6 5.0 3.6
Akron akr Summit OH 514,990 10.7 5.8 4.9
Charlotte char Mecklenburg NC 511,433 8.5 4.3 4.2

Nashville nash Davidson TN 510,784 11.0 6.0 5.0
Tulsa tuls Tulsa OK 503,341 10.0 5.8 4.2
Grand Rapids gdrp Kent MI 500,631 8.7 4.9 3.8
New Orleans no Orleans LA 496,938 12.0 5.9 6.1
Stockton stoc San Joaquin CA 480,628 8.5 4.8 3.6

Albuquerque albu Bernalillo NM 480,577 7.6 3.8 3.8
Syracuse syra Onondaga NY 468,973 9.7 5.4 4.3
Toledo tole Lucas OH 462,361 10.8 6.3 4.5
Raleigh ral Wake NC 423,380 5.6 2.9 2.7
Wichita wich Sedwick KS 403,662 7.2 4.0 3.3

Colorado Springs colo El Paso CO 397,014 5.0 2.8 2.3
Baton Rouge batr East Baton Rouge LA 380,105 6.3 3.4 3.0
Modesto mode Stanislaus CA 370,522 6.6 3.8 2.8
Madison madi Dane WI 367,085 5.3 2.9 2.4
Spokane spok Spokane WA 361,364 7.8 4.5 3.3

Little Rock ltrk Pulaski AR 349,660 7.0 3.7 3.3
Greensboro grnb Guilford NC 347,420 6.9 3.8 3.1
Knoxville knox Knox TN 335,749 6.7 3.5 3.1
Shreveport shr Bossier, Caddo LA 334,341 6.8 3.7 3.1
Des Moines desm Polk IA 327,140 6.1 3.4 2.6

(Table continues on next page.)
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Table A.1, continued. The 90 Cities and their Included Counties by Population Size with Mean Daily Number of Deaths 
by Category, 1987–1994

Mean Daily Deaths

City Abbreviation County State Population Total

CVD/
Respiratory 

Disease Other 

Fort Wayne ftwa Allen IN 300,836 5.9 3.4 2.5
Corpus Christi corp Nueces TX 291,145 4.9 2.5 2.4
Norfolk nor Norfolk VA 261,229 4.8 2.6 2.2
Jackson jcks Hinds MS 254,441 5.3 3.0 2.3
Huntsville hunt Madison AL 238,912 3.9 2.2 1.7

Anchorage anch Anchorage AK 226,338 1.9 0.8 1.1
Lexington lex Fayette KY 225,366 4.1 2.1 2.0
Lubbock lubb Lubbock TX 222,636 3.9 2.3 1.6
Richmond rich Richmond City VA 203,056 5.1 2.7 2.4
Arlington arlv Arlington VA 170,936 2.4 1.3 1.2

Kingston king Ulster NY 165,304 3.0 1.8 1.2
Evansville evan Vanderburgh IN 165,058 4.4 2.5 1.9
Kansas City kans Wyandotte KS 161,993 3.2 1.8 1.4
Olympia olym Thurston WA 161,238 2.8 1.5 1.3
Topeka tope Shawnee KS 160,976 3.6 2.0 1.6

Table A.2. Regression Coefficients (95% CI) for Effect of Lag1 PM10 on Total Mortality, Cardiorespiratory and Other 
Deaths, Unadjusted for Other Pollutants, in 20 Cities

City
Total Mortality

��(95% CI)
CVDRESP Mortality

��(95% CI)
Other Diseases
��(95% CI)

Los Angeles 0.38 (0.01, 0.76) 0.32 (	0.17, 0.81) 0.33 (	0.22, 0.88)
New York 1.11 (0.53, 1.68) 1.12 (0.38, 1.86) 0.93 (0.06, 1.81)
Chicago 0.31 (0.10, 0.52) 0.40 (0.12, 0.69) 0.23 (	0.07, 0.54)
Dallas/Ft Worth 	0.41 (	1.67, 0.85) 	0.09 (	1.74, 1.55) 	0.64 (	2.51, 1.23)
Houston 0.19 (	0.47, 0.84) 0.55 �	0.35, 1.45) 	0.21 (	1.13, 0.71)

San Diego 1.09 (0.16, 2.03) 0.80 (	0.44, 2.04) 1.26 (	0.11, 2.63)
Santa Ana/Anaheim 0.69 (	0.35, 1.74) 0.15 (	1.23, 1.53) 0.53 (	1.08, 2.14)
Phoenix 0.65 (	0.42, 1.72) 1.21 (	0.22, 2.63) 0.16 (	1.40, 1.72)
Detroit 0.48 (0.09, 0.86) 0.60 (0.09, 1.10) 0.10 (	0.48, 0.68)
Miami 0.69 (	0.76, 2.15) 1.95 (	0.05, 3.94) 	0.72 (	2.87, 1.44)

Philadelphia 0.77 (	0.19, 1.73) 1.37 (0.05, 2.69) 0.16 (	1.28, 1.60)
Minneapolis/St Paul 0.48 (	0.07, 1.03) 0.48 �	0.26, 1.23) 0.32 (	0.48, 1.12)
Seattle 0.28 (	0.31, 0.87) 0.48 (	0.30, 1.27) 0.16 (	0.68, 1.01)
San Jose 0.32 (	0.35, 0.98) 0.19 (	0.69, 1.07) 0.44 (	0.54, 1.42)
Cleveland 	0.05 (	0.50, 0.40) 	0.10 (	0.71, 0.50) 0.03 (	0.62, 0.68)

San Bernardino 0.26 (	1.10, 1.61) 1.33 (	0.41, 3.06) 	1.16 (	3.25, 0.93)
Pittsburgh 0.39 (0.09, 0.69) 0.57 (0.17, 0.97) 0.19 (	0.27, 0.65)
Oakland 2.06 (0.94, 3.18) 2.03 (0.58, 3.48) 1.73 (0.08, 3.39)
Atlanta 0.05 (	1.60, 1.70) 	0.32 (	2.69, 2.04) 0.44 (	1.86, 2.74)
San Antonio 0.69 (	1.08, 2.47) 2.32 (	0.02, 4.66) 	0.84 (	3.46, 1.79)
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Table A.3. Mean Daily Pollutiona by City, 1987–1994

City
PM10 
�g/m3

O3
ppb

NO2
ppb

SO2
ppb

CO
ppm

Los Angeles 46.0 22.8 39.4 1.9 1.51
New York 28.8 19.6 38.9 12.8 2.04
Chicago 35.6 18.6 24.3 4.6 0.79
Dallas/Ft Worth 23.8 25.3 13.8 1.1 0.74
Houston 30.0 20.5 18.8 2.8 0.89

San Diego 33.6 31.6 22.9 1.7 1.10
Santa Ana/Anaheim 37.4 23.0 35.1 1.3 1.23
Phoenix 40.3 22.5 16.6 3.5 1.27
Detroit 40.9 22.6 21.3 6.4 0.66
Miami 25.7 25.9 11.0 NA 1.06

Philadelphia 35.4 20.5 32.2 9.9 1.18
Minneapolis/St Paul 26.9 NA 17.6 2.6 1.18
Seattle 25.3 19.4 NA NA 1.78
San Jose 30.4 17.9 25.1 NA 0.94
Cleveland 45.1 27.4 25.2 10.3 0.85

San Bernardino 37.0 35.9 27.9 0.7 1.03
Pittsburgh 31.6 20.7 27.6 14.2 1.22
Oakland 26.3 17.2 21.2 NA 0.91
Atlanta 36.1 25.1 26.0 6.0 0.89
San Antonio 23.8 22.2 NA NA 1.01

Riverside 52.0 33.4 25.0 0.4 1.12
Denver 29.6 21.4 27.9 5.5 1.03
Sacramento 33.3 26.7 16.3 NA 0.94
St Louis 30.1 22.8 22.5 11.3 1.05
Buffalo 21.7 22.9 19.0 8.6 0.73

Columbus 29.0 26.0 NA 5.9 0.76
Cincinnati 34.2 25.8 26.7 11.9 1.00
St Petersburg 23.5 24.6 11.8 NA 0.71
Kansas City 25.9 27.6 9.2 2.4 0.62
Honolulu 15.3 18.9 NA NA 0.83

Tampa 28.3 23.5 21.2 7.8 0.78
Memphis 30.3 29.0 26.8 6.8 1.19
Indianapolis 32.0 31.9 20.2 7.7 0.90
Newark 32.9 15.2 33.6 9.6 0.87
Baltimore 32.9 21.2 32.9 8.4 0.92

Salt Lake City 32.9 23.0 29.6 4.4 1.35
Rochester 21.9 22.7 NA 10.4 0.63
Worcester 22.2 30.0 25.2 6.7 0.89
Orlando 22.7 24.1 11.4 1.5 0.93
Jacksonville 29.9 28.2 14.8 2.2 0.92

Fresno 43.4 29.4 21.7 1.9 0.68
Louisville 30.8 19.8 22.4 8.4 1.12
Boston 26.0 17.9 29.9 10.0 1.13
Birmingham 31.2 22.4 NA 6.6 1.05
Washington DC 28.2 17.5 25.6 11.2 1.23

(Table continues in next column.)

Table A.3, continued.

City
PM10 
�g/m3

O3
ppb

NO2
ppb

SO2
ppb

CO
ppm

Oklahoma City 25.0 28.4 13.9 NA 0.71
Providence 30.9 25.4 21.9 9.5 1.00
El Paso 41.2 24.4 23.6 9.1 1.25
Tacoma 28.0 23.8 NA 6.5 1.66
Austin 21.1 25.5 NA NA NA

Dayton 27.4 26.6 NA NA 0.82
Jersey City 30.5 19.7 28.7 10.7 2.01
Bakersfield 53.2 33.3 19.4 3.0 1.05
Akron 22.4 30.5 NA 12.0 0.70
Charlotte 30.7 29.3 16.2 NA 1.11

Nashville 32.4 16.2 NA 11.6 1.12
Tulsa 26.6 31.4 16.6 6.9 0.65
Grand Rapids 22.8 27.7 NA 3.0 0.57
New Orleans 29.0 20.5 21.3 NA 0.94
Stockton 39.0 22.6 24.2 1.7 0.82

Albuquerque 16.9 25.8 NA NA 0.79
Syracuse 24.5 23.7 NA 3.6 1.17
Toledo 25.6 27.1 NA 5.9 1.03
Raleigh 25.6 35.4 12.7 NA 1.61
Wichita 25.6 24.2 NA 4.8 0.65

Colorado Springs 26.3 24.3 NA NA 1.09
Baton Rouge 27.3 21.2 16.6 5.2 0.43
Modesto 41.7 26.1 24.2 1.9 0.91
Madison 19.9 29.7 NA 3.3 1.04
Spokane 36.0 32.6 NA NA 2.19

Little Rock 25.8 27.7 9.3 2.6 NA
Greensboro 27.5 NA NA 4.2 1.22
Knoxville 36.3 29.6 NA NA 1.36
Shreveport 24.7 28.2 NA 2.3 NA
Des Moines 35.5 11.8 NA NA 0.86

Fort Wayne 23.2 32.1 NA 4.0 1.44
Corpus Christi 24.7 23.9 NA 1.0 NA
Norfolk 26.0 NA 19.6 6.7 0.73
Jackon 26.4 23.9 NA NA 0.79
Huntsville 26.0 30.4 12.9 NA 0.63

Anchorage 23.0 NA NA NA 1.61
Lexington 24.5 32.8 16.4 6.2 0.88
Lubbock 25.1 NA NA NA NA
Richmond 25.4 NA 23.7 5.8 0.66
Arlington 22.0 29.0 25.5 NA 0.66

Kingston 20.4 NA NA NA NA
Evansville 32.4 NA NA NA NA
Kansas City 43.4 18.5 17.6 4.7 0.82
Olympia 22.7 NA NA NA 1.27
Topeka 29.0 NA NA NA NA

a Pollution values are based on a 10% trimmed, mean as described in 
Appendix E.
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Table A.4. Number of Days for Which Monitoring Is 
Available by Pollutant and Used for Mortality Analysis, 90 
Cities, 1987–1994

City PM10    O3    NO2    SO2   CO

Los Angeles 580 2,922 2,922 2,922 2,922
New York 489 2,922 2,493 2,920 2,920
Chicago 2,683 2,922 2,922 1,409 2,922
Dallas/Ft Worth 624 2,922 2,557 2,908 2,922
Houston 793 2,922 2,557 2,922 2,922

San Diego 521 2,922 2,922 2,922 2,922
Santa Ana/Anaheim 480 2,922 2,922 2,922 2,922
Phoenix 376 2,554 740 1,272 2,554
Detroit 1,348 1,861 2,686 2,922 2,922
Miami 484 2,882 2,863 0 2,919

Philadelphia 495 2,901 2,554 2,919 2,919
Minneapolis/St Paul 2,764 0 2,725 2,914 2,918
Seattle 2,205 1,820 0 0 2,922
San Jose 945 2,922 1,957 0 2,922
Cleveland 1,298 1,712 2,555 2,922 2,897

San Bernardino 538 2,922 2,922 2,922 2,922
Pittsburgh 2,899 2,883 2,537 2,922 2,920
Oakland 508 2,922 2,921 0 2,922
Atlanta 482 2,200 2,922 2,918 2,839
San Antonio 670 2,918 0 0 2,891

Riverside 545 2,922 2,904 2,908 2,921
Denver 1,645 2,922 2,484 2,860 2,922
Sacramento 488 2,922 2,916 0 2,922
St Louis 487 1,731 2,919 2,919 2,920
Buffalo 489 2,884 2,522 2,922 2,921

Columbus 1,564 1,494 0    964 2,557
Cincinnati 1,705 1,712 2,554 2,905 2,922
St Petersburg 367 2,920 2,235 0 2,922
Kansas City 670 2,856 2,922 1,094 2,922
Honolulu 415 1,681 0 0 2,919

Tampa 508 2,922 941 1,818 2,922
Memphis 480 1,707 2,254 2,823 2,922
Indianapolis 1,269 1,588 2,874 2,922 2,922
Newark 484 2,726 2,882 2,896 2,894
Baltimore 1,220 2,063 2,843 2,912 2,865

Salt Lake City 1,356 2,409 1,903 2,739 2,922
Rochester 486 2,886 0 2,921 2,921
Worcester 450 1,763 2,864 2,452 2,899
Orlando 421 2,920 2,024 2,878 2,921
Jacksonville 555 2,791 2,727 2,738 2,922

Fresno 517 2,922 2,922 2,398 2,922
Louisville 485 2,603 1,604 2,841 2,922
Boston 631 2,882 2,922 2,922 2,922
Birmingham 900 2,200 0 1,916 2,922
Washington DC 417 2,847 2,842 2,286 2,341

Table A.4, continued.

City PM10    O3   NO2   SO2   CO

Oklahoma City 563 2,832 2,295 0 2,909
Providence 485 1,634 2,441 2,922 2,921
El Paso 2,587 2,922 2,472 2,906 2,922
Tacoma 482 1,601 0 2,756 2,766
Austin 646 2,909 0 0 0

Dayton 461 1,696 0 0 2,922
Jersey City 1,367 2,843 2,496 2,918 2,883
Bakersfield 550 2,557 2,557 2,557 2,659
Akron 1495 1,677 0 2,827 2,922
Charlotte 454 1,936 1,593 0 2,922

Nashville 1,989 2,861
0

2,619 2,771
Tulsa 411 2,834 2,462 2,426 2,836
Grand Rapids 777 1,615 0 2,907 2,903
New Orleans 531 2,889 2,879 0 2,922
Stockton 488 2,475 2,379 867 2,906

Albuquerque 1,200 2,922
0 0

2,922
Syracuse 485 2,864 0 2,857 2,908
Toledo 416 1,711 0 2,921 2,897
Raleigh 480 1,267 1,219 0 2,160
Wichita 366 2,913 0 1,423 2,922

Colorado Springs 481 2,920 0 0 2,922
Baton Rouge 474 2,922 2,880 2,891 2,888
Modesto 199 2,496 2,449 845 2,892
Madison 338 1,698 0 2,432 2,709
Spokane 2,393 974 0 0 2,922

Little Rock 516 2,922 2,921 2,908 0
Greensboro 445 0 0 1,077 1,855
Knoxville 577 1,679 0 0 2,511
Shreveport 349 2,922 0 2,881 0
Des Moines 1,334 2,782 0 0 2,825

Fort Wayne 336 1,587 0 1,219 1,822
Corpus Christi 613 2,919 0 2,920 0
Norfolk 474 0 1,787 2,148 2,921
Jackon 508 2,191 0 0 2,574
Huntsville 1,382 2,173 1,090 0 2,532

Anchorage 2,379 0 0 0 1,488
Lexington 816 1,709 2,871 2,906 2,865
Lubbock 1,306 0 0 0 0
Richmond 474 0 2,537 2,907 2,922
Arlington 313 1,705 2,306 0 2,896

Kingston 323 0 0 0 0
Evansville 404 0 0 0 0
Kansas City 551 2,890 324 2,909 2,775
Olympia 1,135 0 0 0 950
Topeka 269 0 0 0 0
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Table A.5. Regression Coefficients (95% CI) for Effect of 
Lag1 PM10 on Total Mortality Adjusted for O3, in 20 Cities

City Estimate (95% CI)

Los Angeles 0.42   (0.05, 0.79)
New York 1.19   (0.59, 1.80)
Chicago 0.31   (0.10, 0.52)
Dallas/Ft Worth 	0.32 (	1.58, 0.94)
Houston 0.21 (	0.44, 0.87)

San Diego 1.13   (0.19, 2.06)
Santa Ana/Anaheim 1.03 (	0.01, 2.07)
Phoenix 0.63 (	0.47, 1.73)
Detroit 0.60   (0.14, 1.06)
Miami 0.59 (	0.90, 2.07)

Philadelphia 0.68 (	0.30, 1.66)
Minneapolis/St Paul NA
Seattle 0.98   (0.00, 1.96)
San Jose 0.37 (	0.32, 1.06)
Cleveland 0.05 (	0.54, 0.64)

San Bernardino 0.31 (	1.04, 1.67)
Pittsburgh 0.38   (0.07, 0.68)
Oakland 2.02   (0.86, 3.17)
Atlanta 	1.02 (	3.04, 1.01)
San Antonio 0.71 (	1.07, 2.48)

Figure A.1. Overall means and 95% CIs for the estimated effects of PM10
on total mortality at lag 1 for the 90 cities, under 9 different modeling
assumptions. Each overall result was obtained using a random effects
model. The nine labels on the x-axis indicate whether the degrees of
freedom for the smooth function of time, temperature, and dew point,
taken in that order, have been halved, doubled, or kept the same. Half is
represented by a "1", double by a "4", and default by a "2".

Table A.6. Regression Coefficientsa (95% CI) for Effect of Lag1 PM10 on Total Mortality Adjusted for O3 and NO2; O3 and 
SO2; O3 and CO, in Selected Cities

City O3 and NO2
Mean (95% CI)

O3 and SO2
Mean (95% CI)

O3 and CO
Mean (95% CI)

Los Angeles 	0.06 (	0.64, 0.51) 	0.01 (	0.47, 0.44) 	0.05 (	0.60, 0.50)
New York 0.52 (	0.34, 1.37) 0.21 (	0.88, 1.29) 1.51 (	0.65, 2.36)
Chicago 0.13 (	0.10, 0.37) 	0.03 (	0.34, 0.29) �0.16 (	0.06, 0.38)
Dallas/Ft Worth 0.66 (	0.75, 2.07) 	0.22 (	1.48, 1.05) 	0.09 (	1.36, 1.17)
Houston 0.01 (	0.67, 0.69) 0.13 (	0.54, 0.79) 0.04 (	0.66, 0.75)

San Diego 0.81 (	0.46, 2.08) 0.41 (	0.63, 1.45) 0.79 (	0.44, 2.01)
Santa Ana/Anaheim 0.38 (	1.12, 1.89) 0.95 (	0.22, 2.11) 1.02 (	0.41, 2.45)
Phoenix 1.95 (	0.39, 4.29) 1.72   (0.14, 3.31) -0.07 (	1.42, 1.29)
Detroit 0.49 (	0.17, 1.14) 0.65   (0.12, 1.17) 0.42 (	0.10, 0.94)
Miami 0.65 (	0.86, 2.16) NA 0.62 (	0.88, 2.12)

Philadelphia 1.26 (	0.02, 2.55) 1.07 (	0.31, 2.46) 0.96 (	0.16, 2.08)
Minneapolis/St Paul NA NA NA
Seattle NA NA 1.39 (	0.06, 2.83)
San Jose 	0.29 (	1.73, 1.15) NA -0.15 (	1.46, 1.15)
Cleveland 0.07 (	0.54, 0.69) 0.04 (	0.55, 0.64) 0.04 (	0.55, 0.64)

San Bernardino 0.19 (	1.35, 1.72) 0.32 (	1.06, 1.69) 0.27 (	1.24, 1.79)
Pittsburgh 0.26 (	0.12, 0.65) 0.43   (0.05, 0.80) 0.30 (	0.07, 0.67)
Oakland 1.23 (	0.36, 2.83) NA 1.12 (	0.39, 2.64)
Atlanta 	1.12 (	3.36, 1.11) 	0.95 (	3.15, 1.24) 	0.70 (	3.17, 1.17)
San Antonio NA NA 0.78 (	1.00, 2.56)

a Percentage of change per 10 µg/m3 PM10.
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APPENDIX B. Distributed Lag Between Air 
Pollution and Daily Deaths*

ABSTRACT

Many studies have reported associations between air
pollution and daily deaths. Those studies have not consis-
tently specified the lag between exposure and response,
although most have found associations that persisted for
more than 1 day. A systematic approach to specifying the
lag association would allow better comparison across sites
and give insight into the nature of the relationship. To
examine this question, I fit unconstrained and constrained
distributed lag relationships to the association between
daily deaths of persons aged 65 and older with PM10 in
10 US cities (New Haven, Birmingham, Pittsburgh, Detroit,
Canton, Chicago, Minneapolis/St Paul, Colorado Springs,
Spokane, and Seattle) that had daily monitoring for PM10.

After control for temperature, humidity, barometric
pressure, day of the week, and seasonal patterns, I found
evidence in each city that the effect of a single day’s expo-
sure to PM10 was manifested across several days. Aver-
aging over the 10 cities, the overall effect of an increase in
exposure of 10 �g/m3 on a single day was an estimated
1.4% increase in deaths (95% CI 1.15%, 1.68%) obtained
when using a quadratic distributed lag model, and an esti-
mated 1.3% increase (CI 1.04%, 1.56%), obtained when
using an unconstrained distributed lag model. In contrast,
constraining the model to assume that the effect occurs all
in a single day resulted in an estimate of only 0.65%
(CI 0.49%, 0.81%), indicating that this constraint leads to
a substantially lower estimate of effect. Combining the
estimated effect at each day’s lag across the 10 cities
showed that the effect was spread over several days and
did not reach 0 until 5 days after the exposure. Given the
distribution of sensitivities likely in the general popula-
tion, this result is biologically plausible. I also found a pro-
tective effect of barometric pressure in all 10 locations.

INTRODUCTION

Numerous studies in the last decade have reported asso-
ciations between day-to-day fluctuations in air pollution
and day-to-day fluctuations in daily deaths in cities
(Schwartz and Marcus 1990; Schwartz and Dockery 1992;
Touloumi et al 1994; Hoek et al 1997; Katsouyanni et al
1997; Kelsall et al 1997). These associations have been
seen with pollution levels on the same day and within

5 previous days (Pope et al 1992). The studies have been
criticized, however, because the same lag relationship
between air pollution and deaths was not used in all
studies. Instead, the strongest single-day lag relationship
with mortality has usually been fit in each study, leading
to inconsistencies in the lag relationship specified. A more
consistent approach would facilitate combining evidence
across studies.

Most of the studies that considered associations with a
multiday moving average found that a 2-day or 3-day
moving average of air pollution has fit better than any
single day’s pollution or longer moving average (Schwartz
and Dockery 1992; Katsouyanni et al 1997; Kelsall et al
1997). In some cases, longer (up to 5 days) moving aver-
ages have been fit. This suggests that the effect of an
increase in pollution concentration on a single day is dis-
tributed across several subsequent days. Toxicologic data
also suggest that effects of exposure may be seen over
several subsequent days. For example, Clarke and
coworkers (1999) reported changes in tidal volume of rats
immediately after exposure to concentrated ambient air
particles, and increases in inflammatory markers approxi-
mately 36 hours after exposure.

In general, we might suppose the distribution of effect of
air pollution over time to look something like Figure B.1. If
the time scale in this figure is short (hours, for example),
then a single 24-hour average pollution concentration will
be an acceptable proxy for the true relationship shown in
the figure. If the time scale extends over several days, a
2-day moving average will probably be a reasonable proxy,
and a single day’s pollution will be a poorer surrogate. In
both those examples, we are approximating the true shape
of the relationship by a simple step function. If the relation-
ship extends over a longer time scale, then the extent to

* Much of this appendix was taken from Schwartz J. 2000. The distributed
lag between air pollution and daily deaths. Epidemiology 11:320–326.

Figure B.1. Hypothesized curve showing the impact of an environmental
toxin over time. The effect rises, and then falls, possibly with a long tail.
The goal of this analysis is to identify the actual shape of the curve repre-
senting the time course of deaths after exposure to PM10.
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which a 1-day or 2-day average concentration will represent
the true relationship depends on the serial correlation in the
air pollution measure. Air pollution concentration measure-
ments taken within a few days of each other tend to be cor-
related. That correlation varies from city to city, however.
Thus, some of the variation in the effect sizes and best-fit-
ting lags of the reported associations among cities may be
due to fitting a simplistic model for the distribution of the
exposure response over time.

This issue is increasing in importance. Previous studies
of the association between daily pollution and daily
deaths have been done in cities with daily monitoring.
Recent studies have begun to examine large numbers of
cities in which airborne particles are monitored only 1 day
in 6 (Dominici et al 1999). Two-day or three-day averages
cannot be used in those cities, and it is important to quan-
tify the impact of this limitation.

A systematic approach to investigating the distribution
of effect over time offers the possibilities of explaining
some of the variation, of testing the potential bias associ-
ated with the use of a single day’s pollution, of providing
estimates in individual locations that can more appropri-
ately be combined, and of indicating what the nature of the
lag structure between air pollution and daily deaths is.
This study demonstrates the methodology for such an
approach and applies it to a study of PM10 pollution and
daily deaths in 10 cities across the United States.

DATA AND METHODS

To analyze effectively the distributed lag between PM10
and daily deaths, we need daily PM10 measurements. Most
US cities measured PM10 only 1 day in 6, but a number of
locations had monitors on a daily schedule. I selected 10
US cities with roughly daily PM10 monitoring to provide a
reasonable number of locations for a combined analysis.
The cities were New Haven, Birmingham, Pittsburgh,
Detroit, Canton, Chicago, Minneapolis/St Paul, Colorado
Springs, Spokane, and Seattle. Daily deaths in the metro-
politan county containing each city were extracted from
NCHS mortality tapes for the years 1986 through 1993.
Deaths due to external causes (ICD-9 800–999) were
excluded. Because a previous study suggested the seasonal
pattern of mortality may differ by age (Samet et al 1998),
this study is limited to deaths of persons aged 65 and
older. Minneapolis and St Paul were combined and treated
as a single city. Daily weather data were obtained from the
nearest airport weather station, and daily concentrations
of PM10 were obtained from the EPA’s AIRS monitoring
network.

The assignment of PM10 exposure raised a number of
issues. Many of the locations have more than 1 monitoring

location, but typically only 1 monitor operates on a daily
basis, with the others operating every third or sixth day. If
the monitors were simply averaged, the daily mean would
jump on days when new monitors were included merely
because their annual average differs from the monitoring
station that operates on a daily basis.

The variance of PM10 measurements also can differ from
monitoring location to location. Day-to-day changes in
which monitors are in the daily average would also result
in changes in the day-to-day exposure measure that repre-
sent not true changes in exposure but only changes in the
sampling of monitors. To remove these influences, I used
the following algorithm. The annual mean was computed
for each monitor for each year and subtracted from the
daily values of that monitor. I then standardized these
daily deviances from each monitor’s annual average by
dividing by the standard deviation for that monitor. The
daily standardized deviations for each monitor on each
day were averaged, producing a daily averaged standard-
ized deviation. I multiplied this by the standard deviation
of all of the monitor readings for the entire year and added
back in the annual average of all of the monitors.

Analytical Approach

For each city, a generalized additive Poisson regression
was fit, modeling the logarithm of the expected value of
daily deaths as a sum of smooth functions of the predictor
variables (Hastie and Tibshirani 1990; Schwartz et al 1993).
The generalized additive model allows regressions to
include nonparametric smooth functions to model the
potential nonlinear dependence of daily admissions on
weather and season. It assumes that

log(E(Y)) = �0  S1…  Sp(Xp)

where Y is the daily count of deaths, E(Y) is the expected
value of that count, the Xi are the covariates and the Si are
the smooth (ie, continuously differentiable) functions for
i = 1, …, p. For the Si, I used LOESS, a moving regression
smoother (Cleveland and Devlin 1988). This approach is
now standard in air pollution time-series studies
(Schwartz 1994). For each covariate, it is necessary to
choose a smoothing parameter that determines how
smooth the function of that covariate should be. Three sets
of predictor variables were used in this analysis: a smooth
function of time to capture seasonal and other long-term
trends in the data, weather and day-of-the-week variables
to capture shorter-term potential confounding, and PM10.
The choice of smoothing parameter for each set of vari-
ables is described as follows.
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The purpose of the smooth function of time is to remove
the basic long-term pattern from the data. Seasonal pat-
terns can vary greatly between Birmingham and Spokane,
for example, and a separate smoothing parameter was
chosen for each city to reduce the residuals of the regres-
sion to white noise (ie, to remove serial correlation)
(Schwartz 1999). This approach was used because each
death is an independent event, and autocorrelation in
residuals indicates there are omitted, time-dependent
covariates, the variation of which may confound air pollu-
tion. If the autocorrelation is removed, remaining variation
in omitted covariates has no systematic temporal pattern,
and hence confounding is less likely. Sometimes it was
necessary to incorporate autoregressive terms to eliminate
serial correlation from the residuals (Brumback et al 1999).

The other covariates were temperature, relative humid-
ity, and barometric pressure on the same day; the previous
day’s temperature; and day of the week. To allow for city-
specific differences, the smoothing parameters for these
covariates were also optimized separately in each location.
The criterion used was to choose the smoothing parameter
for each variable that minimized AIC (Akaike 1973).

PM10 was treated as having a linear association in this
analysis to facilitate the combination of coefficients across
cities and the examination of lag structure. Robust regres-
sion was used to reduce sensitivity to outliers in the
dependent variable. These regressions were done using
the generalized additive model function in Splus, and M-
estimation was the robust regression method. To reduce
sensitivity to outliers in the pollution variable, analysis
was restricted to days when PM10 levels were below
150 �g/m3, the currently enforced ambient standard. This
also ensures that the results are unambiguously relevant to
questions of revision of those standards.

Distributed Lag Models

Distributed lag models have been used for decades in the
social sciences (Judge et al 1980), and Pope and Schwartz
(1996) recently described the use of this approach in epide-
miology.

Motivation for the distributed lag model is the realiza-
tion that air pollution can effect deaths occurring not only
on the same day, but also on several subsequent days. The
converse is therefore also true: Deaths today will depend
on the same-day effect of today’s pollution levels, the 1-
day lag effects of yesterday’s PM10 concentrations, and so
on. Therefore, suppressing covariates and assuming Gaus-
sian data for the moment, the unconstrained distributed
lag model assumes

           Yt = � + �0Xt + … + �qXt�q + �1 (1)

where Xt–q is the PM10 concentration q days before the
deaths. The overall effect of a unit increase in air pollution
on a single day is its impact on that day plus its impact on
subsequent days. That is, it is the sum of � + . . . + �q
(Schwartz 1993). To see this more easily, note that equa-
tion (1) can be recast as:

Yt = � + �*(w0Xt + … + wq Xt–q) + �t

where the wi are individual weights that sum to 1, and �*
is �0 + … + �q. That is, �* is also interpretable as the
marginal effect of a unit increase in a weighted average
pollution variable. Since a unit increase in pollution on a
single day increases the weighted average on all q subse-
quent days, the effect of that single day’s increase will be
�*wi on each of the q subsequent days, or �* overall.

Since there is substantial correlation between air pollu-
tion concentrations on days close together, the above
regression will have a high degree of collinearity. This will
result in unstable estimates of the individual �q and hence
poor estimates of the shape of Figure B.1. However, the
sum of the individual �q will be an unbiased estimate of
the overall effect of a unit increase in pollution, albeit an
inefficient one.

To gain more efficiency, and more insight into the shape
of the distributed effect of air pollution over time, it is
useful to constrain �q. If this is done flexibly, substantial
gains in reducing the noise of the unconstrained
distributed lag model can be obtained with minimal bias.
This approach has been widely applied in the social sci-
ences, using Gaussian data. The most common approach is
to constrain the shape of the variation of each �q with lag
number (ie, the shape of Figure B.1) to fit some polynomial
function. That is, the polynomial distributed lag model
(PDL(q, d) with q lags and degree d) is the model (1) above,
subject to the restriction:

�j = �d
0�kjk (2)

This approach originated with Almon (1965). Here I
extend that model to the generalized additive model case.
Assume that

log(E(Y)) = �0 + S1(X1) + … Sp(Xp) + �0Z0 + … �pZp

where Z0 is the exposure on the concurrent day, Z1 on the
previous day, and so on. If we impose the constraints in
equation (2) and suppress the covariates, we can write this as
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log(E(Y)) = covariates + �0Z0

+ (�0 + �1 + 2�2 + p�p)Z1

+ (�0 + p�1 + p2�2 + pd�d)Z1

We can rewrite this by collecting terms in each of the 0s.
This yields:

log(E(Y)) = covariates

+ �0(Z0 + Z1 + … + Zp)

+ … +

+ �p(pZ1 + p2Z2 + … + pdZd)

Hence, if we define d + 1 new variables Wd to be
weighted sums of the exposure variable Z and its lags, with

Wd = pZ1 + p2Z2 + … + pdZd

 and

W0 = Z0 + Z1 + … + Zp,

we can estimate the model

log(E(Y)) = covariates + �0W0 + … + �pWp

and the coefficients of the Ws will be the parameters of the
polynomial distributed lag.

Note that the use of a single day’s exposure is also a con-
strained lag model. In that case, we are fitting equation (1),
with the constraint that �1 = �2 = … = �p = 0. If we are not
quite sure that the effects of pollution are limited to a

single day, these constraints are much more restrictive
than those of equation (2) and are much more likely to
introduce bias into the estimated overall effect.

I have chosen a maximum lag of 5 days prior to the deaths
for the air pollution variable. This is because published
studies have shown that lags of more than a few days had
little correlation with daily deaths, and because the goal of
this analysis is to estimate the short-term effects of air pollu-
tion. Because the explanatory power of air pollution on daily
deaths is modest, parsimony in the degree of the polynomial
is necessary. Therefore, I have chosen a second-degree poly-
nomial in this analysis. To test the sensitivity of the conclu-
sions regarding the overall effect of air pollution on daily
deaths to the degree of the polynomial, I have also fit the
unconstrained distributed lag model in each city. To see if
the traditional approaches of using a 1-day or 2-day moving
average resulted in a downward bias in the estimated effects
of PM10, I have also fit those models in each city.

To combine results across cities, I used inverse variance
weighted averages. For the distributed lag model, the effect
at each day’s lag (and its variance) was estimated from the
parameters of the polynomial (ie, 00, 01, and 02) and their
covariances, as was the overall effect and its variance.

RESULTS

Table B.1 shows the populations, mean daily deaths of
people aged 65 and over, and means of the environmental
variables in the 10 study locations. Table B.2 shows the cor-
relation between PM10 and the weather variables. The corre-
lation between PM10 and barometric pressure was quite
small and mixed in sign (positive and negative). The correla-
tion between PM10 and relative humidity was generally neg-
ative and moderately low. The correlation with temperature

Table B.1. Population and Mean Daily Values for Environmental Variables and Mean Daily Death Counts for Each City 
(1986–1994)

City
1990 

Population
Deaths 

(ages 65+)
PM10

(µg/m3)

Relative 
Humidity 

(%)

Barometric 
Pressure
(inches 
H2O)

Temperature 
(
F)

Days of PM10 
Monitoring

New Haven 804,219 15.5 28.6 67.2 29.8 50.5 1,450
Birmingham 651, 525 13.8 34.8 70.5 29.4 62.4 2,485
Pittsburgh 1,336,449 32.8 36.4 69.3 28.7 52.1 2,920
Detroit 2,111,687 38.8 36.9 69.2 29.3 50.9 2,705
Canton 367,585 7.4 29.3 73.3 28.7 50.4 1,750

Chicago 5,105,067 90.2 36.5 70.9 29.3 50.3 2,149
Minneapolis/St Paul 1,518,196 24.5 27.5 68.7 29.1 46.3 2,489
Colorado Springs 397,014 3.9 27.1 52.6 24.0 48.9 2,344
Spokane 361,364 6.6 40.6 66.6 27.5 47.9 1,977
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varied considerably across the locations, ranging from –0.34
in Colorado Springs to 0.45 in Pittsburgh.

Weather Results

The most notable result using weather variables is the
consistent association between barometric pressure and
daily deaths. In every city, higher barometric pressure was
associated with fewer deaths. In 6 of the cities, AIC (which
trades off improvement in model fit versus the number of
degrees of freedom that produced that improvement) was
reduced by including this term in the model. A lower AIC is
generally taken to indicate a better fitting model. In
3 smaller locations (Canton, Birmingham, and New Haven),
AIC was lower without including barometric pressure; in

Detroit, AIC was the same for both models. For comparison,
temperature, a measure traditionally included in models
relating air pollution to daily death, also improved (low-
ered) AIC in 6 out of the 10 locations, and relative humidity
improved model fit in only 4 of the 10 locations. The asso-
ciation with barometric pressure was not linear—the pro-
tective effect tended to flatten out at high pressure. This is
illustrated in Figure B.2, which shows the results for Min-
neapolis/St Paul. To illustrate the magnitude of the baro-
metric pressure effect better, I also fit linear terms for
barometric pressure and performed a meta-analysis of the
linear coefficients. Days with high barometric pressure had
lower deaths. A 0.25 inches H2O increase in barometric
pressure (which is approximately the mean interquartile
range in the 10 cities) was associated with a 1.58% decrease
in daily deaths (95% CI, 1.29%, 1.86%).

Table B.2. Correlation Between PM10 and Other 
Environmental Variables

City
Barometric 

Pressure
Relative 

Humidity Temperature

New Haven 0.11 	�.15 0.05
Birmingham 0.12 	�.30 0.26
Pittsburgh 0.14 	�.23 0.45
Detroit 	�.05 	�.14 0.37
Canton 0.15 	�.16 0.42

Chicago 	�.02 	�.30 0.36
Minneapolis/
St Paul

	�.03 	�.35 0.29

Colorado Springs 	�.01 	�.11 	0.34
Spokane 0.16 	�.19 	0.01
Seattle 0.24 	�.11 	0.22

Table B.3. Estimated Percentage of Increase in Daily Deaths (Standard Errors) for a 10-�g/m3 Increase in PM10 Under 
Each Distributed Lag Model

City

Constrained Lag Models

Unconstrained 
Lag Model

1-Day Mean
(Lag 0)

2-Day Mean
(Lag 0 and Lag 1)

Quadratic 
Distributed Lag

New Haven 0.62 (0.42) 1.69 (0.52) 1.85 (0.72) 1.80 (0.79)
Birmingham 	0.45 (0.31) 	0.02 (0.36) 0.36 (0.50) 0.34 (0.53)
Pittsburgh 0.58 (0.19) 1.02 (0.21) 0.89 (1.04) 1.00 (0.31)
Detroit 0.66 (0.19) 1.31 (0.21) 1.53 (0.32) 1.75 (0.30)
Canton 1.75 (0.83) 1.80 (0.78) 1.61 (1.25) 1.72 (1.36)

Chicago 0.85 (0.17) 1.18 (0.20) 0.98 (0.26) 0.91 (0.27)
Minneapolis/St Paul 1.43 (0.30) 1.84 (0.32) 2.08 (0.49) 2.01 (0.53)
Colorado Springs 0.16 (0.78) 1.15 (1.00) 1.94 (1.18) 1.75 (1.26)
Spokane 0.34 (0.30) 0.45 (0.31) 2.04 (0.34) 0.74 (0.43)
Seattle 0.70 (0.23) 0.65 (0.31) 1.46 (0.31) 1.46 (0.34)

Overall 0.65 (0.08) 1.05 (0.09) 1.41 (0.13) 1.29 (0.13)

Figure B.2. Nonparametric smooth plot of the log relative risk of death
versus pressure in Minneapolis/St Paul.
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PM10 Results

Table B.3 shows the estimated effect of a 10 �g/m3

increase in PM10 in each city using the concurrent day’s
pollution, the 2-day moving average, the polynomial dis-
tributed lag model, and the unconstrained distributed lag
model. The effect size estimates using the unconstrained
distributed lag were quite similar to those estimated using
the polynomial distributed lag model, suggesting the con-
straint introduced little bias. Both the distributed lag
models showed substantially greater overall effects than
models using only a single day’s exposure and moderately
larger effects than the 2-day average models.

The distributed lag model explained some of the hetero-
geneity among cities in their effect estimates. For example,
using the 2-day average model, the variance of the estimated
coefficients of PM10 across the 10 cities was 3.41 × 10–7.
The average within-city variance of the coefficients was
2.39 × 10–7, suggesting a heterogeneity not attributable to
sampling variability of 1.02 × 10–7. The across-city variance
of the estimated overall effect from the polynomial distrib-
uted lag model was 3.13 × 10–7. This suggests that failure to
account for the distributed lag properly accounted for about
a quarter of the unexplained variation in effect size among
the cities.

Figure B.3 shows the combined estimate of the distrib-
uted lag between air pollution and daily deaths. It clearly
remains positive for several days before falling toward 0,
which explains why the single day’s pollutant model is not
a good proxy for the overall effect of air pollution.

DISCUSSION

In every city in this study, evidence was seen that the
effect of an incremental increase in particulate air pollu-
tion on a given day was spread over several succeeding
days. First, the unconstrained distributed lag models in
each location always showed greater total effects than the
concurrent day models. In addition, Figure B.2, which
combines data across cities, shows the effects of pollution
were spread over multiple days and do not reach 0 until a
lag of 5 days has occurred. In plots of the distributed lag in
each city (not shown), the effect is spread over multiple
days in each of the 10 locations.

These results are biologically plausible. Given a distribu-
tion of sensitivity to air pollution in the general population,
which seems likely, and a distribution of severity of pre-
existing illness, one would expect some variation in the
time between exposure and response. This seems even more
likely for a summary measure such as all-cause mortality.
This measurement mixes deaths from myocardial infarc-
tions, which have been shown to be acutely triggered by
immediate exposure to stress or certain activities, with
deaths from respiratory disease, where it may take more
time for an exacerbatory event to result in the cascade of
biological responses leading to death (Mittleman et al 1995).

In a recent study of air pollution and daily deaths in
Milan, Italy, causes of death were examined separately
(Rossi et al 1999). Some causes were more strongly associ-
ated with particle exposure on the concurrent day, but
other causes were more strongly associated with exposure
2 days before. The mixing of such deaths in all-cause mor-
tality would naturally result in a distributed lag between
exposure and response.

Support is also provided by the London smog episode of
1952 (Her Majesty’s Public Health Service 1954). Air pol-
lution concentrations shot up on December 5, 1952, and
there was an immediate, same-day increase in deaths. The
curve of increase and decrease of daily deaths in general,
however, lagged behind the increase and decrease of air
pollution, with peak deaths occurring a day or two after
peak exposure. This suggests that there were substantial
lagged effects.

There is also toxicologic support for effects that persist
longer than a single day. In addition to the report of Clarke
and colleagues (1999) cited earlier, Lay and coworkers
(1999) have reported that particles instilled in the lung
induced an inflammation that took up to 4 days after expo-
sure to resolve.

The implications of this are evident in Table B.3. The
estimated effect of a 10 �g/m3 increase in PM10 on 1 day
using the 1-day moving average model was only about
40% of the estimate using an unconstrained or constrained

Figure B.3. Distribution over time of the increase in daily deaths
(shown as percent increase) associated with a 10 �g/m3 increase in
PM10 on a single day. The curve comes from the polynomial distrib-
uted lag model, and shows that the effects are distributed over mul-
tiple days, falling to zero at about 4 to 5 days after exposure. (• = 45%
CI; �  = estimate).
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model that estimates effects at longer lags. Notably, the
unconstrained model makes no assumption about the shape
of the distributed lag, or even the existence of effects at lags
greater than 1 day. It merely allows for the possibility that
they exist and estimates them based on the data. Hence,
these results indicate that studies that rely on single-day
exposure averages will, on average, substantially underesti-
mate the effect of particle exposure. It is possible that this
may not be true for other pollutants, but it would not be pru-
dent to make that assumption when the methodology to test
it is straightforward.

A 2-day moving average did substantially better than the
1-day average in estimating the effects of PM10, but this
average still underestimated the overall impacts by about
40%.

For other outcomes, such as cause-specific mortality or
hospital admissions, the distribution of effect over time may
have a different pattern. Separate evaluations, using distrib-
uted lag models, will be needed to assess the adequacy of
simple single-day or multiple-day averages. For multiple
time-series studies, the unconstrained lag model avoids any
risk of bias. For single time-series studies, the polynomial
distributed lag model appears to risk little bias and should
be the method of choice. The advantage of these distributed
lag models is that we do not need to leave the question of
how the effects are distributed over time to chance. By fit-
ting a model that allows but does not require the effect of
pollution to be distributed over several days, we can make
that question part of our investigation. By using the simple
transformation shown in the Data and Methods section of
this appendix, this approach can be implemented in any
Poisson regression package. Hence, polynomial distributed
lag models should become standard practice in air pollution
epidemiology, unless there is clear biological reason for
assuming that the response is limited to a single day. These
models can be applied equally well to other acute triggers.
For example, aeroallergen exposure and acute asthmatic
response or triggers of acute myocardial infarction may rep-
resent areas where these models can be usefully applied.

The finding that barometric pressure is consistently asso-
ciated with lower mortality is also of considerable interest.
Previously, we have shown that barometric pressure was
associated with oxygen saturation (Pope et al 1999). These
changes might plausibly influence mortality risk; however,
they were noted in a high altitude location (Provo/Orem).
The findings in this study of an association even in cities
closer to sea level, such as Minneapolis/St Paul (Figure B.2),
suggests that further attention should be paid to this vari-
able. Future studies of the effects of air pollution on mor-
bidity and mortality should include barometric pressure in
the list of covariates to be controlled.
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Figure C.1. City-specific posterior means and 95% posterior regions at lag 1 for each of 90 locations under both priors (models A, more heterogeneity; B,
less or no heterogeneity). Also shown are the posterior estimates and 95% posterior regions at lag 1 for the regional and overall means. The estimates of
overall PM10 relative risk are nearly identical for the two prior models [A:0.45 (0.03, 0.89); B: 0.44 (0.07, 0.76)]. The posterior regions are narrower and more
realistic using model B. Note also that under prior B, the city and region-specific estimates are more similar to one another. This is because the posterior
distributions for the heterogeneity parameters �2 and �2 are centered at medians 0.002 and 0.12, respectively, indicating a small degree of heterogeneity of
effects within a region and a relatively moderate degree of heterogeneity of effects across regions. For example, a median value of � = �0.002 = 0.045 corre-
sponds to 95% of cities within a region having the PM10 relative risks of ± 2 � 0.045 = ± 0.09 or about ± 20% of the overall relative risk.

APPENDIX C. Comparison of Heterogeneity Models
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Table D.1. Monitoring Sites

Location
PM 

Observations Site Code Site Address

Birmingham AL
North Birmingham, Jefferson County 2,397 010730023 - 3 3009 28th St N
Wylam, Jefferson County 900 010732003 - 1 1242 Jersey St
Leeds, Jefferson County 872 010731010 - 1 201 Ashville Rd
Tarrant City, Jefferson County 462 010736002 - 2 Tarrant Elem Sch, 1269 Portland St
Birmingham, Jefferson County 421 010730026 - 1 Inglenook Elem Sch, 3937 44th Ave N
Bessemer, Jefferson County 419 010730002 - 1 1500 1st Ave N
Birmingham, Jefferson County 363 010730034 - 1 2301 11th Ave N

Boulder CO
Longmont, Boulder County 2,136 080130003 - 2 3rd & Kimbark St
Longmont, Boulder County 383 080130003 - 2 3rd & Kimbark St

Canton OH
Canton, Stark County 1,271 391511001 - 1
Canton, Stark County 527 391510017 - 1 1330 Dueber Ave SW
Canton, Stark County 372 391510020 - 1 420 Market Ave N
Canton, Stark County 332 391510009 - 1 1901 Midway NE

Chicago IL
Chicago, Cook County 2,173 170310022 - 1 3535 E 114th St
Mccook, Cook County 1,334 170311016 - 1 50th St & Glencoe
South Holland, Cook County 670 170313701 - 1 170th St & S Park Ave
Blue Island, Cook County 412 170312001 - 1 Eisenhower HS, 12700 Sacramento Ave
Cicero, Cook County 407 170316001 - 1 Roosevelt HS, 15th St & 50th Ave
Chicago, Cook County 404 170310014 - 1 Farr Dormitory, 3300 S Michigan Ave
Chicago, Cook County 401 170310049 - 1 Chicago Ave Pump Sta, 805 N Michigan
Lyons, Cook County 354 170311701 - 1 4043 Joliet Ave
Chicago, Cook County 350 170310060 - 1 13100 S Doty
Summit, Cook County 346 170313301 - 1 Graves Elem Sch, 60th St & 74th Ave

Colorado Springs CO
Colorado Springs, El Paso County 2,412 080410008 - 2 3730 Meadowlands
Colorado Springs, El Paso County 433 080410010 - 2 701 N Circle (Service Center)
Colorado Springs, El Paso County 400 080410011 - 2 101 W Costillia
Colorado Springs, El Paso County 442 080410011 - 3 101 W Costillia

Detroit MI
Dearborn, Wayne County 1,507 261630033 - 1 2842 Wyoming
Wayne County 910
Detroit, Wayne County 571 261630015 - 1 6921 West Fort
Detroit, Wayne County 501 261630092 - 2 312 West End
Allen Park, Wayne County 472 261630001 - 1 14700 Goddard
River Rouge, Wayne County 448 261630005 - 1 315 Genesee
Wayne County 319
Wayne County 301

(Table continues next page)
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Table D.1 (continued). Monitoring Sites

Location
PM 

Observations Site Code Site Address

Minneapolis/St Paul MN
St Paul, Ramsey County 2,407 271230047 - 1 1303 Red Rock Rd
St Paul, Ramsey County 1,344 271230040 - 1 Wabasha & W 5th St
Minneapolis, Hennepin County 1,306 270530051 - 1 300 Nicollet Mall
Minneapolis, Hennepin County 1,249 270530053 - 1 300 Nicollet Mall
St Louis Park, Hennepin County 428 270532006 - 1 City Hall, 5005 Minntonka Boulevard
St Paul, Ramsey County 418 271230021 - 1 1038 Ross Ave
Richfield, Hennepin County 417 270533004 - 1 I35W & 70th Ave South
Minneapolis, Hennepin County 415 270531007 - 1 4646 Humboldt Ave N

Nashville TN
Nashville-Davidson, Davidson County 2,076 470370006 - 1 8th Ave N on Roof of Housing Auth Bldg
Nashville-Davidson, Davidson County 301 470370006 - 2 8th Ave N on Roof of Housing Auth Bldg
Nashville-Davidson, Davidson County 300 470370011 - 1 1015 Trinity Lane
Nashville-Davidson, Davidson County 300 470370023 - 1 Lockeland School, 105 S 17th St

New Haven CT
New Haven, New Haven County 1,620 090090018 - 1 Stiles St
Waterbury, New Haven County 437 090092123 - 1 Shed Meadow & Bank St
New Haven, New Haven County 383 090090011 - 1 Hamilton Ave
New Haven, New Haven County 380 090090013 - 1 Fire Headquarters, Grand Ave
Waterbury, New Haven County 380 090092123 - 2 Shed Meadow & Bank St
New Haven, New Haven County 378 090091123 - 1 715 State St
New Haven, New Haven County 374 090091123 - 2 715 State St
Waterbury, New Haven County 372 090093007 - 1 519 East Main St
Milford, New Haven County 355 090090010 - 1 Egan Center, Mathew St
Wallingford, New Haven County 346 090094006 - 1 45 S Main St
Meriden, New Haven County 336 090094002 - 1 Stoddard Bldg, 165 Miller St

Pittsburgh PA
Liberty, Allegheny County 2,299 420030064 - 1 2743 Washington Blvd (Mckeesport)
Braddock, Allegheny County 1,449 420032001 - 1 St Thomas Sch, 1025 Braddock Ave
Pittsburgh, Allegheny County 1,111 420030027 - 2 3333 Forbes Ave 
Clairton, Allegheny County 944 420033004 - 1 Greenway Alley
South Fayette, Allegheny County 873 420030067 - 1 Old Oakdale Rd   
Glassport, Allegheny County 814 420033006 - 1 High St Water Tower
Braddock, Allegheny County 793 420032001 - 2 St Thomas Sch, 1025 Braddock Ave
Clairton, Allegheny County 705 420033007 - 1 Clairton Ed Ctr, 501 Waddel
Clairton, Allegheny County 643 420033008 - 1
Allegheny County 640 420037003 - 1
North Braddock, Allegheny County 610 420031301 - 1 600 Anderson St
Lincoln Boro, Allegheny County 538 420037004 - 1 Bellebridge Rd
Pittsburgh, Allegheny County 508 420030021 - 1 Gladstone High Sch
Pittsburgh, Allegheny County 387 420030031 - 1 1275 Bedford Ave
Avalon, Allegheny County 312 420030002 - 1 520 Orchard St
North Braddock, Allegheny County 305 420031301 - 2 600 Anderson St
Allegheny County 303 420030041 - 1

Provo/Orem UT
Lindon, Utah County 2,390 490494001 - 2 30 N Main St
Orem, Utah County 2,025 490495001 - 1 300 N 1200 West
Provo, Utah County 1,859 490490002 - 2 1355 N 200 West
Utah County 325 490495002 - 1

(Table continues next page)
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Table D.1 (continued). Monitoring Sites

Location
PM 

Observations Site Code Site Address

Seattle WA
Seattle, King County 2,307 530330057 - 3 Duwamish Pump Sta, 4752 E Marginal Way S
Kent, King County 1,922 530332004 - 2 James St & Central Ave
Lake Forest Park, King County 1,679 530330086 - 1 17711 Ballinger Way NE
Seattle, King County 1,028 530330057 - 1 Duwamish Pump Sta, 4752 E Marginal Way S
Bellevue, King County 960 530330004 - 2 West & Wheeler Bldg, 504 Bellevue Way
Seattle, King County 396 530330068 - 3 South Park, 723 S Concord
Seattle, King County 373 530330066 - 2 Harbor Island, 3400 13th Ave SW
Seattle, King County 318 530330004 - 1 West & Wheeler Bldg, 504 Bellevue Way

Spokane WA
Spokane, Spokane County 1,735 530630016 - 3 Crown Zellerbach, E 3530 Ferry
Spokane, Spokane County 935 530630016 - 1 Crown Zellerbach, E 3530 Ferry
Spokane County 620 530631014 - 2
Spokane, Spokane County 593 530631015 - 1 Nazarene, N 9004 Country Homes Blvd
Spokane, Spokane County 382 530630036 - 2 Auto Glass, S 214 Post
Millwood, Spokane County 365 530632002 - 1 City Hall, E 9103 Frederick, Millwood
Spokane, Spokane County 356 530630016 - 4 Crown Zellerbach, E 3530 Ferry

Youngstown OH
East Liverpool, Columbiana County 1587 390292001 - 1 East Liverpool City Hall 126 West 6th
Youngstown, Mahoning County 1236 390990006 - 1 Fire Station 5, Superior & Oakland
Youngstown, Mahoning County 1115 390990005 - 1 Fire Station 7, Elm & Madison
East Liverpool, Columbiana County 377 390290003 - 1 Eastside Firehouse, East Penna Ave 

Table D.2. Base Model Characteristics for Cardiovascular Admissions

City

Season Temperature
Temperature 

Lag1
Relative 

Humidity
Barometric

Pressure
Day of 
Week

Auto-
regressive 

Terms
LOESS 
Span df

LOESS 
Span df

LOESS 
Span df

LOESS 
Span df

LOESS 
Span df

LOESS 
Span df

Birmingham 220/2,467 20.1 0.5 3.3 0.6 2.7 0.6 2.5 0.5 3.4 0.5 6.0 none
Boulder 550/2,064 6.4 0.7 2.2 0.6 2.7 0.7 2.1 0.7 2.2 0.5 6.0 none
Canton 330/2,189 11.5 0.6 2.7 0.5 3.4 0.7 2.2 0.5 3.7 0.5 6.0 none
Chicago 235/2,547 19.6 0.5 3.3 0.7 2.2 0.7 2.2 0.5 3.6 0.5 6.0 ar1,ar2,ar3

Colorado Springs 500/2,734 9.7 0.5 3.4 0.6 2.6 0.6 2.6 0.5 3.2 0.5 6.0 none
Detroit 335/3,159 17.1 0.5 3.2 0.6 2.5 0.4 4.4 0.5 3.6 0.5 6.0 ar1,ar2,ar3
Minneapolis/St Paul 240/2,824 21.1 0.5 3.2 0.5 3.1 0.4 4.2 0.6 2.7 0.5 6.0 none
Nashville 900/1,941 3.6 0.7 2.1 0.7 2.1 0.5 3.3 0.7 2.3 0.5 6.0 none

New Haven 240/1,707 12.5 0.7 2.2 0.5 3.2 0.6 2.7 0.5 3.6 0.5 6.0 none
Pittsburgh 195/2,915 26.4 0.5 3.2 0.5 3.2 0.7 2.1 0.5 3.5 0.5 6.0 ar1
Provo/Orem 600/2,825 8.2 0.5 3.2 0.4 4.2 0.5 3.2 0.5 3.3 0.5 6.0 none
Seattle 210/3,280 27.5 0.5 3.4 0.6 2.6 0.7 2.2 0.5 3.5 0.5 6.0 none

Spokane 335/3,372 18.0 0.6 2.5 0.5 3.2 0.7 2.2 0.6 2.7 0.5 6.0 none
Youngstown 210/1,461 12.1 0.6 2.5 0.5 3.3 0.5 3.3 0.7 2.4 0.5 6.0 none
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Table D.3. Base Model Characteristics for COPD Admissions

Cities

Season Temperature
Temperature

Lag 1
Relative 

Humidity
Barometric 

Pressure
 Day of 
Week

Auto-
regressive 

Terms
LOESS
Span df

LOESS
Span df

LOESS
Span df

LOESS
Span df

LOESS
Span df

LOESS
Span df

Birmingham 250/2,464 17.6 0.7 2.2 0.7 2.2 0.7 2.1 0.5 3.4 0.5 6.0 none
Boulder 365/2,064 10.1 0.5 3.3 0.7 2.2 0.7 2.2 0.7 2.2 0.5 6.0 none
Canton 380/2,184 10.2 0.6 2.7 0.5 3.5 0.7 2.2 0.6 2.9 0.5 6.0 none
Chicago 185/2,545 24.5 0.5 3.3 0.7 2.2 0.7 2.2 0.5 3.5 0.5 6.0 ar1,ar2,ar3

Colorado Springs 340/2,734 14.2 0.5 3.3 0.7 2.1 0.5 3.2 0.7 2.1 0.5 6.0 none
Detroit 285/3,158 20.5 0.5 3.2 0.6 2.6 0.6 2.6 0.5 3.4 0.5 6.0 ar1,ar2,ar3
Minneapolis/St Paul 210/2,824 23.7 0.6 2.5 0.5 3.1 0.5 3.3 0.6 2.7 0.5 6.0 none
Nashville 250/1,941 13.7 0.5 3.2 0.5 3.2 0.5 3.2 0.5 3.6 0.5 6.0 none

New Haven 550/1,707 5.6 0.5 3.3 0.7 2.2 0.5 3.2 0.5 3.7 0.5 6.0 none
Pittsburgh 160/2,912 32.5 0.6 2.6 0.6 1.6 0.7 2.2 0.0 3.5 0.5 6.0 none
Provo/Orem 600/2,825 8.3 0.9 1.5 0.9 1.5 0.7 2.1 0.9 1.5 0.5 6.0 none
Seattle 280/3,280 21.1 0.6 2.6 0.5 3.3 0.5 3.5 0.4 4.7 0.5 6.0 none

Spokane 360/3,370 16.7 0.6 2.5 0.6 2.5 0.7 2.2 0.6 2.7 0.5 6.0 none
Youngstown 380/1,461 6.6 0.7 2.1 0.9 1.5 0.4 4.5 0.6 3.0 0.5 6.0 none

Table D.4. Base Model Characteristics for Pneumonia Admissions

City

Season Temperature
Temperature

Lag1
Relative 

Humidity
Barometric

Pressure
 Day of 
Week

Auto-
regressive 

Terms
LOESS
Span df

LOESS
Span df

LOESS
Span df

LOESS 
Span df

LOESS
Span df

LOESS
Span df

Birmingham 200/2,458 22.6 0.4 4.6 0.4 4.6 0.5 3.1 0.5 3.5 0.5 6.0 ar1,ar2,ar4,ar5,ar7
Boulder 350/2,064 10.5 0.4 4.5 0.5 3.5 0.5 3.2 0.5 3.3 0.6 2.9 none
Canton 230/2,180 16.9 0.5 3.4 0.5 3.5 0.7 2.2 0.6 2.9 0.5 6.0 none
Chicago 130/2,542 36.2 0.7 2.2 0.7 2.2 0.7 2.2 0.6 2.8 0.5 6.0 ar1,ar2,ar3

Colorado Springs 200/2,734 24.2 0.7 2.2 0.7 2.2 0.4 4.1 0.7 2.1 0.6 2.9 none
Detroit 260/3,156 23.0 0.5 3.2 0.4 4.2 0.7 2.1 0.5 3.6 0.5 6.0 ar1,ar2,ar3,ar4
Minneapolis/St Paul 175/2,824 28.1 0.6 2.5 0.5 3.2 0.5 3.3 0.6 2.8 0.5 6.0 ar1,ar2,ar3
Nashville 250/1,941 13.8 0.5 3.3 0.5 3.3 0.5 3.3 0.7 2.4 0.6 2.6 ar1,ar2

New Haven 170/1,702 18.0 0.5 3.3 0.4 4.4 0.6 2.7 0.4 4.9 0.5 6.0 ar1
Pittsburgh 145/2,906 36.5 0.4 4.2 0.4 4.1 0.7 2.2 0.4 5.0 0.5 6.0 ar1,ar2,ar3,ar4
Provo/Orem 270/2,825 19.2 0.9 1.5 0.9 1.5 0.6 2.5 0.5 3.4 0.5 6.0 none
Seattle 225/3,276 25.8 0.4 4.7 0.4 4.7 0.5 3.4 0.6 2.7 0.5 6.0 ar1,ar2,ar3

Spokane 225/3,369 26.7 0.6 2.5 0.6 2.5 0.7 2.2 0.6 2.7 0.5 6.0 none
Youngstown 190/1,461 13.5 0.4 4.2 0.5 3.3 0.4 4.4 0.4 5.3 0.5 6.0 none
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Table D.5. City-Specific and Combined Results of Analysis of PM10 Association with HCFA Cardiovascular Admissions

PM10
Lag 0

PM10
Lag 1

PM10
Lag 0/1

Quadratic 
Distributed Lag

Unrestricted 
Distributed Lag

� SE
t 

value � SE
t 

value � SE
t 

value � SE
t 

value � SE
t 

value

Birmingham 0.00063 0.00028 2.2 0.00003 0.00027 0.1 0.00042 0.00032 1.3 0.00093 0.00047 2.0 0.00100 0.00047 2.1
Boulder 0.00254 0.00126 2.0 �0.00022 0.00127 �0.2 0.00168 0.00139 1.2 �0.00078 0.00210 �0.4 �0.00104 0.00210 �0.5
Canton 0.00041 0.00071 0.6 0.00005 0.00067 0.1 0.00073 0.00068 1.1 �0.00128 0.00113 �1.1 �0.00122 0.00113 �1.1
Chicago 0.00111 0.00015 7.3 0.00074 0.00014 5.5 0.00131 0.00017 7.5 0.00112 0.00023 5.0 0.00111 0.00023 4.9

Colorado 
Springs

0.00030 0.00086 0.4 0.00133 0.00082 1.6 0.00116 0.00089 1.3 0.00226 0.00138 1.6 0.00219 0.00139 1.6

Detroit 0.00127 0.00017 7.3 0.00094 0.00016 6.0 0.00151 0.00018 8.2 0.00161 0.00023 6.9 0.00161 0.00023 6.9
Minneapolis/

St Paul
0.00108 0.00034 3.1 0.00022 0.00033 0.7 0.00073 0.00038 1.9 0.00058 0.00059 1.0 0.00063 0.00060 1.1

Nashville �0.00023 0.00059 �0.4 �0.00001 0.00059 0.0 0.00020 0.00060 0.3 �0.00035 0.00103 �0.3 �0.00032 0.00103 �0.3

New Haven 0.00204 0.00040 5.1 0.00108 0.00040 2.7 0.00210 0.00042 5.0 0.00209 0.00071 2.9 0.00209 0.00071 2.9
Pittsburgh 0.00099 0.00015 6.5 0.00084 0.00014 5.9 0.00124 0.00017 7.3 0.00118 0.00025 4.8 0.00119 0.00025 4.8
Provo/Orem 0.00060 0.00055 1.1 0.00000 0.00050 0.0 0.00035 0.00057 0.6 0.00092 0.00068 1.4 0.00095 0.00068 1.4
Seattle 0.00130 0.00025 5.3 0.00056 0.00024 2.3 0.00107 0.00026 4.1 0.00136 0.00036 3.8 0.00141 0.00036 3.9

Spokane 0.00055 0.00032 1.7 0.00050 0.00029 1.7 0.00060 0.00033 1.8 0.00072 0.00038 1.9 0.00077 0.00038 2.0
Youngstown 0.00176 0.00062 2.8 �0.00009 0.00059 �0.2 0.00102 0.00062 1.6 0.00022 0.00103 0.2 0.00022 0.00104 0.2

Combined Results
Fixed effects 0.00107 0.00007 14.6 0.00067 0.00007 9.8 0.00116 0.00008 14.6 0.00117 0.00011 10.7 0.00118 0.00011 10.8
Random effects 0.00102 0.00017 6.09 0.00067 0.00007 9.8 0.00116 0.00008 14.6 0.00104 0.00019 5.42 0.00106 0.00020 5.29

Table D.6. City-Specific and Combined Results of PM10 Analysis with HCFA Pneumonia Admissions

PM10
Lag 0

PM10
Lag 1

PM10
Lag 0/1

Quadratic 
Distributed Lag

Unrestricted 
Distributed Lag

� SE
t 

value � SE
t 

value � SE
t 

value � SE
t 

value � SE
t 

value

Birmingham 0.00002 0.00056 0.0 0.00048 0.00053 0.9 0.00026 0.00063 0.4 0.00052 0.00083 0.6 0.00082 0.00088 0.9
Boulder 0.00544 0.00236 2.3 0.00023 0.00238 0.1 0.00349 0.00257 1.4 0.00523 0.00362 1.4 0.00488 0.00363 1.3
Canton 0.00130 0.00146 0.9 0.00030 0.00139 0.2 0.00112 0.00139 0.8 �0.00143 0.00227 �0.6 �0.00138 0.00228 �0.6
Chicago 0.00147 0.00030 4.9 0.00153 0.00028 5.5 0.00231 0.00034 6.8 0.00215 0.00045 4.8 0.00282 0.00045 6.2

Colorado Springs 0.00349 0.00147 2.4 0.00323 0.00140 2.3 0.00447 0.00152 2.9 0.00836 0.00225 3.7 0.00815 0.00225 3.6
Detroit 0.00209 0.00038 5.5 0.00200 0.00034 5.9 0.00272 0.00040 6.8 0.00119 0.00050 2.4 0.00109 0.00050 2.2
Minneapolis/

St Paul
0.00233 0.00069 3.4 0.00231 0.00065 3.6 0.00337 0.00076 4.4 0.00227 0.00112 2.0 0.00218 0.00189 1.2

Nashville 0.00093 0.00144 0.6 0.00066 0.00130 0.5 0.00113 0.00144 0.8 0.00056 0.00188 0.3 0.00061 0.00189 0.3

New Haven 0.00259 0.00083 3.1 0.00103 0.00077 1.3 0.00276 0.00089 3.1 0.00438 0.00142 3.1 0.00599 0.00145 4.1
Pittsburgh 0.00157 0.00032 4.9 0.00109 0.00030 3.6 0.00182 0.00036 5.0 0.00141 0.00054 2.6 0.00142 0.00054 2.6
Provo/Orem 0.00084 0.00098 0.9 �0.00017 0.00087 �0.2 0.00039 0.00099 0.4 0.00072 0.00111 0.6 0.00104 0.00112 0.9
Seattle 0.00109 0.00051 2.1 0.00136 0.00048 2.8 0.00145 0.00053 2.7 0.00208 0.00069 3.0 0.00198 0.00070 2.8

Spokane 0.00155 0.00061 2.6 �0.00003 0.00058 �0.1 0.00083 0.00062 1.3 0.00150 0.00068 2.2 0.00169 0.00069 2.5
Youngstown 0.00203 0.00136 1.5 0.00116 0.00131 0.9 0.00174 0.00137 1.3 0.00107 0.00220 0.5 0.00124 0.00221 0.6

Combined Results
Fixed effects 0.00155 0.00015 10.4 0.00130 0.00014 9.3 0.00196 0.00016 12.0 0.00167 0.00022 7.7 0.00188 0.00022 8.6
Random effects 0.00160 0.00028 5.7 0.00130 0.00014 9.3 0.00189 0.00023 8.1 0.00186 0.00058 3.2 0.00205 0.00057 3.6



68

NMMAPS II: Morbidity and Mortality from Air Pollution in the US

Table D.7. City-Specific and Combined Results of PM10 Analysis with HCFA Chronic Obstructive Pulmonary Disease 
Admissions

City

PM10
Lag 0

PM10
Lag 1

PM10
Lag 0/1

Quadratic 
Distributed Lag

Unrestricted 
Distributed Lag

� SE
t 

value � SE
t 

value � SE
t 

value � SE
t 

value � SE
t 

value

Birmingham �0.00106 0.00093 �1.1 �0.00134 0.00092 �1.5 �0.00145 0.00107 �1.4 �0.00133 0.00160 �0.8 �0.00120 0.00161 �0.7
Boulder 0.00693 0.00339 2.0 0.00961 0.00327 2.9 0.01122 0.00371 3.0 0.01870 0.00560 3.3 0.01791 0.00563 3.2
Canton 0.00052 0.00190 0.3 0.00312 0.00175 1.8 0.00137 0.00182 0.8 0.00254 0.00302 0.8 0.00250 0.00303 0.8
Chicago 0.00081 0.00047 1.7 0.00141 0.00045 3.1 0.00187 0.00055 3.4 0.00091 0.00083 1.1 0.00089 0.00083 1.1

Colorado Springs 0.00219 0.00227 1.0 �0.00178 0.00233 �0.8 0.00078 0.00249 0.3 0.00718 0.00344 2.1 0.00780 0.00344 2.3
Detroit 0.00183 0.00055 3.3 0.00213 0.00050 4.3 0.00271 0.00058 4.7 0.00288 0.00078 3.7 0.00284 0.00078 3.7
Minneapolis/

St Paul
0.00246 0.00106 2.3 0.00241 0.00104 2.3 0.00351 0.00117 3.0 0.00364 0.00183 2.0 0.00346 0.00184 1.9

Nashville 0.00170 0.00183 0.9 0.00118 0.00187 0.6 0.00213 0.00189 1.1 0.00239 0.00306 0.8 0.00199 0.00307 0.6

New Haven 0.00437 0.00166 2.6 0.00217 0.00165 1.3 0.00370 0.00175 2.1 0.00710 0.00291 2.4 0.00701 0.00291 2.4
Pittsburgh 0.00191 0.00042 4.5 0.00182 0.00040 4.6 0.00250 0.00047 5.4 0.00280 0.00073 3.8 0.00263 0.00074 3.6
Provo/Orem �0.00229 0.00248 �0.9 �0.00242 0.00223 �1.1 �0.00288 0.00253 �1.1 �0.00267 0.00289 �0.9 �0.00281 0.00293 �1.0
Seattle 0.00119 0.00078 1.5 0.00053 0.00076 0.7 0.00103 0.00082 1.2 0.00446 0.00112 4.0 0.00462 0.00113 4.1

Spokane 0.00214 0.00095 2.3 0.00144 0.00086 1.7 0.00197 0.00096 2.1 0.00251 0.00104 2.4 0.00261 0.00106 2.5
Youngstown �0.00027 0.00185 �0.1 0.00150 0.00167 0.9 0.00141 0.00178 0.8 �0.00212 0.00313 �0.7 �0.00177 0.00315 �0.6

Combined Results
Fixed effects 0.00143 0.00022 6.4 0.00144 0.00021 6.8 0.00196 0.00025 8.0 0.00246 0.00035 7.0 0.00242 0.00035 6.9
Random effects 0.00141 0.00054 2.6 0.00117 0.00076 1.5 0.00180 0.00033 5.5 0.00290 0.00137 2.1 0.00284 0.00134 2.1

Table D.8. City-Specific and Combined Results for 2-Day Mean PM10, for Values Less Than 50 �g/m3

CVD Pneumonia COPD

�  SE t value �  SE t value �  SE t value

Birmingham 0.00024 0.00058 0.41 	0.00282 0.00144 	1.96 	0.00340 0.00190 	1.79
Boulder 	0.00011 0.0018 	0.06 0.00319 0.00327 0.98 0.00818 0.004935 1.66
Canton 0.00081 0.00090 0.89 0.00139 0.00181 0.77 0.00073 0.00239 0.30
Chicago 0.00073 0.00032 2.30 0.00268 0.00062 4.33 0.00220 0.00100 2.21

Colorado Springs 0.00200 0.00143 1.40 0.00588 0.00255 2.31 0.00318 0.00398 0.80
Detroit 0.00231 0.00036 6.43 0.00326 0.00080 4.06 0.00238 0.00118 2.01
Minneapolis/St Paul 0.00099 0.00052 1.90 0.00486 0.00104 4.66 0.00339 0.00163 2.08
Nashville 0.0004 0.00087 0.46 	0.00112 0.00188 	0.60 0.00506 0.002650 1.91

New Haven 0.00338 0.00062 5.45 0.00446 0.00131 3.40 0.00002 0.00269 0.01
Pittsburgh 0.00211 0.00034 6.20 0.00389 0.00086 4.53 0.00327 0.00097 3.36
Provo/Orem 0.00149 0.00137 1.09 0.00207 0.00267 0.77 	0.00272 0.006268 	0.43
Seattle 0.00121 0.00048 2.54 0.00414 0.00105 3.94 0.00399 0.00147 2.71

Spokane 0.00058 0.00081 0.71 	0.00190 0.00147 	1.29 0.00387 0.00230 1.68
Youngstown 0.00154 0.00098 1.57 0.00327 0.00210 1.55 0.00646 0.002766 2.34

Combined Results
Fixed effects 0.00146 0.00015 9.9 0.0028 0.00032 8.9 0.00259 0.000457 5.7
Random effects 0.00144 0.00017 8.7 0.00243 0.00065 3.7 0.00256 0.000599 4.3
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APPENDIX E. Method for Averaging Pollutant Data

For each day, more than one monitor within a county
may have measured a particular pollutant simultaneously.
In order to obtain one estimate of all values collected on a
given day and to exclude extreme values that might not be
valid, we applied a trimmed mean method as follows.

From all available measurements of each day, we
dropped values beyond the upper and lower tenth percen-
tiles; when the values were from fewer than 10 monitors,
we dropped the minimum and maximum values. With 1
monitor, the absolute value was used; for 2 monitors, the
average. We calculated the trimmed mean value across all
monitors. For individual monitor data, we first took the
straight mean across all days for each monitor. We then
took the daily residual value from the mean for each mon-
itor. We next calculated the 10% trimmed mean of the
residuals across all monitors and added back the trimmed
mean of measurements. The time-series values for each
pollutant in each county were then output to one vector. 
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ABBREVIATIONS AND OTHER TERMS

AIC Akaike Information Criterion

AIRS Aerometric Information Retrieval 
System

APHEA Air Pollution and Health: A European 
Approach

CI confidence interval

CO carbon monoxide

COPD chronic obstructive pulmonary
disease

Cp Mallows Cp statistic

CVD cardiovascular disease

df degrees of freedom

EPA US Environmental Protection Agency

HCFA Health Care Financing Administration

ICD-9 International Classification of Dis-
eases, Ninth Revision

LOESS locally weighted smoother

MCMC Markov chain Monte Carlo

NAAQS National Ambient Air Quality
Standard

NMMAPS National Morbidity, Mortality, and Air 
Pollution Study

NO2 nitrogen dioxide

O3 ozone

PDL polynomial distributed lag

PEEP Particle Epidemiology Evaluation 
Project

PM particulate matter

PM10 particulate matter less than 10 µm in 
aerodynamic diameter

SAF Standard Analytic Files

SO2 sulfur dioxide
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INTRODUCTION

Epidemiologic time-series studies conducted in a
number of cities have found, in general, an association
between daily changes in particulate matter (PM)* and
daily number of deaths. Increased hospitalization of the
elderly for specific diagnoses (a measure of morbidity)
among the elderly also has been associated with ambient
PM. These findings have raised concerns about public
health effects of particulate air pollution and have contrib-
uted to decisions about regulating PM in the United States.
However, scientists have pointed out a number of uncer-
tainties that raise questions about interpretation of the
results.

The National Morbidity, Mortality, and Air Pollution
Study (NMMAPS)† was designed to improve our under-
standing of the association between PM less than 10 µm in
aerodynamic diameter (PM10) and adverse health effects,
using a national database for the first time to address key
uncertainties regarding these previous studies. NMMAPS
Part I (Samet et al 2000) addresses methodologic issues,
including uncertainties about exposure measurement error,
the extent to which pollution-related mortality reduces life
in the short term, and analysis of multisite data.

In NMMAPS Part I, the investigators developed a frame-
work for considering exposure measurement error and,
through an example, effectively showed that any bias
introduced is likely to be toward the null (that is, the mag-
nitude of the observed estimate of association is moved
closer to an estimate of no association). Thus, the reported
effect estimate will be lower than the true effect size.
Second, the report presents two conceptually similar
methods for assessing whether PM exposure moves death
closer by more than a few days among susceptible individ-
uals, a phenomenon referred to as harvesting or mortality
displacement. Both methods showed an apparent effect of

mortality beyond a few days, although the interpretation of
that effect is not yet well understood. Finally, NMMAPS
Part I developed multistage hierarchical methods to
examine data from many cities. NMMAPS Part II uses
these multicity analytic methods to assess the relationship
between air pollution and mortality and morbidity,
applied to the 20 largest US cities. Similar, but less com-
plex hierarchical methods were applied to the 90 largest
cities. 

The analyses in NMMAPS II address questions about bias
in selecting locations to study, differences in the statistical
techniques applied, and adequacy of control for the effects
of other pollutants on the associations between PM10 and
morbidity and mortality. NMMAPS Part II overcame ques-
tions of bias in selection of cities to study (a criticism of pre-
vious studies conducted in individual cities) by having
clear criteria for selection: population size and availability
of data on PM10. To address the concern that previous
studies utilized different statistical techniques, NMMAPS
Part II used one analytic approach to assess the PM10 effect
on mortality and a similar approach to analyze the mor-
bidity data. Because the cities included areas with varying
levels of PM10 and other pollutants, the adequacy of con-
trolling for these pollutants could be examined as well.

In NMMAPS Part II, the 20-city analysis examined the
effects of copollutants in detail, and the analysis of 90
cities (which included the 20) explored possible heteroge-
neity (ie, variability) of the effect of PM10 on mortality
among the cities. The PM10 effect on morbidity (hospital-
izations of persons 65 years of age and older) for cardiovas-
cular disease, chronic obstructive pulmonary disease
(COPD), and pneumonia was explored in 14 cities; con-
founding by copollutants was also addressed.

OVERVIEW OF THE NATIONAL MORBIDITY, 
MORTALITY, AND AIR POLLUTION STUDY

The NMMAPS mortality analysis used the Aerometric
Information Retrieval System (AIRS) of the US Environ-
mental Protection Agency (EPA) to select cities meeting
specific criteria of population size and availability of PM10
data. Daily mortality counts were obtained from the
National Center for Health Statistics. The investigators esti-
mated the average effect of PM10 on daily mortality in all
90 cities, variation in that effect, and the impact of copol-
lutants on the estimated effect in 20 and 90 cities. Indepen-
dent effects of the gaseous pollutants were also examined
in detail for the 20 cities. Possible factors that might modify

* A list of abbreviations and other terms appears at the end of the Investiga-
tors’ Report.

† Dr Jonathan Samet’s investigation, The National Morbidity, Mortality,
and Air Pollution Study, which will generate several reports, began in
December 1996 and has cost about $700,000 to date. Part II of the Investiga-
tors’ Report from Dr Samet and colleagues was received for review in Octo-
ber 1999. A revised report, received in January 2000, was accepted for
publication in February 2000. During the review process, the HEI Review
Committee and the investigators had the opportunity to exchange com-
ments and to clarify issues in the Investigators’ Report and in the Review
Committee’s Commentary.

This document has not been reviewed by public or private party institu-
tions, including those that support the Health Effects Institute; therefore, it
may not reflect the views or policies of these parties, and no endorsement
by them should be inferred.
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the PM10 mortality effect estimates among cities, such as
sociodemographic variables, were also considered.

A number of metaregression statistical methods, from
simple to complex, are available for combining informa-
tion in order to explore variations and effects (Normand
1999; Thompson and Sharp 1999). The hierarchical multi-
stage modeling used in NMMAPS provided a flexible
method to analyze multilevel data and a unified frame-
work for combining results from individual cities and for
examining the effect of other factors on the PM-mortality
association. More complex methods were used to analyze
the 20-city mortality data, and simpler methods were
applied to the 90 cities. Data from the many cities were
combined in a multistage or hierarchical statistical model.
In the first stage, a time-series regression model for PM10
and mortality was fit for each city. This process included
exploration of various days of effect (ie, relating mortality
to the same day’s exposure [lag 0], previous day’s exposure
[lag 1], etc) as well as the effects of adjusting for copollut-
ants. In the second stage, the individual city estimates
were combined. Covariables such as sociodemographic
factors were added to the model to explore the extent to
which they could explain the heterogeneity in pollutant
effects across cities. A three-stage regional model using the
90 cities was also used to examine variability of PM10
effects on mortality across defined regions of the US.

The analysis of illnesses (morbidity) used the AIRS and
Health Care Financing Administration (HCFA) databases
to obtain air pollution and daily counts of urgent hospital-
izations of those 65 years of age and older in 14 cities. Sim-
ilar to the mortality analysis, the primary objective of the
morbidity analysis was to improve on previous PM-hospi-
talization studies by analyzing many cities with one ana-
lytic method. Secondary objectives were to investigate
consistency and determinants of variation in associations
observed with control for gaseous pollutants and certain
sociodemographic covariates.

The morbidity analysis examined the pattern of the
effect of PM10 on increases in urgent hospitalizations using
a distributed-lag approach, which enables the investigators
to estimate the effects of PM10 over several days rather than
for a specified day. This method was applied to 14 cities
with daily PM10 data. For all analyses, three specific diag-
noses most plausibly associated with PM10 were consid-
ered: cardiovascular disease, COPD, and pneumonia.

KEY RESULTS

MORTALITY

The investigators report an average approximate
increase of 0.5% in total nonaccidental mortality per 10
µg/m3 increase in PM10 concentration for both the 20 and
90 cities at 1 day after exposure (1-day lag). The PM10
effect was slightly greater for cardiorespiratory mortality
than for total mortality at 1 day after exposure; effects at
other times after exposure did not vary substantially from
one another for total or cardiorespiratory mortality. For
both the 20 and 90 cities, the association between PM10
and mortality did not appear to be sensitive to the inclu-
sion of other pollutants in the model. Also, when other
pollutants (sulfur dioxide [SO2], nitrogen dioxide [NO2],
ozone [O3], carbon monoxide [CO]) were considered for
their independent association with mortality in 20 cities,
some (CO, NO2) showed associations, but these associa-
tions were not robust to the inclusion of PM10 in the
model. The investigators also report that the effect of PM10
varied across regions in the US, with the largest effect
observed in the Northeast.

MORBIDITY

The investigators found that the concentration of PM10
was positively associated overall with elderly hospital
admissions in the 14 cities for the 3 diseases studied: car-
diovascular disease, COPD, and pneumonia. Although
nearly all cities showed a positive association between
admissions and PM10, the magnitude of the estimated
effect on admissions varied considerably among cities.

On average, cardiovascular admissions increased by
about 1% for every 10 µg/m3 of PM10, and pneumonia and
COPD admissions rose by about 2% for the same increase
in PM10. Using the distributed lag model, the effect was
distributed over several days; therefore selecting a specific
day of exposure was not required. The investigators’ report
that the observed effects of PM10 were not confounded by
the effects of other pollutants and were not associated with
census measures of unemployment, poverty, nonwhite
race, or college education in these cities.

The observed effect of PM10 concentration on hospital
admissions persisted in analyses excluding days with PM10
concentrations above 50 µg/m3: the effect estimate for each
of the 3 diseases increased by about 20% over estimates
that included the days with higher PM10 concentrations.
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TECHNICAL EVALUATION

The Review Panel, comprised of members of the HEI
Health Review Committee and outside experts, reviewed
the NMMAPS Part II analyses in depth and agreed with the
overall findings of both the mortality and morbidity anal-
yses. Some additional figures and accompanying text were
received prior to publication and were not reviewed by the
panel (Figures 24, 25, and 32 and Appendix C). While the
Panel welcomes these new analyses, time was inadequate
to review them, and therefore the comments here do not
address this material.

This project represents a major analytic effort to address
comprehensively the association of PM and morbidity and
mortality, and the Panel appreciates the extensive statis-
tical computational expertise required. The mortality anal-
ysis applied a uniform statistical approach to many cities
selected in an unbiased fashion to address issues and
uncertainties that could not be assessed previously; this is
therefore a major step forward in our understanding of
PM10 effects on mortality.

The morbidity analysis used a method that obviated the
need for preselecting a specific exposure lag period to
examine PM10 effects, and consistently found an effect for
the 3 diagnoses examined. This method appears to be a
tool with analytic potential in this field.

In the course of reviewing NMMAPS Part II, the Panel
identified several issues for discussion and offers some sug-
gestions for improvements to consider for future analyses.

MORTALITY ANALYSIS

To investigate the PM10 effect on mortality, the authors
used multistage Bayesian hierarchical analyses and sim-
pler random-effects weighted regression analyses (DerSi-
monian and Laird 1986; Normand 1999; Thompson and
Sharp 1999). Both are accepted statistical approaches, and
both approaches can be categorized as random-effects (as
compared to fixed-effects) meta-analytic techniques.

With both the weighted regression and Bayesian hierar-
chical methods, the first stage of modeling involved fitting
individual time-series regressions to the air pollution and
mortality data from each city (as described in NMMAPS
Part I). Results from this stage are the estimated city-spe-
cific regression coefficients of mortality on the pollutant
(eg, PM10) and their standard errors. These results are then
used as input to the stage 2 modeling based on either the
Bayesian or weighted regression approach. A strength of
this approach is that the investigators can systematically
combine and draw statistical strength from each city’s

individual regression estimate in order to obtain regional
and national estimates.

The Bayesian hierarchical approach was used in mor-
tality analyses of the 20 cities and to a limited extent in the
90 cities. This method had specific advantages over the
simple weighted regression used for most of the 90 cities
and the morbidity analyses. Unlike the simple weighted
regression approach, the Bayesian approach properly
accounts for effect modifiers used as covariates in stage 2
when estimating the between-cities variance. In the 90-city
analysis, however, variance between cities was estimated
from a model with no effect modifiers. This estimate was
then used for the subsequent weighted regression analyses
regardless of how the effect modifiers actually might have
reduced or explained the variance between cities.

Potential difficulties in implementing the Bayesian hier-
archical approach include:

• its intensive computational demands,

• issues related to determining whether or not the 
Markov chain Monte Carlo (MCMC) simulations have 
properly converged, and

• the need to specify prior distributions for parameters 
in the model, which may influence the final results.

The intensive computation associated with MCMC was
apparently the main reason why the simpler weighted
regression methods were chosen for examination of effect
modification in the 90 cities. This decision is supported by
the demonstration (Figure 9 in the Investigators’ Report)
that the weighted regression and Bayesian hierarchical
approaches provide similar point and interval estimates
for the overall average effects of single pollutants at lag 1-
day using the 90-city data. In NMMAPS Part I, the authors
describe the statistical tools used to assess whether the
MCMC simulations converged and also demonstrate that
the prior distributions used are sufficiently uninformative
as to have little impact on the overall results.

Multistage approaches vary in complexity, with the
MCMC method used for the 20 cities being relatively com-
plex and the method used for the 90 cities being relatively
simple (Thompson and Sharp 1999). Such a large data set
as used in NMMAPS presents a challenge to determine the
appropriate level of modeling complexity to adequately
reflect random variation while remaining simple and com-
putationally tractable. Methods intermediate on this spec-
trum provide a compromise between complexity and
simplicity. In NMMAPS, use of different methods probably
would not have had a major impact on the results.

Both the 20- and 90-city analyses were conducted at lags
of 0, 1, and 2 days for PM10 effects. The average approxi-
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mate 0.5% increase in mortality for each 10 µg/m3 increase
in PM10 concentration for the 20-city analysis is consistent
with the 90-city analyses, which appears to vary slightly
over the lag periods analyzed. Additionally, assessment of
socioeconomic factors in the 90 cities showed no evidence
of effect modification. The 90-city analyses in Figures 24
and 25 were conducted after the Panel’s full review of the
report. In general, it appears that the conclusions con-
cerning the estimated PM10 effect on mortality are consis-
tent in both 20- and 90-city analyses.

MORBIDITY ANALYSIS

The analytic methods used to examine the PM10 effect
on hospitalizations in the elderly were somewhat different
from those used for the mortality analyses, but they did
involve weighted multistage regression analysis. The main
differences were the approaches to handling the time
period of the PM10 effect and confounding by copollut-
ants. The data were from 14 cities that had daily PM10
measurements.

Several statistical models were applied to the hospital-
ization data: each varied the approach to considering the
time period of PM10 effect. The investigators examined
effects for specified days, or lags, before hospitalization.
They also used an unconstrained distributed-lag model, in
which the overall effect of an increase in PM10 on a partic-
ular day is the sum of its impact on that day, and on each
subsequent day considered for several days, which are
estimated in models that include all PM10 lags simulta-
neously. With a distributed-lag method, investigators
avoid (1) having to decide which day to use in estimating
an effect or (2) having to interpret which lag is appropriate
if findings are not the same for all lags. The investigators
compared their results from the distributed-lag model to
those from the other models, which include single day lag
models (Table 14), and the quadratic distributed lag
(Figure 28 and Table 15).

Results from both random and fixed effects models are
also reported. However, because significant between-city
heterogeneity was found, particularly for pneumonia and
COPD, the random-effects estimates are preferred to the
fixed effects estimates. The fixed effects estimates are
appropriate only when there is no between-city variability;
in other cases the confidence intervals based on the fixed
effects will be too narrow. The PM10 effect on hospitaliza-
tions was clearly demonstrated for all three diseases. This
effect persisted when days with PM10 above 50 µg/m3 were
excluded. However, it should be noted that only results of
a fixed-effects analysis were reported for this analysis.
Confidence intervals based on this analysis are likely too
narrow; therefore, the observation that the effect of PM10 is

greater when restricted to days less than 50 µg/m3 should
be viewed as suggestive, rather than definitive.

The evidence from the distributed-lag models shows
that a day’s admissions were affected by PM10 concentra-
tions on more than one day prior to hospitalization (Figure
28). The Panel agrees with the NMMAPS investigators that
using a specific lag time for exposure (for example, one
day mean, or previous day mean) will underestimate the
overall PM10 effect and should only be used to compare
results with studies not using the distributed-lag
approach. The similarity of the estimates of the quadratic
versus unconstrained distributed-lag models suggests that
the quadratic model provides a reasonable approximation
to the lag-structure of the morbidity data for cardiovas-
cular disease, COPD, and pneumonia.

The Panel views the distributed-lag approach as an
advance in methods for handling the lag issue, but they are
less confident in other aspects of the morbidity analysis.
Effect-modification results in the morbidity analyses,
given that only 14 cities could be included due to limited
daily pollution data, are less convincing than analogous
analyses for mortality. Although the PM10 effect was not
modified by sociodemographic factors (Table 16), this
should not be considered strong evidence against such
modifying effects. The Panel agrees with the authors that
associations of morbidity with air pollution might be
useful to investigate in sociodemographic groups defined
by finer geographic areas. The authors also note, impor-
tantly, that because the models implicitly assume that
effects of air pollution multiply baseline rates of effect
(admissions or mortality), the absence of modification of
the pollution effect implies that the absolute additive
excess rate of death due to air pollution is greater in groups
with higher baseline death rates.

Further, the use of weighted stage 2 regression to assess
effect modification is less sophisticated than the weighted
regression methods used for the mortality analysis. The
method of estimating the variance components of the
model, which are then used to construct weights used for
the regression may be statistically inefficient. Approaches
such as maximum likelihood, restricted maximum likeli-
hood, or Bayesian methods described by Thompson and
Sharp (1999) might have been preferable although the
extent to which differences in methods would impact the
substantive results is difficult to assess.

Two additional methodologic issues arise as a result of
using hospitalization data: when hospitalization occurs
(that is, day of the week when people tend to be hospital-
ized), and comparison with a control diagnosis. Hospital-
ization data can present a challenge to the analyst for
2 reasons: weekend and holiday effects can be strong and
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number of hospital admissions and air pollution concen-
trations are typically lower on weekends and holidays.
Either of these factors might introduce a spurious effect if
not adequately controlled for in the analyses. The investi-
gators have addressed this problem by including only
emergency admissions and by controlling for day of the
week in the analysis. Holidays were not accounted for in
the models, but given the relative rarity of holidays, it is
not very likely that they would strongly confound the pol-
lutant effect, although it is plausible.

The second issue involves including a control diagnosis
in order to determine whether PM10 effects are specific to
certain outcomes, which would strengthen the plausibility
of these observed effects. If the effects are observed for car-
diovascular disease, pneumonia, and COPD only, then the
confidence should be greater than if effects are also observed
for a control diagnosis such as gastrointestinal disorders.
The findings from these 14 cities in NMMAPS would be
strengthened if the PM10 effect were shown to be relatively
specific for hypothesized hospitalization diagnoses.

COPOLLUTANTS AS CONFOUNDING VARIABLES

An important consideration in assessing the validity of
the observed PM10 effects is whether they are due to PM10
itself or due to another air pollutant that is correlated with
PM10. That is, do effects of other pollutants confound the
observed PM10 effect? The NMMAPS investigators took a
commonly used approach to address this issue in the mor-
tality analysis: does the addition of other air pollutant con-
centrations to the PM10 regression models result in any
substantial change in the estimated PM10 effect? If the
PM10 effect does not change, the other pollutants presum-
ably have not confounded the observed PM10 effect.

The Panel identified a few issues related to possible
confounding effects by copollutants although the probable
impact of any of these was not considered to be suffi-
ciently large to alter the observed PM10 effect. For
example, when the investigators controlled for copollut-
ants, they assumed the copollutants effect in the model to
be linear. The use of more flexible smoothing terms might
have allowed the investigators to explore whether the rela-
tionship was other than linear.

Another consideration is the impact of limiting assess-
ment of the possible confounding effect to the relevant
season for pollutants that have seasonal patterns. This
assessment is complicated in these data because the sea-
sonal effect of ozone, for example, is assumed to be some-
what different across the cities. Finally, a pollutant for
which only inadequate data are available in the AIRS data-
base, and which therefore could not be analyzed, might be
responsible for the effects attributed to PM10. Examples

include sulfate or acid aerosols as specific components of
the PM mixture.

Given these considerations, the Panel agrees that in the
20 cities no convincing evidence suggests that PM10 effects
on mortality are changed by addition of either O3, SO2,
NO2, or CO concentrations to the models, suggesting that
none of the other pollutants is responsible for the observed
PM10 effects. Subsequent analyses by the investigators that
appear to use similar techniques, controlled for gaseous
pollutants in the 90 cities and did not show a confounding
effect of the other pollutants.

In the morbidity analysis, when the investigators
assessed the likelihood of confounding by other pollutants
in stage 2 of the modeling, no evidence indicated that the
PM10 effect on each diagnosis was confounded. This
finding is similar to the finding in the mortality analysis,
yet differences in the approach make it difficult to assess
whether morbidity findings are as robust. While the
approach used in the morbidity analysis is novel (com-
paring the PM10 regression coefficient with the regression
coefficient between PM10 and the copollutants), the ques-
tion arises as to the adequacy of statistical power for per-
forming these analyses. Power may be low because the
regression is fit to only 14 locations and in some cases
12 locations. Also, the power will be low when the regres-
sion coefficients between PM10 and the potentially con-
founding copollutants are similar across cities (Figure 29).
These plots suggest that heterogeneity is sometimes due to
only a few cities. In contrast, the mortality analysis exam-
ined confounding by copollutants in the first stage of mod-
eling and demonstrated that it is possible to fit such
models in spite of the correlation between copollutants.
Application of the approach used in the mortality analysis
to control for copollutants in future analyses of these mor-
bidity data would be valuable for confirming the current
findings.

INDEPENDENT EFFECTS OF COPOLLUTANTS

Although NMMAPS focuses on the effects of PM10,
examination of the independent effects of other pollutants
is also warranted. Effects on daily mortality were found for
most of the gaseous pollutants (SO2, CO, NO2) in the
20 cities although these effects were generally diminished
when the model controlled for PM10 and other pollutants.
In contrast, the PM10 effect did not appear to be affected by
other pollutants in this model. An effect of each pollutant
except ozone on mortality in the 90 cities is shown in Figure
9 of the Investigators’ Report. The effect estimates and
width of the confidence intervals represent a 10-unit change
in concentration for each pollutant, each of which is mea-
sured in different units. This does not allow comparison of
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the effect size and interval width across pollutants. A rela-
tively strong and precise effect appears to be present for
each of the gaseous pollutants in 90 cities in the analysis
that assesses the effect of each pollutant alone. Therefore,
the findings on the independent effects of the gaseous pol-
lutants based on the 20 cities should be viewed as
preliminary until such time as a 90-city analysis specifi-
cally controlling for PM10 and other pollutants is available.

The independent effect of the gaseous pollutants on hos-
pitalizations was not assessed, but this information would
also be of interest in any follow-up analyses.

REGIONAL VARIABILITY

The investigators conducted an important analysis
drawing statistical strength from the individual 90-city
estimates to examine the heterogeneity, or variation, in
PM10 mortality effects across regions of the country. Differ-
ences in PM10 effect by region could provide additional
insight into effects or features of the pollutant mix or the
exposed population on PM10-associated mortality. A
visual inspection of the results appears to show the largest
PM10 mortality effect in the Northeast with increased
effects also apparent in the industrial Midwest and
southern California. This limited NMMAPS assessment
did not include a formal statistical test of heterogeneity
and potential sources were not explored in depth. Material
received by the Panel (Appendix C) prior to publication
discusses some additional issues regarding heterogeneity;
however, this analysis was not reviewed in detail by the
Panel. The heterogeneity analysis has only scratched the
surface of evaluating and understanding reasons for these
apparent regional differences.

In the morbidity analysis, formal tests for heterogeneity
(Table 14) indicated that statistically significant heteroge-
neity existed among cities for the effects of PM10 on COPD
and pneumonia but not cardiovascular disease hospital-
izations. Analyses conducted to examine modification of
effect by copollutants (Figure 29) and sociodemographic
factors (Table 16) did not identify any factors to explain the
observed heterogeneity.

The Panel expressed concern about the emphasis on
fixed effects estimates in the morbidity analyses, which
underestimate uncertainty when the pollution effect varies
among cities. Uncertainty in average pollution effects is
thus greater than is suggested by the confidence intervals
in Table 14. The methods used for the mortality analysis
(Bayesian models and random effects regression) were
random-effects models.

SENSITIVITY ANALYSES

One approach to enhance confidence in observational
findings is to perform sensitivity analyses to determine
whether findings are robust (ie, do not change substantially)
across a range of reasonable analytic approaches. Examples
of NMMAPS sensitivity analyses for mortality include:
(a) those based on models using various lags, (b) those in
which various degrees of smoothing were performed,
(c) those based on models with and without control for
other pollutants, and (d) those that used the 20 cities and
the full set of 90 cities. These analyses suggest that the
overall findings are not very sensitive to these analytic
choices; thus we can have more confidence in the mor-
tality results.

The sensitivity analyses are not as extensive for exam-
ining the PM10 effect on morbidity, and the investigators
used a different time window across the 14 cities to control
for temporal effects. In many of the cities, the window
selected was considerably longer than 90 days, which has
been suggested as the maximum for effective control of
temporal effects (Cakmak et al 1998). Although the win-
dows selected by the authors met their criterion of effective
control (minimizing autocorrelation of residuals), spurious
effects in the association of interest might be present due to
inadequate control of longer-term temporal effects resulting
from using relatively long windows. An analysis of PM10
morbidity effects using several time windows to adjust for
temporal effects would have provided reassurance that
these effects were adequately controlled. Sensitivity anal-
yses for morbidity also included examination of the effects
of different methods of specifying lags (such as by single
day, quadratic distributed lag, and unrestricted distributed
lag).

In a similar fashion, future analyses of both the mortality
and morbidity data might include a seasonally stratified
analysis (given the seasonal variability in pollutant con-
centrations, outcome measures, and potential confounding
factors). Loss of statistical power due to the shorter periods
of observation in any season should be only a minor issue,
at least in the mortality data set.

AMBIENT POLLUTANT DATA

The investigators obtained air pollution data from the
AIRS database, a computerized repository of information
about air pollution in the United States. Operation of the
monitoring equipment, collection and review of data, and
assembly of the air quality database are the result of com-
bined efforts of state and local environmental personnel in
concert with EPA.
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In NMMAPS, available ambient PM10, O3, CO, SO2, and
NO2 data for 1987 to 1994 were used. In many of the cities,
data were available from multiple pollutant monitors and
were averaged across the monitors representing an area.
Also, some pollutants that were measured on an hourly
basis were averaged for 24 hours. To protect against the
potential consequences of including outlying values, the
investigators used an average of ambient data from which
the highest 10% and lowest 10% of values were trimmed.

The monitoring sites used to collect the air quality data
were established for the primary purpose of monitoring
compliance with the National Ambient Air Quality Stan-
dards. Air pollution levels measured at a particular moni-
toring site may not represent population exposure for the
entire county or urban area, however. Thus, the AIRS data-
base here serves a secondary use and raises the issue of
exposure measurement error and its potential effect on the
results.

The framework for assessing exposure measurement
error presented in NMMAPS Part I (Samet et al 2000) sug-
gests that the precision and accuracy of the monitors make
only small contributions to total exposure measurement
error. The investigators conclude that the magnitude of the
difference between the true ambient level and the average
personal exposure is not known. Further, given that these
errors are likely to be random in nature, the impact of mea-
surement error on the findings reported in Part II using the
AIRS database would most likely bias the effect estimates
to the null. Thus estimates of positive findings in the anal-
ysis would tend to be lower than if fully accurate exposure
measures were available.

In NMMAPS Part II, the investigators attempted to esti-
mate the extent of measurement error by calculating the
median of all pairwise correlations of PM10 measurements
from the different monitors within each city or county.
This factor was then included to investigate whether mea-
surement error explained heterogeneity in the 90-city anal-
ysis. The Panel was concerned about the effectiveness of
such an approach for several reasons. The median pair-
wise correlations, whether high or low, may simply reflect
the spatial relationship and/or proximity of the monitors
to each other and the prevailing annual wind direction.
Also, median pairwise correlations based on annualized
PM10 data could be misleading because the predominant
seasonal wind direction can be quite different from the
annualized wind direction. In light of the above, whether
any correlation is particularly meaningful in assessing
measurement error is unclear.

SUGGESTIONS FOR FUTURE ANALYSES OF 
NMMAPS DATA

Based on its review, the Panel suggests additional anal-
yses of the NMMAPS data that would enhance the under-
standing to be gained from this substantial undertaking.

1. A more detailed analysis of the heterogeneity by
region in the 90 cities seems warranted. Apparent dif-
ferences in regional PM10 effect could be explored in a
series of more in-depth analyses employing improved
measures of city (or regional) measurement error, PM
composition, data on copollutants mixes, and other
data on population characteristics and susceptibilities.

2. Because the methods to examine PM effects were dif-
ferent for morbidity and mortality, questions may
linger concerning the effect of analytic methods on
the results. As the investigators have proposed, a
detailed link of  morbidity and mortality with the
same statistical methods in the same cities would pro-
vide a powerful test of the consistency of findings
presented in this report.

3. Examination of the independent effects of gaseous
pollutants in the 90-city analyses, while controlling
for PM10 and other pollutants, would be a natural
extension of the 20-city analyses. The findings would
likely confirm whether the gaseous pollutants also
exert an independent effect on mortality.

4. Seasonally stratified analyses of morbidity and mor-
tality would be beneficial because: (a) several factors
influence population exposure to ambient air pollut-
ants by season (such as air conditioning, open win-
dows, time spent outdoors, and other factors); (b)
sources of air pollution, including particles, often are
seasonal (such as woodburning and other methods of
home heating); (c) pollutants (such as the photo-oxi-
dants, including ozone) require sunlight and other
seasonal weather conditions in order to reach relevant
concentrations; and (d) seasonal analyses do not
require the analytic choices otherwise made to con-
trol for cyclical patterns. However, the Panel recog-
nizes that seasonal analyses for more than one
pollutant will be difficult given the differing seasonal
patterns among the pollutants (eg, O3 and PM10).
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DISCUSSION OF STUDY FINDINGS

The investigators use the term strong to characterize the
degree to which their results provide evidence of an effect
of increasing PM10 levels on morbidity and mortality. The
Panel also concluded that the evidence for PM10 effects on
both number of deaths and hospitalizations can be
regarded as compelling and consistent. Planned paired
analyses of morbidity and mortality using the same
method, in the same locations, should enhance this finding
with unique information regarding the comparability of
PM10 effect on mortality and hospitalizations across cities.

The results relating to mortality and particulate air pol-
lution also can be said to be strong in that they are robust:
results were essentially the same regardless of the manner
in which the statistical models were specified. The mor-
bidity (hospitalizations) and PM10 findings were also pos-
itive for each of the diagnostic groups although they did
not undergo the same degree of sensitivity analysis to
assess robustness as the mortality analyses.

Another definition of strength relates to the size of the
effect. Although the increase in risk shown in this report
was small, a large number of people in the United States are
exposed to PM10. Therefore, the absolute public health
impact of even a small relative increase in risk can be sub-
stantial. The strength of the potential public health impact,
however, should not be confused with the size of the effect
relative to background rates. The incremental increase in
mortality related to a 10 µg/m3 increase in PM10 was less
than 1% for each lag examined in 20 and 90 cities. The
incremental increase in risk for hospitalizations using a dis-
tributed lag for a 10 µg/m3 increase in PM10 was somewhat
larger, but still about 2% for respiratory admissions and
about 1% for cardiovascular admissions.

The small magnitude of the increase in risk may limit
application of this analytic approach to the surveillance of
health effects of air pollution because mortality and hospi-
talization rates are influenced by many factors that may
have greater impacts on health than PM10. The health out-
comes examined in NMMAPS are associated with a
number of exposures other than air pollution, and a crit-
ical evaluation of whether surveillance can benefit from
the NMMAPS analytic approach would be needed. Cer-
tainly the ability to assess the public health impact of
changes in air quality over time would be desirable. The
data sets utilized in NMMAPS will continue to be avail-
able and augmented, which will likely make them more
attractive for these purposes in the future.

The heterogeneity of effect across cities offers the poten-
tial to identify factors that could influence the effect of PM10
on health and thus provide valuable insights into the mech-

anism by which PM10 causes adverse health effects. Evalua-
tion of heterogeneity of PM10 effects among subgroups in
the population would also be of interest but may require a
different study design and collection of original data.

Finally, the investigators have reported that a larger
effect per unit PM was found for all hospitalization diag-
noses when analysis was restricted to lower PM10 concen-
trations. This finding suggests that the shape of the
concentration-response plot is curvilinear and that no
threshold exists. Since NMMAPS was not designed specif-
ically to test this issue, the meaning of these findings
should await completion of concentration-response anal-
yses now under way.

CONCLUSIONS

The mortality analysis of 90 sampled cities, using the
same methods and a unified approach to look at questions
previously unexamined, is a major contribution beyond
other attempts to combine data from many cities and
understand the PM10-mortality association. The results of
both the 20-city and 90-city analyses are generally consis-
tent with an average approximate 0.5% increase in overall
mortality per 10 µg/m3 increase in PM10. Copollutants in
the 20-city and 90-city analyses did not appear to affect the
PM10-mortality association. The difference, or heteroge-
neity, in PM10 effect by region in these results needs fur-
ther elucidation.

The morbidity analysis also used a unified analytic
method to provide a previously unavailable basis for
examining the consistency of association of PM10 and hos-
pital admissions and determinants of its variation. The
results were consistent with an approximately 1%
increase in cardiovascular admissions and about 2%
increase for pneumonia and COPD per 10 µg/m3 PM10.
The analysis demonstrated convincingly, using the distrib-
uted-lag approach, that numbers of hospital admissions
were associated with pollution levels over several pre-
vious days. The distributed-lag approach will be an impor-
tant tool in future analyses because it eliminates the need
to choose a specific lag for analysis.

The observation that the PM10 effect on hospital admis-
sions persisted at ambient concentrations below 50 µg/m3

is important, but the greater effect per unit exposure at
these lower concentrations should be considered sugges-
tive rather than definitive. Given the uncertainties involved
in calculating precise effect estimates with the models, the
meaning of these preliminary findings should await com-
pletion of concentration-response analyses now under way.
The PM10 effect did not appear to be confounded by
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copollutants, but it is unclear whether the approach to
assessing and controlling for confounding in the morbidity
analysis had adequate statistical power for this purpose. No
large modifying effects of sociodemographic factors were
identified. Moderate effects cannot be ruled out because
the power to detect effect modification was limited by the
number of cities studied and because the available census
data might not have adequately reflected the unknown
vulnerabilities of the elderly in each city.

In conclusion, NMMAPS Part II presents results of a
major study using new approaches to time-series analysis
of PM10 health effects and has added substantially to our
understanding of PM10 effects on mortality and morbidity.
These findings also provide valuable suggestions for addi-
tional research that will further enhance our under-
standing of air pollution effects on health.
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