

Albuquerque Environmental Health Department Air Quality Program 2025 Annual Network Plan

July 1, 2025

Table of Contents

Section:	Page:
Introduction	6
Ambient Air Monitoring Network	
Del Norte Site	8
Foothills Site	10
Jefferson Site	12
North Valley Site	14
South Valley Site	16
Discussion of Individual Criteria Pollutants	
Ozone, O_3	18
Fine Particulate Matter, PM _{2.5}	18
Coarse Particulate Matter, PM ₁₀	19
Sulfur Dioxide, SO ₂	20
Oxides of Nitrogen (NO, NO ₂ , NO _X)	21
Carbon Monoxide, CO	21
PM _{2.5} Speciation	22
Mobile Site	23
Proposed Site	25
Eigenman	
Figures Figure 1 – Map of Ambient Air Monitoring Sites	7
Figure 2 – Map of Del Norte Ambient Air Monitoring Station	8
Figure 3 – Map of Foothills Ambient Air Monitoring Station	10
Figure 4 – Map of Jefferson Ambient Air Monitoring Station	12
Figure 5 – Map of North Valley Ambient Air Monitoring Station	14
Figure 6 – Map of South Valley Ambient Air Monitoring Station	16
Figure 7 – Map of San Jose Mobile Ambient Air Monitoring Station	23
Figure 8 – Map of Westside Ambient Air Monitoring Station	25
rigure 6 – Map of westside Ambient Am Monitoring Station	23
Tables	0
Table 1 – Del Norte Monitoring Parameters	9
Table 2 – Foothills Monitoring Parameters	11
Table 3 – Jefferson Monitoring Parameters	13
Table 4 – North Valley Monitoring Parameters	15
Table 5 – South Valley Monitoring Parameters	17
Table 6 – O ₃ Design Values by Site	18
Table 7 – Foothills O ₃ Design Value compared to NAAQS	18
Table 8 – PM _{2.5} design values by Site	19
Table 9 – PM ₁₀ Estimated Exceedances by Site	20
Table 10 – SO ₂ 99th Percentile and Design Value	21
Table 11 – NO ₂ Design Values by Site	21 22
Table 12 – CO design values by Site Table 13 – San Jose Monitoring Parameters	22 24
Table 14 – Westside Monitoring Parameters	24 26
Table II Westige Michigan and Hellices	40

Table of Definitions and Acronyms

Pollutant - indicates the pollutant, or set of pollutants, measured by each monitor

AQI- Air Quality Index. The higher the AQI value, the greater the level of air pollution and health concern. An AQI value of 50 or below represents good air quality, an AQI value of 51 to 100 represent moderate air quality, while an AQI value over 300 represents hazardous air quality. More information about the AQI can be found at https://www.airnow.gov/aqi/aqi-basics/

- CO- carbon monoxide
- Chemical Speciation Network (CSN) a monitor that measures different kinds of carbon species such as black, brown, or organic carbon. The quantities of these different species can tell air quality scientists more about the sources contributing to particulate matter (PM) 2.5. The CSN program developed the speciation monitor and suite of lab analysis procedures to identify and quantify the chemical components of PM_{2.5} (see below).
- NO₂ nitrogen dioxide
- NO- nitrogen oxide
- NO_y reactive nitrogen; NO and its oxidation products; a common definition is:
 NO_y = NO + NO₂ + HNO₃ + NO₃ (aerosol) + NO₃ (radical) + N₂O₅ + PAN (peroxyacyl nitrates) + other organic nitrates
- O_3 ozone, an unstable molecule consisting of three oxygen atoms
- PM₁₀ particles with a diameter of 10 micrometers or less, also known as "coarse particles"
- PM_{2.5} particles with a diameter of 2.5 micrometers or less, also known as "fine particles"
- SO₂ sulfur dioxide

CBSA - Core Based Statistical Area - is a U.S. geographic area defined by the Office of Management and Budget (OMB) that consists of one or more counties (or equivalents) anchored by an urban center of at least 10,000 people plus adjacent counties that are socioeconomically tied to the urban center by commuting.

Monitor Type – This indicates how the monitor is classified in EPA's Air Quality System (AQS)

- NCore monitor operated at a site which has been accepted into EPA's national network of long-term multi-pollutant sites.
- SLAMS State and Local Air Monitoring Stations. SLAMS make up the ambient air quality monitoring sites primarily needed for NAAQS comparisons, but may serve other data purposes. SLAMS exclude special purpose monitor (SPM) stations and include NCore, and all other State- or locally-operated stations that have not been designated as SPM stations.
- SPMS Special Purpose Monitoring Stations. SPMS add supplemental monitoring capability to the ambient air quality monitoring network. Though not required by the EPA, SPMS can be implemented at community request to provide location-specific ambient air monitoring.

Sampling Method – Indicates how the sample is collected.

- CSN Sampler a suite of speciation monitors to identify and quantify the chemical components of PM_{2.5} via CSN protocol.
- Gas Filter Correlation determines the concentration of CO using a method based on Beer-Lambert law that relates the absorption of light to the properties of the material through which the light is traveling over a defined distance. In this case, the light is infrared radiation traveling through a sample chamber filled with gas bearing a varying concentration of CO.
- Gas Phase Chemiluminescence when a NO molecule interacts with an ozone molecule, a nitrogen (NO₂) molecule and an oxygen (O₂) molecule result. The NO₂ molecule is in an excited state, and emits

infrared light when it returns to ground state. The emitted photons are detected by a photomultiplier tube.

- Gravimetric a filter is weighed before and after collecting a particulate sample to quantify the amount of particulate in a volume of ambient air.
- Scattered Light Spectrometry particulate matter scatters light in proportion to particle size; this property is the basis for the analytical method used by continuous particulate matter monitors to diagnose particle size and concentration.
- Ultraviolet Absorption ozone absorbs ultraviolet light; this property is the basis for the analytical method used by continuous ozone monitors to measure ozone concentrations.
- Ultraviolet Fluorescence when excited by ultraviolet light, SO₂ molecules emit light at a longer wavelength that is detected by a photomultiplier tube. This property is the basis for the analytical method used for continuous SO₂ gas analyzers.

Operating Schedule – Continuous monitors run perpetually and measure hourly average concentrations in real time. Manual samplers, such as PM filter samplers, collect a single 24-hour sample from midnight to midnight on a particular day, which is weighed later in an analytical laboratory. A fractional (e.g. 1/1, 1/2, 1/3, 1/6 and 1/12) schedule for manual samplers refers to collecting a sample every day, every second, as well as every third, every sixth and every twelfth day, respectively.

Primary Monitoring Objective – the primary reason a monitor is operated at a particular location

- General Background The objective is to establish the background levels of a pollutant.
- Higher Concentration The objective is to establish the maximum concentration of the pollutant of interest in the sampling network.
- Population Exposure The objective is to monitor the exposure of individuals in the area represented by the monitor.
- Regional Transport The objective is to assess the extent to which pollutants are transported between two regions that are separated by hundreds of kilometers.
- Source Oriented The objective is to determine the impact of a nearby source.

Spatial Scale – The scale of representativeness is described in terms of the physical dimensions of the air parcel nearest to a monitoring site throughout which actual pollutant concentrations are reasonably similar. Monitors are classified according to the largest applicable scale as illustrated below:

- Neighborhood Scale defines concentrations within some extended area of the city or county that has
 relatively uniform land use with dimensions in the 0.5 to 4.0 kilometers range. The neighborhood and
 urban scale (listed below) have the potential to overlap in applications that concern secondarily formed
 or homogenously distributed air pollutants.
- Urban Scale defines concentrations within an area of city-like dimensions, on the order of 4 to 50 kilometers. Within a city, the geographic placement of sources may result in there being no single site that can be said to represent air quality on an urban scale.
- Regional Scale usually defines a rural area of reasonably homogenous geography without large sources, and extends from tens to hundreds of kilometers.

NAAQS Comparable – This details whether the data from the monitor can be compared to the National Ambient Air Quality Standards (NAAQS). Entries in this column for Tables 1-6 are 'Yes' and 'No'. For a

monitor's data to be eligible for comparison against the NAAQS, the type of monitor used must be defined as a federal reference method or federal equivalent method by EPA.

Changes – Lists any changes that AQP anticipates making to the network for each specific analyzer/sampler.

Albuquerque Environmental Health Department (EHD) Air Quality Program (AQP) Ambient Air Monitoring Division 2025 Annual Network Plan for Ambient Air Monitoring

Introduction:

The Albuquerque-Bernalillo County Joint Air Quality Program (AQP), administered by the City of Albuquerque's Environmental Health Department, is authorized to implement and enforce clean air laws within the boundaries of the City of Albuquerque and Bernalillo County.

Federal regulations require the Albuquerque-Bernalillo County Joint AQP to submit an annual monitoring network plan (ANP) to the Environmental Protection Agency (EPA) Region VI office in Dallas, Texas. AQP's objective, when reviewing its network and proposing changes (if appropriate), is to optimize use of limited monitoring resources, while maximizing the network's effectiveness by choosing monitoring sites to measure where air quality is likely to be most heavily impacted by certain criteria pollutants.

This network plan describes the framework of AQP's local air quality surveillance system, presents monitoring results over the past three years, provides comparisons to National Ambient Air Quality Standards (NAAQS), and discusses AQP's plans for changes to the network in the coming year. The annual monitoring network plan must be made available for public inspection for at least 30 days prior to formal submission to EPA (Anticipated public review dates are May 16 – June 16, 2025). All City of Albuquerque State and Local Air Monitoring Stations (SLAMS) and Special Purpose Monitoring Stations (SPMS) are operated in compliance with EPA guidance under 40 CFR, Part 58, Appendix E. All criteria pollutant data collected at SLAMS and SPMS are submitted to AQS and are NAAQS comparable.

This document shows the network configuration since the 2024 ANP and proposed changes for the 2025 calendar year. It represents the commitment of the AQP to effectively evaluate air quality in Albuquerque-Bernalillo County¹ through ambient air monitoring, by using the best affordable technology and by communicating the data collected as quickly and accurately as possible.

The AQP operates its Ambient Air Monitoring Network (AAMN) in accordance with the quality assurance requirements of 40 CFR Part 58, Appendix A and B, makes use of the methodology given for each monitor in accordance with Appendix C, implements and designs its monitoring network in accordance with Appendix D, and follows siting criteria provided in Appendix E.

The current AQP AAMN consists of five SLAMS and two SPMS. One SPMS, the Westside site, was equipped with instrumentation in 2024 to monitor particulate matter pollution at the western boundary of Albuquerque. This site, though not required by the EPA, will provide useful data for understanding particulate pollution trends, particularly with respect to wind-driven pollution dispersion. Upon site initiation, this will be the primary change to the AAMN since 2024.

Population Statistics:

The Counties of Bernalillo, Sandoval, Valencia, and Torrance make up New Mexico's largest metropolitan statistical area (MSA). The MSA contains 923,630 people as of July 1, 2020, which is almost half (43.6%) of the State's total population of 2,117,877.² AQP is using 2020 data for this ANR, as the U.S. Census Bureau population estimates have not been updated as of May 2025.

¹ Excluding Native American and Pueblo Lands within the County, in which air quality is under the jurisdiction of either EPA or the Native American tribe or Pueblo itself.

² Data from U.S. Census Bureau's 2020 population estimates for MSAs/CBSAs

As the regional center for employment, higher education, retail commerce, and medical treatment, Albuquerque-Bernalillo County experiences non-local commuter traffic. The junction of Interstate 25 (north/south) and Interstate 40 (east/west) adds significant heavy transport traffic between the Ports of Los Angeles & Long Beach and the East Coast, and between Denver, El Paso, and the US-Mexico border.

The map in Figure 1 shows the physical location of all current monitoring sites operated by the AQP. Two SLAMS are within Albuquerque city limits (2ZM – Del Norte, 2ZS – Jefferson). Three SLAMS (2ZV – South Valley, 2ZH – North Valley, and 2ZF – Foothills) are located in Bernalillo County. The two SPMS are located within Albuquerque city limits.

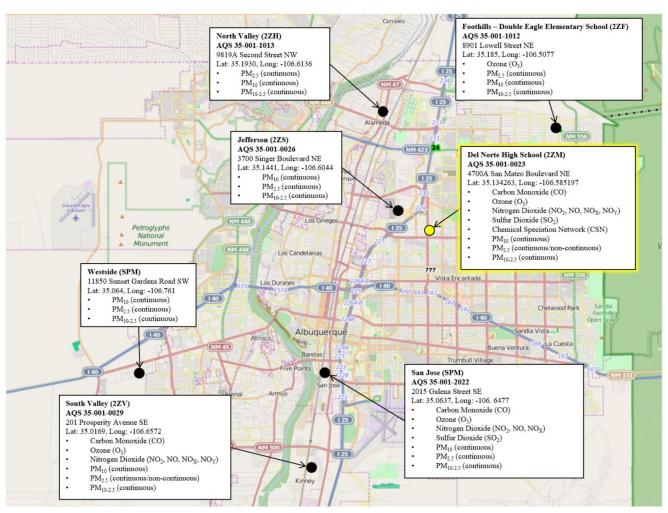


Figure 1. City of Albuquerque/Bernalillo County Ambient Air Monitoring Network

The following section contains tables which provide a more detailed description of the network configuration and lists monitoring equipment operated at each site. For each monitoring location, Tables 1-7 list the site's pollutants measured, monitor type(s) and their associated parameters, sampling method(s), operating schedule, monitoring objective, spatial scale, whether the data is NAAQS comparable, the MSA, and any proposed changes to the network.

Del Norte (2ZM - NCore) - 35-001-0023 - 4700A San Mateo, NE, Albuquerque, NM 87109

The Del Norte site serves as the NCore site in the AQP ambient air monitoring network. NCore is a multipollutant network that integrates several advanced measurement monitoring systems for particulate, pollutant gases, and meteorology. The NCore site measures the following parameters:

Parameter	Comments
PM _{2.5} speciation	Organic and elemental carbon, major ions and trace metals (24-hour
	average; every 3rd day); CSN
PM _{2.5} FRM mass	24 hr. average at least every day
Continuous PM _{2.5} mass	1-hour reporting interval; Federal Equivalent Method (FEM)
PM _(10-2.5) mass	Filter-based or continuous
ozone (O ₃)	all gases through continuous monitors
carbon monoxide (CO)	capable of trace levels (low ppm and below) where needed
sulfur dioxide (SO ₂)	capable of trace levels (low ppb and below) where needed
nitrogen oxide (NO)	capable of trace levels (low ppb and below) where needed
total reactive nitrogen (NO _Y)	capable of trace levels (low ppb and below) where needed
surface meteorology	wind speed and direction, temperature, relative humidity (RH)

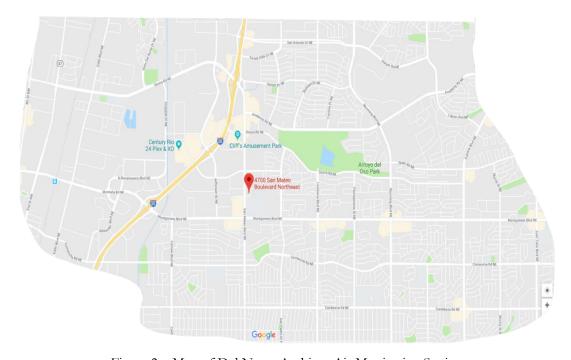
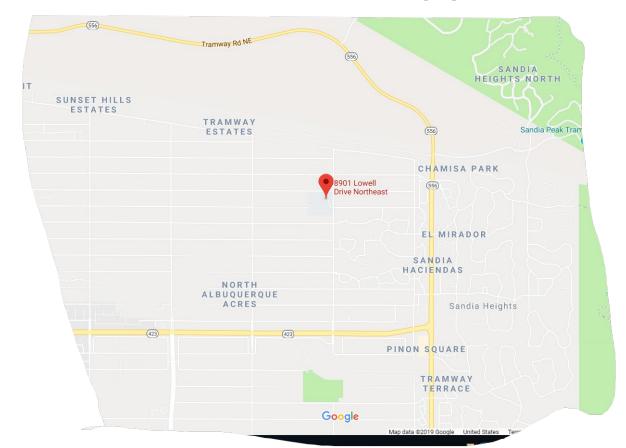



Figure 2 – Map of Del Norte Ambient Air Monitoring Station

In Table 1, which follows, the details of the Del Norte site monitoring equipment are described.

Table 1 – Del Norte Monitoring Parameters Del Norte (2ZM – NCORE) – 35-001-0023 – 4700A San Mateo NE, Albuquerque, NM 87109 Latitude: 35.1346, Longitude: -106.586

Pollutants Measured	Monitor Type	Parameter	Sampling Method	AQS Analysis	Operating Schedule	Monitoring Objective	Spatial Scale	NAAQS Comparable	MSA	Change
PM ₁₀	SLAMS	81102	639	Broadband Spectroscopy	Continuous	Population Exposure	Neighborhood	Yes	ABQ	
PM _{2.5}	SLAMS	88101	638	Broadband Spectroscopy	Continuous	Population Exposure	Neighborhood	Yes	ABQ	
PM _{10-2.5}	SLAMS	86101	640	Broadband Spectroscopy	Continuous	Population Exposure	Neighborhood	N/A	ABQ	
PM _{2.5}	SLAMS	88101	545	Gravimetric	1 in 1	Population Exposure	Neighborhood	Yes	ABQ	
Metals	Special Purpose	Multiple: 88132 88306 88403	Multiple	810 MetOne SASS, 811 MetOne SASS, 812 MetOne SASS (Quartz, Teflon, Nylon)	1 in 3	Population Exposure	Mixture of Other, Population Exposure, General Background	N/A	ABQ	
Carbon Speciation	Special Purpose	Multiple: 88306, 88403	Multiple	826, 831, 839, 840, 841, 842 URG 3000N with Pall Quartz Filter and cyclone filter	1 in 3	Population Exposure	Mixture of Other, Population Exposure, General Background	N/A	ABQ	
NO ₂	SLAMS	42602	99	Gas Phase Chemiluminescence	Continuous	Population Exposure	Neighborhood	Yes	ABQ	
NO _Y	SLAMS	42600	699	Gas Phase Chemiluminescence	Continuous	Population Exposure	Neighborhood	Yes	ABQ	
O ₃	SLAMS	44201	87	Ultraviolet Absorption	Continuous	Regional Transport	Regional	Yes	ABQ	
HS CO	SLAMS	42101	93	Gas Filter Correlation	Continuous	Regional Transport	Regional	Yes	ABQ	
HS SO ₂	SLAMS	42401	600	Ultraviolet Fluorescence	Continuous	Population Exposure	Neighborhood	Yes	ABQ	

Foothills (2ZF) - 35-001-1012 - 8901 Lowell NE, Albuquerque, NM 87122

Figure 3 – Map of Foothills Ambient Air Monitoring Station

The Foothills ambient air monitoring station monitors ozone and measures PM₁₀, PM_{2.5} and PM_{10-2.5}. There is a full suite of meteorological equipment that measures wind speed, wind direction, temperature, and solar radiation. In Table 2, which follows, the details of the Foothills site monitoring equipment are described.

Table 2 – Foothills Monitoring Parameters Foothills (2ZF) – 35-001-1012 – 8901 Lowell NE, Albuquerque, NM 87122 Latitude: 35.182, Longitude: -106.508

Pollutants Measured	Monitor Type	Parameter	Sampling Method	AQS Analysis	Operating Schedule	Monitoring Objective	Spatial Scale	NAAQS Comparable	MSA	Change
PM_{10}	SLAMS	81102	639	Broadband Spectroscopy	Continuous	Population Exposure	Neighborhood	Yes	ABQ	
PM _{2.5}	SLAMS	88101	638	Broadband Spectroscopy	Continuous	Population Exposure	Neighborhood	Yes	ABQ	
PM _{10-2.5}	SLAMS	86101	640	Broadband Spectroscopy	Continuous	Population Exposure	Neighborhood	N/A	ABQ	
O ₃	SLAMS	44201	87	Ultraviolet Absorption	Continuous	Regional Transport	Regional	Yes	ABQ	

11

Jefferson (2ZS) - 35-001-0026 - 3700 Singer NE, Albuquerque, NM 87109

Figure 4 – Map of Jefferson Ambient Air Monitoring Station

The Jefferson ambient air monitoring station measures PM_{10} , $PM_{2.5}$ and $PM_{10-2.5}$. There is a full suite of meteorological equipment that measures wind speed, wind direction, temperature, and solar radiation. In Table 3, which follows, the details of the Jefferson site monitoring equipment are described.

Table 3 – Jefferson Monitoring Parameters Jefferson (2ZS) – 35-001-0026 – 3700 Singer NE, Albuquerque, NM 87109 Latitude: 35.1443, Longitude: -106.605

Pollutants Measured	Monitor Type	Parameter	Sampling Method	AQS Analysis	Operating Schedule	Monitoring Objective	Spatial Scale	NAAQS Comparable	MSA	Change
PM ₁₀	SLAMS	81102	639	Broadband Spectroscopy	Continuous	Highest Concentration	Neighborhood	Yes	ABQ	
PM _{2.5}	SLAMS	88101	638	Broadband Spectroscopy	Continuous	Source Oriented	Neighborhood	Yes	ABQ	
PM _{10-2.5}	SLAMS	86101	640	Broadband Spectroscopy	Continuous	Source Oriented	Neighborhood	N/A	ABQ	

... (448) (313) SANDIA VALLEY (556) Sandia Resort & Cas (556) El Pinto 🖤 (556) (47) 9819 2nd Street Northwest WILDFLOWER Anderson Abruzzo 📵 AREA Albuquerque.. NOR

North Valley (2ZH) - 35-001-1013 - 9819A Second Street, NW, Albuquerque, NM 87114

Figure 5 – Map of North Valley Ambient Air Monitoring Station

Google

(528)

QU

(528)

(47)

ALAMEDA

ALAMEDAN

VALLEY

The North Valley ambient air monitoring station measures PM₁₀, PM_{2.5} and PM_{10-2.5}. There is a full suite of meteorological equipment that measures wind speed, wind direction, temperature, and solar radiation. In Table 4, which follows, the details of the North Valley site monitoring equipment are described.

Table 4 – North Valley Monitoring Parameters North Valley (2ZH) – 35-001-1013 – 9819A Second Street NW, Albuquerque, NM 87114 Latitude: 35.19324, Longitude: -106.614

Pollutants Measured	Monitor Type	Parameter	Sampling Method	AQS Analysis	Operating Schedule	Monitoring Objective	Spatial Scale	NAAQS Comparable	MSA	Change
PM ₁₀	SLAMS	81102	639	Broadband	Continuous	Population	Neighborhood	Yes	ABO	
1 10110	FWIII SLAWIS 81102	81102	039	Spectroscopy	Continuous	Exposure	reighborhood	1 03	AbQ	
DM _{0.6}	PM _{2.5} SLAMS 88101		88101 638	Broadband	Continuous	Population	Neighborhood	Yes	ABQ	
F 1V12.5			038	Spectroscopy	Continuous	Exposure		1 68		
DM. a.s.	CLAMC	86101	640	Broadband	Continuous	Population	Neighborhood	N/A	ADO	
P1VI10-2.5	PM _{10-2.5} SLAMS		040	Spectroscopy	Continuous	Exposure	Neighborhood	N/A	ABQ	

(47) Admiral Beverage Q (500) Coronado Wrecking & Salvage Albuquerque Boise Cascade Building Materials Wastewater Utility Mountain View Insurance Auto Auctions Kinney Brick D & R Tank O Joy Junction, Inc Q Bio Pappel International U Pull & Pay PG Enterprises Q ABQ Metal Recycling

South Valley (2ZV) - 35-001-0029 - 201 Prosperity NE, Albuquerque, NM 87105

Figure 6 – Map of South Valley Ambient Air Monitoring

The South Valley ambient air monitoring station monitors for ozone, carbon monoxide, and oxides of nitrogen and measures PM_{10} , $PM_{2.5}$ and $PM_{10-2.5}$. There is a full suite of meteorological equipment that measures wind speed, wind direction, temperature, and solar radiation. The South Valley site is located in the Mountain View neighborhood which has been identified as an environmental justice area. In Table 5, which follows, the details of the South Valley site monitoring equipment are described.

Table 5 – South Valley Monitoring Parameters South Valley (2ZV) - 35-001-0029 - 201 Prosperity NE, Albuquerque, NM 8710 Latitude: 35.0648, Longitude: -106.7615

Pollutants Measured	Monitor Type	Parameter	Sampling Method	AQS Analysis	Operating Schedule	Monitoring Objective	Spatial Scale	NAAQS Comparable	MSA
PM ₁₀	SLAMS	81102	639	Broadband Spectroscopy	Continuous	Population Exposure	Neighborhood	Yes	ABQ
PM _{2.5}	SLAMS	88101	638	Broadband Spectroscopy	Continuous	Population Exposure	Neighborhood	Yes	ABQ
PM _{10-2.5}	SLAMS	86101	640	Broadband Spectroscopy	Continuous	Population Exposure	Neighborhood	N/A	ABQ
PM _{2.5}	SLAMS	88101	545	Gravimetric	1 in 1	Population Exposure	Neighborhood	Yes	ABQ
NO ₂	SLAMS	42602	99	Gas Phase Chemiluminescence	Continuous	Population Exposure	Neighborhood	Yes	ABQ
NO_Y	SLAMS	42600	699	Gas Phase Chemiluminescence	Continuous	Population Exposure	Neighborhood	Yes	ABQ
O ₃	SLAMS	44201	87	Ultraviolet Absorption	Continuous	Regional Transport	Regional	Yes	ABQ
HS CO	SLAMS	42101	93	Gas Filter Correlation	Continuous	Regional Transport	Regional	Yes	ABQ

DISCUSSION OF INDIVIDUAL CRITERIA POLLUTANTS

The discussion below details:

- The criteria pollutants monitored at each ambient air monitoring station
- A comparison of the concentration of each pollutant to the NAAQS
- Explains why the AQP monitoring network meets the criteria for assessment of the concentration for each pollutant in its jurisdiction

Ground Level Ozone (O₃):

Based on population, Table D-2 of Appendix D to Part 58, 40 CFR requires a minimum of two (2) SLAMS ozone monitors.

Current – Per 40 CFR Part 58, Appendix D Section 4.1, the AQP exceeds EPA network design requirements for ambient air quality monitoring for ozone. The AQP has four (4) ozone monitors, three of which are categorized as SLAMS, one of which is a SPMS (Table 6, Table 13).

Table 6: 2024 Ozone Design Value by site, parts per million (ppm)

Site Name AQS #	2022 4th highest 8-hr avg. (ppm)	2023 4 th highest 8-hr avg. (ppm)	2024 4 th highest 8-hr avg. (ppm)	3-year Design Value (ppm)
Del Norte 35-001-0023	0.070	0.069	0.076	0.071
Foothills 35-001-1012	0.074	0.066	0.076	0.072
South Valley 35-001-0029	0.068	0.063	0.066	0.065

Table 7: 2024 Maximum Ozone Design Value, parts per million (ppm)

Site Name AQS #	2022 4 th Highest 8-hr (ppm)	2023 4 th Highest 8-hr (ppm)	2024 4 th Highest 8-hr (ppm)	3-year Design Value (ppm)	NAAQS (ppm)	% of NAAQS
Foothills* 35-001-1012	0.074	0.066	0.076	0.072	0.070	103%

^{*}Foothills monitoring station recorded the highest concentrations from CY 2022-2024.

AQP considers the three ozone monitoring locations appropriate for its jurisdiction. AQP monitoring results show that the location of the maximum concentration of ozone changes over the year. Overall, the Foothills site generally averages higher concentrations than the other two sites, but it is important to understand the intra-annual variability.

Future: No changes are proposed to the ozone network.

Fine Particulate Matter (PM_{2.5}):

According to 40 CFR Part 58, Table D-5 of Appendix D, one SLAMS PM_{2.5} site is required in Albuquerque-Bernalillo County. However, two monitors are needed to meet collocation requirements. The NCore site requires a PM_{2.5} monitor and there is a PM_{2.5} monitor at the highest PM_{2.5} concentration site. This highest concentration site fulfills the requirement stated in 40 CFR Part 58 Appendix D, 4.7.1 (b).

Current – AQP operates seven $PM_{2.5}$ monitors at five SLAMS and two SPMS in Albuquerque-Bernalillo County. The PM monitors (Teledyne/API T640X) that operate in the City's ambient monitoring network measure three parameters: $PM_{2.5}$, PM_{10} , and $PM_{10-2.5}$.

- The Del Norte 2ZM site (AQS 35-001-0023) operates a continuous Teledyne/API T640X FEM monitor as the Primary monitor and a MetOne E-FRM sequential sampler with 2.5-micron inlet cutoff to record 24-hour averages PM_{2.5} on a 1 in 1 schedule.
- The South Valley 2ZV site (AQS 35-001-0029) operates a Teledyne/API T640X FEM monitor and MetOne E-FRM sequential sampler with a 2.5-micron inlet to record 24-hour averages with a sampling frequency of 1/1 schedule as a co-located sampler.
- The Foothills 2ZF site (AQS 35-001-1012) operates a continuous Teledyne/API T640X FEM sampler. This monitor is not required by EPA, but is maintained by the AQP to better understand PM_{2.5} trends as prevailing westerly winds cross the City of Albuquerque.
- The Jefferson 2ZS site (AQS 35-001-0026) operates a continuous Teledyne/API T640X FEM monitor, which is not required by EPA, but the data is reported to AQS.
- The North Valley 2ZH site (AQS 35-001-1013) operates a continuous Teledyne/ API T640X FEM monitor, which is not required by EPA, but the data is reported to AQS.

Table 8: 2024 PM_{2.5} Design Value, micrograms per cubic meter (μg/m³)

Site Name AQS #	Sampling Schedule	24-hour design value (µg/m³)	Annual Design Value (µg/m³)	Design Value (% 24- hour NAAQS)	Design Value (% Annual NAAQS)	Collocated with sequential PM _{2.5}
Del Norte 35-001-0023	Continuous	12	5	34%	56%	Yes
Foothills 35-001-1012	Continuous	9	3.8	26%	42%	No
Jefferson 35-001-0026	Continuous	16	6.4	46%	71%	No
North Valley 35-001-1013	Continuous	17	6.7	49%	74%	No
South Valley 35-001-0029	Continuous	20	7.7	57%	86%	Yes

Future –No changes are proposed to the PM_{2.5} network.

PM_{10:}

PM data is used by the AQP to accurately measure PM in neighborhoods, to enforce our local fugitive dust control regulation, and to issue high wind advisory and health alerts.

Current – AQP currently operates seven PM₁₀ monitors at five SLAMS and two SPMS, which are all NAAQS comparable.

- The Del Norte 2ZM site (AQS 35-001-0023) operates a Teledyne/API T640X continuous FEM for PM₁₀.
- The Jefferson 2ZS site (AQS 35-001-0026) operates a Teledyne/ API T640X continuous FEM for PM₁₀.

- The South Valley 2ZV site (AQS 35-001-0029) operates a Teledyne/API T640X continuous FEM for PM₁₀.
- The Foothills 2ZF site (AQS 35-001-1012) operates a continuous Teledyne/API T640X FEM sampler. This monitor is not required by EPA, but is maintained by the AQP to better understand PM₁₀ trends as prevailing westerly winds cross the City of Albuquerque and for AQI purposes.
- The North Valley 2ZH site (AQS 35-001-1013) operates a continuous Teledyne/API T640X FEM monitor. This monitor is not required by EPA, but is maintained by the AQP to better understand PM₁₀ trends as prevailing westerly winds cross the Albuquerque-Bernalillo County and for AQI purposes.

Table 9 shows the calculation of the design values for each NAAQS comparable PM₁₀ site.

Table 9: 2024 PM₁₀ Estimated Exceedances

	COA 2024	COA 2			
Site AQS #	COA-2024 Exceedances Estimated	COA-3 year Exceedances Estimated	NAAQS	Is the average # of exceedance values >1?	
Del Norte 35-001-0023	0	0	≥1	No	
Jefferson 35-001-0026	0	1*	≥1	No	
Foothills 35-001-1012	0	0	≥1	No	
North Valley 35-001-1013	1	0.7	≥1	No	
South Valley 35-001-0029	9.3	7.5	≥1	Yes	

Annual values not meeting completeness criteria are marked with an asterisk (**')

Under 40 CFR 50.6(a) the 24-hour primary and secondary standards are attained when the expected number of exceedances per year at each monitoring site is less than or equal to one. In the simplest case, the number of exceedances at a site is determined by recording the number of exceedances in each calendar year and then averaging them over the past three calendar years. The expected number of exceedances is then estimated by averaging the individual annual estimates for the past three years. The comparison with the allowable expected exceedance rate of one per year is made in terms of a number rounded to the nearest tenth (fractional values equal to or greater than 0.05 are to be rounded up; e.g., an exceedance rate of 1.05 would be rounded to 1.1, which is the lowest rate for nonattainment).

The AQP currently meets the monitoring network requirements for ambient air quality monitoring for PM_{10} as required by 40 CFR Part 58, App. D, \S 4.6.

Future: No changes are proposed to the PM₁₀ network.

Sulfur Dioxide (SO₂):

Current – AQP operates one SLAMS and one SPMS. Table 10 shows that the SO₂ monitor is measuring only trace levels, less than 10% of the NAAQS.

Table 10: 2024 SO₂ 99th percentile and 3 Year Design Value, part per billion (ppb)

Site AQS#	Year	99th percentile	3 Year Design Value	% NAAQS
Del Norte 35-001-0023	2022	3.1	3	4
Del Norte 35-001-0023	2023	0*	2	3
Del Norte 35-001-0023	2024	2.7*	2	3

Annual values not meeting completeness criteria are marked with an asterisk ('*')

Future –No changes are proposed to the SO₂ network in the coming year.

SO₂ Data Requirement Rule- The EPA Fact Sheet "Final Data Requirements Rule for the 2010 1-Hour Sulfur Dioxide (SO₂) Primary National Air Quality Standards (NAAQS) states:

This final rule establishes that, at a minimum, air agencies must characterize air quality around sources that emit 2,000 tons per year (tpy) or more of SO₂. An air agency may avoid the requirement for air quality characterization near a source by adopting enforceable emission limits that ensure that the source will not emit more than 2,000 tpy of SO₂.

Bernalillo County does not have any sources that emit over the 2,000 tons per year minimum therefore, no characterization is necessary. The AQP will continue to follow this issue and adjust our plans as further information becomes available from the EPA. The AQP currently meets the network design requirements for ambient air quality monitoring for SO₂ required by 40 CFR Part 58, App. D, § 4.4.

Oxides of Nitrogen (NO):

Current – The AQP monitors NO, NO₂, NO_x, and NO_y at two SLAMS. Additionally, the AQP operates a true NO₂ analyzer at the San Jose SPMS (AQS 35-001-2022). The AQP currently meets the network design requirement for ambient air quality monitoring for NO₂ based on 40 CFR Part 58, Appendix D Section 4.3.3. Table 11 details the design values for NO₂ for 2022-2024. (Annual 98^{th} percentile 1-hour values averaged over 3 years, compared to a standard of 100 ppb.)

Future –No changes are proposed for the coming year.

Table 11: 2024 NO₂ Design Value, ppb

Site AQS#	98th Percentile	2022	2023	2024	3-year Design Value	
Del Norte 35-001-0023	1-Hr Concentration (ppb)	43.5	43.1	43.3	43	
South Valley 35-001-0029	1-Hr Concentration (ppb)	35.4	34.5	38.1	36	

Carbon Monoxide (CO):

Current –The AQP currently operates three CO monitors (two SLAMS, one SPM). The COA currently meets the network design requirement for ambient air quality monitoring for CO per 40 CFR Part 58, Appendix D Section 4.2.

Table 12: 2024 CO Design Value (ppm)

2ZM Del Norte (35-001-0023)

1-Hour

1 11001		
Year	1st Max	2nd Max
2023	1.36	1.24
2024	1.20	1.20

8-Hour

0 11001		
Year	1st Max	2nd Max
2023	0.8	0.8
2024	0.8	0.8

2ZV South Valley (35-001-0029)

1-Hour

Year	1st Max	2nd Max
2023	2.8	2.8
2024	4.7	2.9

8-Hour

Year	1st Max	2nd Max		
2023	1.3	1.3		
2024	1.1	1.1		

Site (AQS#)	2024 1-hr high average (ppm)	NAAQS (ppm)	% of NAAQS	
Del Norte (35-001-0023)	1.2	35.0	3%	
South Valley (35-001-0029)	4.7	35.0	13%	

As the CO concentrations are low, both monitors are now 'high sensitivity'.

Future –No changes are proposed for the coming year.

PM_{2.5} Chemical Speciation

Current – 40 CFR Part 58, Section 4.7.4 requires the operation of a speciation sampler at approved NCore sites. The Del Norte 2ZM site (AQS 35-001-0023) site in Albuquerque operates a Met One Super Sass and a URG sampler for EC/OC (Elemental and Organic Carbon). Speciation filters are shipped to the EPA national analysis contractor, and the contractor reports the data to AQS. The AQP also uses this data in local studies to correlate with data from other samplers.

Both samplers now operate on one-in-three-day sampling schedule.

Special Purpose Monitoring Stations (SPMS)

The AQP operates two SPMS: the San Jose Site, and the Westside Site.

San Jose Site:

Figure 7 – Map of San Jose Mobile Ambient Air Monitoring Station

The AQP installed a mobile monitoring site in the San Jose Neighborhood that operates an automatic gas chromatograph-mass spectrometer (GC-MS) for the measurement of several air toxic pollutants, and a suite of criteria pollutant monitors. Due to several environmental justice concerns brought to the attention of the AQP, we would like to assist the community by providing air toxics-related data. The equipment has been installed, and data collection has commenced. AQP has entered into a collaboration with the University of New Mexico to develop a QA/QC protocol and publicly accessible reporting platform. In Table 13, which follows, the details of the San Jose site monitoring equipment are described.

Table 13 – San Jose Monitoring Parameters San Jose – 35-001-2022 – 2015 Galena Street SE Albuquerque, NM 87102 Latitude: 35.0636, Longitude: -106.3479

Pollutants Measured	Monitor Type	Parameter	Sampling Method	AQS Analysis	Operating Schedule	Monitoring Objective	Spatial Scale	NAAQS Comparable	MSA
PM_{10}	SPM	81102	639	Broadband Spectroscopy	Continuous	Population Exposure	Neighborhood	Yes	ABQ
PM _{2.5}	SPM	88101	638	Broadband Spectroscopy	Continuous	Population Exposure	Neighborhood	Yes	ABQ
PM _{10-2.5}	SPM	86101	640	Broadband Spectroscopy	Continuous	Population Exposure	Neighborhood	N/A	ABQ
NO ₂	SPM	42602	256	Cavity Attenuated Phase Shift (CAPS)	Continuous	Population Exposure	Neighborhood	Yes	ABQ
O ₃	SPM	44201	87	Ultraviolet Absorption	Continuous	Regional Transport	Regional	Yes	ABQ
HS CO	SPM	42101	93	Gas Filter Correlation	Continuous	Regional Transport	Regional	Yes	ABQ
HS SO ₂	SPM	42401	600	Ultraviolet Fluorescence	Continuous	Population Exposure	Neighborhood	Yes	ABQ
Total Carbon Analyzer	SPM	N/A	N/A	Optical Interference	Continuous	Population Exposure	Neighborhood	No	ABQ
Auto GC-MS	SPM	N/A	N/A	Gas Chromatography, Mass Spectrometry	Continuous	Population Exposure	Neighborhood	No	ABQ

Westside Site:

Figure 8 – Map of Westside Ambient Air Monitoring Station

The AQP revived a monitoring site on the property of the Environmental Health Westside Ambient Air Quality Monitoring Laboratory Facility. This site houses a PM monitor and surface meteorology sensors, and is the only monitoring station west of the Rio Grande in Bernalillo County. Data collection and reporting is currently pending on delivery of a data-logger to connect the site instruments to the AQP DAS. In Table 14, which follows, the details of proposed Westside site monitoring equipment are described.

Table 14 – Westside Monitoring Parameters Westside – 11850 Sunset Gardens Road Albuquerque, NM 87121 Latitude: 35.064, Longitude: -106.761

Pollutants Measured	Monitor Type	Parameter	Sampling Method	AQS Analysis	Operating Schedule	Monitoring Objective	Spatial Scale	NAAQS Comparable	MSA
PM_{10}	SPM	81102	639	Broadband Spectroscopy	Continuous	Population Exposure	Neighborhood	Yes	ABQ
PM _{2.5}	SPM	88101	638	Broadband Spectroscopy	Continuous	Population Exposure	Neighborhood	Yes	ABQ
PM _{10-2.5}	SPM	86101	640	Broadband Spectroscopy	Continuous	Population Exposure	Neighborhood	N/A	ABQ