Classifications of Air Pollution

City of Albuquerque Env. Health Dept Air Quality Division Director: John Soladay

Gases	Particulate Matter
•Carbon Monoxide (CO)	•PM _{2.5} (2.5 microns or less)
 Nitrogen Dioxide (NO₂) 	 PM₁₀ (10 microns or less)
•Sulfur dioxide (SO ₂)	•Lead
•Ozone (<mark>O</mark> 3)	•TSP (Total Suspended
 Nitrogen Oxide (NO) 	Particulate)
•VOCs/HAPs (Volatile Organic Compounds/ Hazardous Air Pollutants)	 VOCs/HAPs/metals (Polycyclic Aromatic Hydrocarbons, cadmium, mercury, chromium, etc.)

Ambient standards (gaseous)

Pollutant	Time Average	EPA	NM
СО	1-hr	35.0 ppm	13.1 ppm
	8-hr	9.0 ppm	8.7 ppm
NO ₂	24-hr		100 ppb
	Annual	53 ppb	53 ppb
SO ₂	3-hr	500 ppb	
	24-hr	140 ppb	100 ppb
	Annual	30 ppb	20 ppb

Carbon Monoxide

 Vehicles, woodburning, generators, and PNM Reeves Generating Station

• Hydroxyl radicals convert CO to CO₂.

Nitrogen oxides

Combustion processes emit NO.
 <u>e.g.</u> smokestacks, engines, generators

- Free radicals & O_3 convert NO to NO_2 .
- Nitric & sulfurous emissions \rightarrow acid rain.

Sulfur dioxide

- Smokestacks
 - 1. Coal-fired power plants
 - 2. Refineries
 - 3. Smelters
- Largest source in Bernalillo County: GCC Rio Grande Portland Cement Plant
- Fate: dry deposition/gravitional settling; conversion to sulfates

Ozone

• Direct O_3 emissions are rare.

• Formation: photochemical reactions among precursor pollutants.

• High ozone levels occur during afternoons June, July, and August.

More on ozone

• Light winds, plentiful sunshine favor O₃

 On such days, O₃ levels limited by levels of precursor pollutants.

Ozone formation/destruction

- NO/NO₂ & Volatile Organic Compounds
- Hundreds of VOCs
 - After sunset, NO destroys ozone

VOC Reactivity

- Some highly-reactive VOCs:
 - ethylene
 - propylene
 - 1,3-butadiene
 - Benzene
 - Toluene

• Perc: low reactivity, removed from list.

More on precursors

- Sources of Volatile Organic Compounds
 - 1. Gasoline, diesel, ethanol, etc.
 - 2. Paints, solvents, dry cleaning, etc.
 - 3. Cigarettes, forest fires, etc.

• VOCs are not criteria pollutants

Stratosphere and ground-level

- Stratospheric O_3 protective shield.
- Ground-level ozone harmful pollutant.

• Stratospheric ozone can descend to ground-level behind springtime cold fronts.

Particulates

- Interchangeable terms:
 - Aerosol,
 - Particle,
 - Particulate (matter).
- Smoke and dust are the most common aerosols in Bernalillo County.

Primary PM

• Emitted directly to the atmosphere

- 1. Geologic material
- 2. Organic carbon
- 3. Elemental carbon (a.k.a., soot)
- 4. Metals released into air from combustion

Elemental/black carbon (soot)

Organic carbon

Secondary PM

• Classes of particles formed through chemical reactions:

- 1. Sulfates
- 2. Nitrates
- 3. Ammonium compunds
- 4. Organic carbon compounds

Classification according to size

- Total Suspended Particulate (TSP)
- $PM_{10} 10$ microns or less
- PM_{2.5} 2.5 microns or less

Visualize PM₁₀ & PM_{2.5}

More terms

- Fine = PM2.5
- "Coarse" means between 2.5 and 10 microns
- Supercoarse is greater than 10 microns

Distinction

- PM10 = Coarse + Fine
- TSP = Supercoarse + Coarse + Fine

• A great deal of confusion over PM10, TSP, coarse, and supercoarse.

Origin of particulates

- Fine particulates are produced chiefly by:
 - 1. Combustion processes,
 - 2. Chemical reactions of various gaseous pollutants (Secondary PM).
- Coarse particles are generally emitted directly as a result of:
 - 1. Mechanical processes that crush or grind larger particles,
 - 2. Resuspension of dusts.

Sources

- Fine particles: engines, residential wood burning, forest fires, tobacco smoke, big smokestacks, feedlots (precursors), etc.
- Coarse and supercoarse: dust from disturbed surfaces; construction, demolition, mining, crushing and screening operations; tire and brake lining materials; etc.

Particulate standards

Pollutant	Time Average	U.S. EPA	New Mexico
TSP	Annual		60 µg/m³
	24-hour		150 µg/m³
PM10	Annual		
	24-hour	150 µg/m³	
PM2.5	Annual	15 µg/m³	
	24-hour	35 µg/m³	

Air Quality Index – Fine Particles

24-hr average concentrations	Category
0 – 15.4 µg/m ³ (micrograms per cubic meter)	Good 0 – 50
15.5 – 40.4 µg/m³	Moderate 51 – 100
40.5 – 65.4 µg/m³	Unhealthy for Sensitive Groups (101 – 150)

Air Quality Index - Ozone

8-hour average concentrations	Category
0 – 60 ppb (parts per billion)	Good 0 – 50
61 – 75 ppb	Moderate 51 – 100
76 – 95 ppb	Unhealthy for Sensitive Groups (101 – 150)

Removal of particulates

- Gravity removes coarse and supercoarse particles. Stoke's law: rate of settling is proportional to the density of the particle and the square of it's radius.
- "Fine particulates can remain suspended for weeks and can be transported thousands of kilometers." (Federal Register)
- Developing showers and thunderstorms consume fine particles, <u>i.e.</u> raindrops condense around fine particles.

Particulate HAPs/VOCs

 Most of the particulate HAPs (Hazardous Air Pollutants) are metallic:

(e.g. cadmium, mercury, arsenic, lead, chromium).

• PAHs (Polycyclic Aromatic Hydrocarbons) are particulate VOCs.

More on VOCs & HAPs

- Most Volatile Organic Compounds are gases.
- Overlap with Hazardous Air Pollutants.

• Bigger problem indoors?

Indoor VOCs & HAPs

• Methylene Chloride

• Benzene

• Perc (HAP only)

• Formaldehyde

Fugitives

- Fugitive gases: evaporation from a pool of liquid
- Fugitive dust is released into the atmosphere when wind or traffic disturbs soil, piles, etc.

Seasons & Pollution events

- Mid November January: Inversions and residential woodburning
- Spring winds & Dust storms: mostly supercoarse particles
- Wildfire smoke: spring, summer, fall
- Industrial pollution from Texas: high ozone in August '07

