

RIO GRANDE BLVD AND CANDELARIA RD INTERSECTION REASSESSMENT

PARSONS BRINCKERHOFF

September 10, 2013

Meeting Agenda

- 1. Opening Comments
- 2. Introductions
- 3. Meeting Purpose and Rules of Conduct
- 4. Assessment Overview and Findings
- 5. Questions and Comments
- 6. Closing Comments

Meeting Purpose

- Present findings for the update and reassessment of the Rio Grande and Candelaria Road Intersection Study
- Listen and record public comments
- Answer questions

Meeting Rules of Conduct

Please...

- Keep comments brief. We want everyone to have an opportunity to comment.
- Be courteous and respectful to other participants.

Meeting Rules of Conduct

- Methods of commenting...
 - By speaking during the comment session of tonight's meeting
 - In writing using the comment form
 - Using the project email address... Riogrande@pbworld.com
- All forms of comment carry equal weight

Assessment Overview

- Why the reassessment was done
- Data sources and methodologies
- Key Findings
- Conclusions

Reassessment Objectives

- City Council Directive
 - Supplement to the previous study completed in 2008
 - Reassess using the latest available data

Study Scope

- Limited to the intersection of Rio Grande Blvd. and Candelaria Road
- Did not consider broader corridor issues

Evaluation Factors

- Crash data to assess intersection safety
- Traffic volume data to assess intersection operations
- Speed data to assess existing travel speeds near the intersection
- Benefit-Cost assessment

Crash Data

- Reported crashes for the years 2004 through 2012
 - Filed crash reports maintained by APD
 - Geo-referenced data compiled by the UNM
 Division of Government Research
 - Data base of <u>filed</u> crash reports maintained by NMDOT Traffic Safety Bureau

Crash Data

Crash Data Analysis

- Number: How Many Crashes Occurred?
- Types: Rear-end, Right-Angle, Left-turn, Fixed Object, etc.
- Severity: Property Damage Only (PDO), Injury, Fatal
- Contributing Factors: Driver Inattention, Failure to Yield, Excessive Speed, Alcohol Involved, etc.

Crash Data Analysis

- Two crash metrics calculated from data...crash <u>rate</u> and crash <u>severity</u>
- Crash rate
 - the number of crashes per one million vehicles entering the intersection
 - normalizes the data for comparison to other intersections

Crash Data Analysis

- Crash Severity
 - Ratio of crashes involving injury and/or fatalities to total crashes.
 - Puts seriousness of crashes in perspective

Crash Analysis Findings

Crash Overview – 2004 to 2012:

- 75 total crashes over 9 years (avg. of 8.3/yr.)
- 21 of the 75 crashes involved injuries (28%)
- No fatalities recorded in the assessment period
- 5 crashes involved <u>alcohol</u> (~7%)
- Top Contributing Factors
 - Driver Inattention (57%)
 - Failure to Yield (21%)
 - Excessive Speed (17%)

Crash Analysis Findings

Predominant Crash Types:

	Overall	2008 Study	2013 Study
Crash Type	2004 to 2012	2004 to 2006	2010 to 2012
Left-Turn	23	10	6
Rear-End	13	8	2
Right Angle	12	2	7
Fixed Object	8	3	2
Sideswipe	8	1	3

• In general, the number and severity of crashes has declined significantly since 2004 and 2005

- Typically, crash data is evaluated in 3-year periods
- Number of crashes resulting in injuries has declined significantly from the values used in the 2008 study

	2004 - 2006	2007 - 2009	2010 - 2012
Total Crashes	32	21	22
Injury Crashes	13	5	3
Injury %	41%	24%	14%
Crash Rate	1.48	1.06	1.24

= Data used for 2008 Study

- Severity has decreased since the 2008 study
- Severity has been below city-wide average for last 6 years

Traffic Operations Analysis

- First step... collect current volume data for a typical weekday
- Used two methods
 - Continuous 72-hour counts for approach volumes
 - 9-hour intersection counts for turn movements

Traffic Operations Analysis

Data indicate a slight decline since 2008

Traffic Operations Analysis

- Second step... assess intersection performance
 - Used methods, software, and other tools accepted by FHWA, NMDOT, and COA
 - Evaluated morning, noon, and evening peak periods
- Evaluated...
 - Driver delay
 - Intersection level of service
 - Queue lengths

Findings - Signalized Intersection

- Signalized intersection operates well (LOS B)
- One problem movement...WB to SB left-turn

Findings - Roundabout Intersection

Roundabout intersection generally operates well

 Two problems... westbound and northbound approaches; both operate at LOS D

- Potential queue problem
 - Northbound approach
 - Interferes with side streets

Traffic Findings - Vehicle Delay

 Peak-hour delay is generally greater with a roundabout configuration

Travel Speeds

- Collected speed data using two methods...
 - pneumatic tubes
 - radar gun

Speed Analysis Findings

- Multiple methods available to calculate benefit / cost
- Basis of comparison is existing condition
- For this analysis, the methods from three sources were used:
 - Highway Safety Manual (national guidance)
 - NCHRP Reports 572 and 672

- Benefit Factors Used
 - Safety improvements; cost savings from reduced crashes
 - Cost of time savings from reduced delay
 - Fuel costs

- Cost factors used
 - Cost to study, design, and construct
 - Annual operational and maintenance costs

- Three strategies compared...
 - Doing nothing (leaving the intersection as is)
 - Implementing a permissive/protected left turn signal phase (WB to SB movement)
 - Reconstructing the intersection as a roundabout

Findings

- Benefit / cost ratio of both build options is less than 1
- Low benefit / cost is because the existing intersection...
 - Operates well
 - Has a relatively low number of crashes
 - Has a low crash severity

Conclusions / Recommendations

- Current data shows improvement compared to the 2008 study
- Existing Signalized Intersection
 - Does not have a high crash rate
 - Does not have high crash severity
 - Does function at acceptable levels of service
 - Travel Speeds have dropped a bit
 - Westbound Left-Turn Movement could be improved; add a protected-permissive signal phase

Conclusions / Recommendations

- Current data shows improvement compared to the 2008 study
- Existing Signalized Intersection
 - Does not have a high crash rate
 - Does not have high crash severity
 - Functions at acceptable levels of service
 - Travel speeds have dropped marginally
 - Westbound left-turn movement could be improved;
 add a protected-permissive signal phase

Conclusions and Recommendations

Rebuilding the intersection as a roundabout

- Would likely <u>reduce</u> the number of crashes
- Reduce travel speeds through intersection
- Would function at acceptable levels of service, although would have a queuing problem for the northbound approach during peak periods
- Would require a "break-in" period while drivers get accustomed to the change

Conclusions and Recommendations

- Other considerations for a roundabout approach
 - Speed reductions would be limited to the intersection influence area
 - Additional modifications to the corridor would be necessary to cause a speed reduction beyond the intersection

Conclusions and Recommendations

- Modify the existing signalized intersection by adding a protected-permissive phase for the westbound to southbound left-turn movement.
- Request additional periodic enforcement by APD on Rio Grande Boulevard and Candelaria Road.
- Continue to monitor the intersection for a period of two years to determine the effectiveness of the signal modification.

THANK YOU

PARSONS BRINCKERHOFF